首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The coastal marshlands of the Nueces estuary, Texas depend upon periodic freshwater inundation to support current community structure and promote further establishment and expansion of emergent halophytes. Decades of watershed modifications have dramatically decreased freshwater discharge into the upper estuary resulting in hypersaline and dry conditions. In an attempt to partially restore inflow, the U.S. Bureau of Reclamation excavated two overflow channels re-connecting the Nueces River to the marshlands. Freshwater-mediated (precipitation and inflow) changes in tidal creek and porewater salinity and emergent marsh vegetation were examined over a 5-yr period at three stations in the upper Nueces Marsh with the aid of a Geographical Information System (GIS). Two stations were potentially subjected to freshwater inflow through the channels, while one station experienced only precipitation. Decreased tidal creek and porewater salinity were significantly correlated with increased freshwater at all stations (R2=0.37 to 0.56), although porewater salinities remained hypersaline. GIS analyses indicated the most considerable vegetation change following freshwater inundation was increased cover of the annual succulentSalicornia bigelovii. Fall inundation allowed seed germination and rapid expansion of this species into previously bare areas during the subsequent winter and following spring. The station affected by both inflow and precipitation exhibited greaterS. bigelovii cover than the station affected solely by precipitation in both spring 1999 (58. 7% compared to 27.9%) and 2000 (48.6% compared to 1.9%). Percent cover of the perennialBatis maritima temporarily increased after periods of consistent rainfall. The response was short term, and cover quickly returned to pre-inundation conditions within 3 mo. Prolonged inundation led to longterm (>2yr) decreases in percent cover ofB. maritima. Our results suggest that the timing and quantity of freshwater inundation strongly dictate halophyte response to precipitation and inflow. Brief periods of freshwater inundation that occur at specific times of year alleviate stress and promote seed germination and growth, but extended soil saturation can act as a disturbance that has a negative impact on species adapted to hypersaline conditions.  相似文献   

2.
Primary production by algal epiphytes of dead Spartina alterniflora shoots in a Georgia salt marsh was measured using the 14C technique. A 23 factorial design was used to quantify the effects of light intensity and inundation frequency (stem height) on carbon fixation at two sites along a salt marsh creek. Algae inundated daily fixed carbon more rapidly than those which had dried for several days, but this may have been the results of greater biomass on more frequently immersed stems. This result corroborates studies showing desiccation is not always a severe stress for intertidal algae. Similarity of epiphyte algal productivity to that of salt marsh benthic diatoms suggests that, given adequate substrate, the epiphytes may be an important source of primary production during some seasons of the year.  相似文献   

3.
Salt marshes, which provide a transition between the marine and terrestrial environments around much of the temperature world, will be the first ecosystem to feel the effects of an increased rate of sea level rise. This study examined the metabolic responses of a high salt marsh to increased inundation and wrack deposition associated with sea level rise. We measured changes in ecosystem and soil photosynthesis and respiration by analyzing carbon dioxide fluxes in the light and dark. Data from seasonal flux measurements were combined with continuously measured light and temperature data to develop a model that estimated annual production and respiration. Results suggested that increased inundation will reduce respiration rates to a greater extent than production, yielding a moderate net loss of organic carbon from the high marsh. The model also predicted a substantial loss of organic carbon from wrack-affected areas. This decreased organic carbon input may play an important role in the ability of the marsh to maintain elevation relative to sea level rise.  相似文献   

4.
In the salt marshes of Tomales Bay, California, where grazing by cattle increases the input of nitrogen to the marsh (either directly or indirectly as runoff from within the salt marsh watershed), high salt marsh vegetation is dominated byDistichlis spicata and is less diverse than marshes without excess nutrients. Using a field experiment, I investigated the role of soil fertility on the plant community of the high salt marsh. I hypothesized that when soil fertility is increased by nitrogen addition plant productivity will increase, as indicated by height, biomass, and cover, and competitive exclusion, byD. spicata, will lead to a reduction in species richness and evenness, especially where the initial density ofDistichlis is high (from transplanting). After two growing seasons, biweekly nitrogen addition to the high salt marsh led to increased plant biomass and cover. Diversity was not reduced, and space preemption byDistichlis-transplants did not confer a competitive advantage. Although the dominant species thrived (e.g.,Salicornia virginica, D. spicata, Triglochin concinna) they did not displace subdominant species and decrease diversity. The vegetation response in this high salt marsh system does not support the hypothesis that as biomass and cover (indicators of productivity) increase in response to increased nitrogen, competitive exclusion will occur and diversity will decrease.  相似文献   

5.
This study provides new insights in the relative role of tidal creeks and the marsh edge in supplying water and sediments to and from tidal marshes for a wide range of tidal inundation cycles with different high water levels and for marsh zones of different developmental stage. Net import or export of water and its constituents (sediments, nutrients, pollutants) to or from tidal marshes has been traditionally estimated based on discharge measurements through a tidal creek. Complementary to this traditional calculation of water and sediment balances based on creek fluxes, we present novel methods to calculate water balances based on digital elevation modeling and sediment balances based on spatial modeling of surface sedimentation measurements. In contrast with spatial interpolation, the presented approach of spatial modeling accounts for the spatial scales at which sedimentation rates vary within tidal marshes. This study shows that for an old, high marsh platform, dissected by a well-developed creek network with adjoining levees and basins, flow paths are different for tidal inundation cycles with different high water levels: during shallow inundation cycles (high water level <0.2 m above the creek banks) almost all water is supplied via the creek system, while during higher inundation cycles (high water level >0.2 m) the percentage of water directly supplied via the marsh edge increases with increasing high water level. This flow pattern is in accordance with the observed decrease in sedimentation rates with increasing distance from creeks and from the marsh edge. On a young, low marsh, characterized by a gently seaward sloping topography, material exchange does not take place predominantly via creeks but the marsh is progressively flooded starting from the marsh edge. As a consequence, the spatial sedimentation pattern is most related to elevation differences and distance from the marsh edge. Our results imply that the traditional measurement of tidal creek fluxes may lead in many cases to incorrect estimations of net sediment or nutrient budgets.  相似文献   

6.
The accumulation of selected plant nutrients and heavy metals in a rapidly accreting Louisiana salt marsh was examined. Sedimentation processes were shown to be supplying large amounts of plant nutrients to the marsh. Accumulation of heavy metals was low and appeared to be associated with the natural heavy metal content of incoming sediment rather than from a pollution source. A large portion of organic carbon from primary production remained in the marsh, contributing to the aggradation process of vertical marsh accretion. Nitrogen accumulated in the marsh at rates as great as 21 g per m2 per yr.  相似文献   

7.
Experimental chambers were used in a Virginia salt marsh to partition the tidal flux of dissolved nutrients occurring at the marsh surface and in the water column. On five dates from June to October 1989, six replicate chambers in the short Spartina alterniflora zone were monitored over complete tidal cycles. When reservoir water, used to simulate tidal flooding in the chambers, was initially low in dissolved nutrients, the marsh surface was a source of both ammonium and phosphate to the water column. Calculations of the physical processes of diffusion and advection could not account for total nutrient release from the marsh surface. We hypothesize the primary source of nutrients was organic matter mineralization in surface sediments, which released nutrients into the flooding water column. Assimilation (uptake) of phosphate measured in water-column incubation experiments was nearly equal to phosphate released from the marsh surface. Surface release of ammonium, however, was somewhat greater than water-column uptake. In this salt marsh, benthic production and release of ammonium and phosphate is comparable in magnitude to pelagic consumption, thereby yielding only a small “net” transfer of these nutrients to the estuary.  相似文献   

8.
Field experiments were conducted to examine spatial and temporal variation in chironomid (predominantlyTanypus clavatus) abundance, and their trophic relationship with benthic microalgae. High performance liquid chromatography (HPLC) analysis of chironomid gut pigments indicated that diatoms comprised the bulk of the microalgae ingested by chironomids.14C-feeding studies were used to obtain quantitative estimates of chironomid, copepod, ostracod, and nematode grazing on benthic microalgae. Daily consumption of standing microalgal biomass by chironomids ranged from 0.12% (January) to 125% (May), but was highly variable. There were no significant diel, temporal (over the scale of months), or spatial patterns in individual chironomid grazing rates. There was significant temporal variation in the proportion of microalgal biomass consumed by the total meiofaunal assemblage, and highest grazing impacts occurred in May, coincident with high abundances of chironomids, harpacticoid copepods, and ostracods. The grazing impact of chironomids was comparable to or greater than that of other known grazers of microalgae (copepods, ostracods). Functional-response experiments performed in the laboratory revealed that chironomid ingestion rates increased with increasing food availability over short (1 to 2 h) time scales. Field data did not indicate a functional response to food availability over longer (mo) time scales, possibly because of other environmental incluences. Gut residence time (determined using fluorescently labeled beads) changed with variable feeding rates, which were in turn a function of variable food availability. Chironomid larvae have the ability to consume significant fraction of the microphytobenthos in absolute terms, and relative to other meiofauna, indicating that they are an important component of the salt marsh food web.  相似文献   

9.
Freshwater requirements of a semi-arid supratidal and floodplain salt marsh   总被引:2,自引:0,他引:2  
When rivers are impounded, the reduction in downstream flow can produce important and often adverse effects, especially in the estuarine environment. One or more dams have been proposed for the Olifants River system in the Western Cape, South Africa. This estuary has an extensive area of salt marsh that was examined to see whether it required occasional flooding with freshwater to wash out accumulated salts. The dominant salt marsh species,Sarcocornia pillansii, occurred in supratidal and floodplain areas where the water table was shallowest, the soil moisture highest, and the soil electrical conductivity lowest. Aerial photographs and simulated runoff data showed that no flood had covered the floodplain during the previous 80 years. The data indicate that salt marsh plants use saline groundwater during the dry months of the year in order to survive, but use the short season winter rainfall period with low salinity conditions to grow and reproduce. This study demonstrated that live roots ofS. pillansii reached the water table during the dry season. Tissue and soil water potentials, the relationship between vegetation cover, depth to the water table, and electrical conductivity of the groundwater support the conclusion that saline groundwater is the only source of water during the drier months of the year. Freshwater flooding of the river in winter may be important because it covers the supratidal area with less saline water and reduces the depth to the water table on the floodplain. This makes the groundwater more accessible to the halophytes growing on the floodplain.  相似文献   

10.
Responses ofSpartina alterniflora marsh to combinations of feral horse grazing, clipping, simulated trampling, and a late winter burn were studied on Cumberland Island National Seashore, Georgia. Replicated 200-m2 plots were established and sampled bimonthly from July 1983 to November 1984. Clipping and trampling each reduced peak aboveground biomass by 20% in 1983 and 50% (clipping) and 55% (trampling) in 1984. A March burn reduced peak aboveground biomass by 35% in 1984. Trampling and burning earch reduced net aboveground primary production (NAPP) by 35%, but clipping did not reduce NAPP. Standing stocks of live rhizomes were correlated with aboveground biomass and were reduced with experimental treatments. Abundance of the periwinkle snail (Littorina irrorata) was also reduced. Horse grazing had a substantial impact on standing stocks and NAPP ofSpartina, but grazing was not uniform throughout the marsh. Moderately grazed plots had NAPP reduced by 25% compared to ungrazed plots. Heavily grazed plots had extremely low NAPP, and abovegroundSpartina never exceeded 40 g m?2 dry mass compared to 360 g m?2 within exclosures.  相似文献   

11.
Methane release from soils of a Georgia salt marsh   总被引:1,自引:0,他引:1  
A seasonal study of methane release from marsh soils to the atmosphere indicates that ebullition is a significant process varying both seasonally and spatially. Release rates are higher during summer months than winter months and ebullition is greatest in the short Spartina alterniflora marshes and least in the tall S. alterniflora marshes. The annual amounts of methane released in the short and tall marshes are 53.1 and 0.4 gm?3 which represents a loss of 8.8 and 0.002% of the net carbon fixation in the two respective marsh types.In vitro experimentation shows that methane production is sensitive to changes in temperature and addition of H2 and CO2.  相似文献   

12.
Coastal salt marsh ecosystems contain strong environmental gradients that are anticipated to influence the D/H ratios recorded in the leaf waxes of salt-tolerant plants. We characterized the molecular and hydrogen isotopic composition of alkanes in plant and sediment samples as well as the D/H ratios of environmental and plant waters across an elevation and inundation gradient in a southern Californian, coastal salt marsh. We sampled the dominant salt marsh plant species: Salicornia virginica, Arthrocnemum subterminale and Jamuea carnosa (all succulents), as well as Monanthochloe littoralis and Limonium californicum (nonsucculents). Plant xylem water hydrogen isotopic compositions indicate a shift in source waters from meteoric influences at upland sites (δD value −20‰) to seawater dominated values (0‰) at lowland areas. We found leaf water D enrichment relative to xylem water ranging from mean δD values of +54‰ (upland) to +28‰ (lowland), interpreted as a reduction of transpiration with increasing inundation time. This has the effect of increasing the net fractionation between source water and leaf wax product across the environmental gradient from mean values of −101‰ (upland) to −134‰ (lowland), with an attenuated signal recorded in the δD values of plant leaf wax n-alkanes (−122‰ to −136‰). These results constrain the hydrogen isotopic composition of salt marsh organic matter that may contribute to marine carbon budgets of the Santa Barbara Basin, and further indicate the potential for plant leaf waxes to resolve paleoenvironmental change, including sea level change, in sediment cores from salt marsh ecosystems.  相似文献   

13.
Because tall cordgrass (Spartina foliosa) is needed for nesting by the endangered light-footed, clapper rail, managers of constructed salt marshes in southern California are proposing large-scale nitrogen fertilization to improve cordgrass growth. How this might affect an existing infestation of scale insects (Haliaspis spartina) and the degree of damage these insects cause to their cordgrass hosts was unknown. We explored the effects of timing and duration of fertilization onHaliaspis damage to cordgrass, as well as the timing ofHaliaspis dispersal, in a constructed marsh at Sweetwater Marsh National Wildlife Refuge in San Diego Bay, California. Fertilization did not result in increasedHaliaspis abundance. After a large dispersal pulse in late May,Haliaspis establishment in the long-term fertilized plots was greater than in the controls; however, this trend reversed in August, when many more stems in the control plots were infested with large numbers ofHaliaspis. Since adultHaliaspis cannot leave a feeding site, losses of individuals in the fertilized plots were apparently due to mortality, perhaps resulting from mechanical or chemical changes in the fertilized plants or increased predation. Late in the growing season, plots fertilized with 10 applications of urea over 20 wk had the lowest meanHaliaspis abundance. Plots fertilized only in March, April, June, or August did not differ from controls in meanHaliaspis abundance.Haliaspis was never abundant in the fertilized or control plots in the adjacent natural marsh. This study suggests that fertilization, of constructed salt marshes in San Diego Bay may proceed without concern that furtherHaliaspis outbreaks will be facilitated.  相似文献   

14.
In a salt marsh environment, plant-produced fatty acids and aliphatic hydrocarbons undergo significant modification upon being deposited in sediment. The major changes include alteration of the distribution pattern of straight chain components, increase in the concentration of branched components and decrease in the concentration of unsaturated components. Changes are similar in both oxidizing and reducing environments. Carbon isotope measurements indicate that there is little horizontal movement of sediment organics. Spartina alterniflora has a δC13 = ? 12.5% (vs NBS 20) and Juncus romerianus has a δC13 = ?23.2%. Sediment organic matter taken from cores up to 60 cm in depth retains a δC13 value similar to the plant species growing at the core site. Microbial metabolism appears to be responsible for the observed in situ changes in sediment lipids. The in situ changes did not result in significant alteration of δC13 values.  相似文献   

15.
Seasonal patterns of microbially-mediated nitrogen cycling via the nitrification-denitrification pathway were compared between a natural and a restored salt marsh. Sedimentary denitrification rates, measured with a modification of the acetylene block technique, were approximately 44 times greater in the natural marsh relative to an adjacent transplanted marsh. Nitrification rates were similar at both sites. The difference in denitrification rates was attributed to oxygen inhibition at low tide and tidal flushing of porewater nutrients at high tide in the coarse sediments of the restored marsh. Denitrification was positively correlated with nitrification throughout the year in the natural marsh with a seasonal fall peak in denitrification corresponding to a maximum in porewater ammonia concentration. A weak correlation existed between the two processes in the restored marsh, where nitrification rates exceeded denitrification rates by a factor of 20. Transplanted marsh denitrification rates exhibited a spring peak, corresponding to elevated porewater ammonia concentrations. Our findings demonstrate functional differences in microbial nitrogen dynamics of a young (0–3 yr) restored marsh relative to a mature (>50 yr) salt-marsh system. *** DIRECT SUPPORT *** A01BY070 00008  相似文献   

16.
In deltaic marshes, mineral sediment promotes positive elevation change and counters subsidence and sea level rise. In many such marshes sediment deficits result in wetland loss. One new way to address sediment deficiency is to supply marshes with sediments in a slurry that deposits the sediment in a thin layer over a large area. The long-term effects of this strategy are poorly understood. In a rapidly submerging,Spartina alterniflora salt marsh, we tested how different amounts of sediment ameliorated the effects of sea level rise and subsidence over 7 yr (1992–1998). Sediment slurry enrichment likely affected plants and soils by two mechanisms. It increased elevation and soil bulk density, leading to increased plant vigor and soil condition. These effects were long lasting, such that by 1998 areas receiving moderate amounts of sediment (5–12 cm relative elevation) had better plant vigor and soil condition compared to areas not receiving sediment (55% cover versus 20%; bulk densities of 0.4–1.0 g cm−3 versus 0.2 g cm−3; 0 mM hydrogen sulfide versus > 1.0 mM). The sediment slurry also had high nutrient content, which resulted in a pulse of growth, especially in areas receiving the most sediment (areas > 12 cm relative elevation initially had >90% cover and canopy heights >1.6 m). This nutrient-induced growth spurt was short lived and faded after 3 yr, at which point the long lasting effects of increased elevation probably became the dominant factor promoting plant vigor and soil condition. Moderate levels of sediment generated the most beneficial and long lasting effects to the vegetation and soils. This degree of sediment slurry addition countered the effects of subsidence and sea level rise, but not so much as to surpass the intertidal position to whichS. alterniflora is best adapted.  相似文献   

17.
We used137Cs-dating to determine vertical accretion rates of 15 salt marshes on the Bay of Fundy, the Gulf of St. Lawrence, and the Atlantic coast of Nova Scotia. Accretion rates are compared to a number of factors assumed to influence vertical marsh accretion: rates of relative sea-level rise, climatic parameters (average daily temperatures and degree days) and latitude (related to insolation and day length), sediment characteristics (organic matter inventory, bulk, mineral, and organic matter density), distance of the core site from the nearest source of tidal waters, and the tidal range. Uniques to our study is a consideration of climatic parameters and latitude, which should influence organic matter production, and thus vertical accretion rates. Significant predictors of accretion rates (in order of importance) were found to be organic matter inventory, distance from a creek, and range of mean tides. Contrary to conclusions from previous studies, we found that accretion rates decreased with increasing tidal range, probably because we considered a wider span of tidal ranges, from micro- to macrotidal. Although four marshes with low organic matter inventories also show a deficit in accretion with respect to relative sea-level rise, organic matter is not limiting in two-thirds of the marshes studied, despite shorter growing seasons.  相似文献   

18.
Flume nets of various lengths and a 3-m seine were used to sample the fishes and macrocrustaceans using a flooded Louisiana salt marsh and the adjacent tidal creek. The experiment allowed for species-specific comparisons of the flooded marsh at the creek edge versus the interior. Of the 37,667 organisms collected in flume nets from January through November 1989, 89% were decapods (nine species) and 11% were fish (29 species). An additional 18,539 organisms (75% decapods and 25% fish) were collected from concurrent seine samples taken from July through November. Comparison of catches among different flume lengths and low tide versus high tide seine collections revealed distinct patterns of marsh habitat utilization. Densities of most organisms were highest within 3 m of the water’s edge, but significant numbers of marsh-resident fish species used the interior marshes. The edge marshes appeared to be used by both transient and resident species; however, the interior marshes were used primarily by marsh-resident species (Cyprinodontiformes andPalaemonetes sp.) that are excellent food sources for adult transient-species. Four zonations of marsh use are described for transients, residents, and rare species.  相似文献   

19.
The role of zooplankton in a salt marsh ecosystem was studied in Flax Pond, Old Field, N. Y., a 30-hectare tidal pond adjacent to Long Island Sound. Various marine crustaceans accounted for over 95% of the zooplankton caloric biomass in all but three months, in which ctenophores (Mnemiopsis leidyi) accounted for about 20%. Mass balance analysis of crustacean biomass showed a seasonal trend with increased “consumption” by the marsh from July to November. Analysis of groups (or species) for all months showed total numbers were reduced by passing through, or interacting with, the marsh. The most abundant group for each sample date also was significantly reduced from outflowing waters for all months, as were the group copepodids and miscellaneous calanoids from July to November. The energy requirements for the crustacean zooplankton community could have been supplied amply by the estimated standing crop of phytoplankton in the marsh. Phytoplankton net primary production was low, but it was ample to satisfy crustacean energy needs in all months. Crustaceans and phytoplankton alone were not enough to support estimated ctenophore nutrition requirements in summer. Therefore, detritus may also have been an important ctenophore food source.  相似文献   

20.
It is becoming more apparent that commonly used statistical methods (e.g. analysis of variance and regression) are not the best methods for estimating limiting relationships or stressor effects. A major challenge of estimating the effects associated with a measured subset of limiting factors is to account for the effects of unmeasured factors in an ecologically realistic matter. We used quantile regression to elucidate multiple stressor effects on end-of-season biomass data from two salt marsh sites in coastal Louisiana collected for 18 yr. Stressor effects evaluated based on available data were flooding, salinity air temperature, cloud cover, precipitation deficit, grazing by muskrat, and surface water nitrogen and phosphorus. Precipitation deficit combined with surface water nitrogen provided the best two-parameter model to explain variation in the peak biomass with different slopes and intercepts for the two study sites. Precipitation deficit, cloud cover, and temperature were significantly correlated with each other. Surface water nitrogen was significantly correlated with surface water phosphorus and muskrat density. The site with the larger duration of flooding showed reduced peak biomass, when cloud cover and surface water nitrogen were optimal. Variation in the relatively low salinity occurring in our study area did not explain any of the variation inSpartina alterniflora biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号