首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During this century global warming will lead to changes in global weather and climate, affecting many aspects of our environment. Agriculture is the sector of the United States economy most likely to be directly impacted by climatic changes. We have examined potential changes in dryland agriculture (Part 3) and in water resources necessary for crop production (Part 4) in response to a set of climate change scenarios. In this paper we assess to what extent, under these same scenarios, water supplies will be sufficient to meet the irrigation requirement of major grain crops in the US. In addition, we assess the overall impacts of changes in water supply on national grain production. We apply the 12 climate change scenarios described in Part 1 to the water resources and crop growth simulation models described in Part 2 for the conterminous United States. Drawing on data from Parts 3 and 4 we calculate what the aggregate national production would be in those regions in which grain crops are currently produced by applying irrigation where needed and water supplies allow. The total amount of irrigation water applied to crops declines under all climate change scenarios employed in this study. Under certain of the scenarios and in particular regions, precipitation decreases so much that water supplies are too limited; in other regions precipitation becomes so plentiful that little value is derived from irrigation. Nationwide grain crop production is greater when irrigation is applied as needed. Under irrigation, less corn and soybeans are produced under most of the climate change scenarios than is produced under baseline climate conditions. Winter wheat production under irrigation responds significantly to elevated atmospheric carbon dioxide concentrations [CO2] and appears likely to increase under climate change.  相似文献   

2.
与IPCC第五次评估报告相比,第六次评估报告(AR6)有关农业的评估对象由作物生产系统延伸到粮食供应链系统,气候变化对作物生产不利影响的证据在加强。气候变化改变了作物适宜种植区,使中高纬度及温带地区作物种植界限向高纬度、高海拔地区推移。人为引起的气候变暖阻碍了作物产量的增长,地表O3浓度增加使作物产量降低,CH4排放加剧了这种不利影响。气候变化加剧作物病虫草害,极端气候事件高发加剧了粮食不安全,推升了国际粮食价格。适应措施有助于减缓气候变化不利影响,基于自然的适应方案在增强作物生产系统气候恢复力和保障粮食安全方面具有较高潜力。从保障国家粮食安全和重大战略需求出发,AR6报告对我国农业应对气候变化相关工作的启示如下:需要高度重视气候变化背景下作物种植适宜区转变与种植带北移的重要战略价值,合理规划农业生产布局;加强农业气象灾害和病虫害防治体系和能力建设,保障粮食生产稳定性;关注气候变化对国际作物生产和谷物贸易的影响,统筹国内、国际市场粮食资源,保障粮食安全;推进农业温室气体减排与作物生产高效协同,为实现国家减排目标做出贡献。  相似文献   

3.
Estimates of impact of climate change on crop production could be biased depending upon the uncertainties in climate change scenarios, region of study, crop models used for impact assessment and the level of management. This study reports the results of a study where the impact of various climate change scenarios has been assessed on grain yields of irrigated rice with two popular crop simulation models- Ceres-Rice and ORYZA1N at different levels of N management. The results showed that the direct effect of climate change on rice crops in different agroclimatic regions in India would always be positive irrespective of the various uncertainties. Rice yields increased between 1.0 and 16.8% in pessimistic scenarios of climate change depending upon the level of management and model used. These increases were between 3.5 and 33.8% in optimistic scenarios. At current as well as improved level of management, southern and western parts of India which currently have relatively lower temperatures compared to northern and eastern regions, are likely to show greater sensitivity in rice yields under climate change. The response to climate change is small at low N management compared to optimal management. The magnitude of this impact can be biased upto 32% depending on the uncertainty in climate change scenario, level of management and crop model used. These conclusions are highly dependent on the specific thresholds of phenology and photosynthesis to change in temperature used in the models. Caution is needed in using the impact assessment results made with the average simulated grain yields and mean changes in climatic parameters.  相似文献   

4.
This study used a quadratic programming sector model to assess the integrated impacts of climate change on the agricultural economy of Egypt. Results from a dynamic global food trade model were used to update the Egyptian sector model and included socio-economic trends and world market prices of agricultural goods. In addition, the impacts of climate change from three bio-physical sectors – water resources, crop yields, and land resources – were used as inputs to the economic model. The climate change scenarios generally had minor impacts on aggregated economic welfare (sum of Consumer and Producer Surplus or CPS), with the largest reduction of approximately 6 percent. In some climate change scenarios, CPS slightly improved or remained unchanged. These scenarios generally benefited consumers more than producers, as world market conditions reduced the revenue generating capacity of Egyptian agricultural exporters but decreased the costs of imports. Despite increased water availability and only moderate yield declines, several climate change scenarios showed producers being negatively affected by climate change. The analysis supported the hypothesis that smaller food importing countries are at a greater risk to climate change, and impacts could have as much to do with changes in world markets as with changes in local and regional biophysical systems and shifts in the national agricultural economy.  相似文献   

5.
While previous studies have focused on impacts of average climate change on Russian agriculture and water resources, this study takes into account the impact of changing frequency and spatial heterogeneity of extreme climate events, and the reliance of most of Russia on a few food producing regions. We analyze impacts of the IPCC A2 and B2 climate scenarios with the use of the Global Assessment of Security (GLASS) model (containing the Global Agro-Ecological Zones (GAEZ) crop production model and the Water-Global Assessment and Prognosis (WaterGAP 2) water resources model). As in previous studies we find that decreased crop production in some Russian regions can be compensated by increased production in others resulting in relatively small average changes. However, a different perspective on future risk to agriculture is gained by taking into account a change in frequency of extreme climate events. Under climate normal conditions it is estimated that “food production shortfalls” (a year in which potential production of the most important crops in a region is below 50% of its average climate normal production, taking into account production in food-exporting regions) occur roughly 1–3 years in each decade. This frequency will double in many of the main crop growing areas in the 2020s, and triple in the 2070s. The effects of these shortfalls are likely to propagate throughout Russia because of the higher likelihood of shortfalls occurring in many crop export regions in the same year, and because of the dependence of most Russian regions on food imports from a relatively few main crop growing regions. We estimate that approximately 50 million people currently live in regions that experience one or more shortfalls each decade. This number may grow to 82–139 million in the 2070s. The assessment of climate impacts on water resources indicates an increase in average water availability in Russia, but also a significantly increased frequency of high runoff events in much of central Russia, and more frequent low runoff events in the already dry crop growing regions in the South. These results suggest that the increasing frequency of extreme climate events will pose an increasing threat to the security of Russia's food system and water resources.  相似文献   

6.
We calculate the impacts of climate effects inferred from three atmospheric general circulation models (GCMs) at three levels of climate change severity associated with change in global mean temperature (GMT) of 1.0, 2.5 and 5.0 °C and three levels of atmospheric CO2 concentration ([CO2]) – 365 (no CO2 fertilization effect), 560 and 750 ppm – on the potential production of dryland winter wheat (Triticum aestivum L.) and corn (Zea mays L.) for the primary (current) U.S. growing regions of each crop. This analysis is a subset of the Global Change Assessment Model (GCAM) which has the goal of integrating the linkages and feedbacks among human activities and resulting greenhouse gas emissions, changes in atmospheric composition and resulting climate change, and impacts on terrestrial systems. A set of representative farms was designed for each of the primary production regions studied and the Erosion Productivity Impact Calculator (EPIC) was used to simulate crop response to climate change. The GCMs applied were the Goddard Institute of Space Studies (GISS), the United Kingdom Meteorological Transient (UKTR) and the Australian Bureau of Meteorological Research Center (BMRC), each regionalized by means of a scenario generator (SCENGEN). The GISS scenarios have the least impact on corn and wheat production, reducing national potential production for corn by 6% and wheat by 7% at a GMT of 2.5 °C and no CO2 fertilization effect; the UKTR scenario had the most severe impact on wheat, reducing production by 18% under the same conditions; BMRC had the greatest negative impact on corn, reducing production by 20%. A GMT increase of 1.0°C marginally decreased corn and wheat production. Increasing GMT had a detrimental impact on both corn and wheat production, with wheat production suffering the greatest losses. Decreases for wheat production at GMT 5.0 and [CO2] = 365 ppm range from 36% for the GISS to 76% for the UKTR scenario. Increases in atmospheric [CO2] had a positive impact on both corn and wheat production. AT GMT 1.0, an increase in [CO2] to 560 ppm resulted in a net increase in corn and wheat production above baseline levels (from 18 to 29% for wheat and 2 to 5% for corn). Increases in [CO2] help to offset yield reductions at higher GMT levels; in most cases, however, these increases are not sufficient to return crop production to baseline levels.  相似文献   

7.
Projections of climate impacts on crop yields simulated for different General Circulation Model (GCM) scenarios are used, in a recursively dynamic general equilibrium framework, to account for potential economy-wide impacts of climate change in Egypt. Comparing these impact projections to those obtained under a reference, business-as-usual, scenario assuming some moderate changes in the political, economic or technological spheres, indicates that global warming has potentially negative effects. The analysis is based on a global assessment of potential climate change-induced variations in world commodity production and trade. The Egyptian agricultural sector, and the non-agricultural sector to a lesser extent, are projected to be increasingly less self-sufficient. Specific potential adverse impacts are identified. The simulation results show that high-cost adaptation measures involving major changes in the agricultural system and practices may mitigate these adverse impacts. Stimulating economic development of the rural areas and creating appropriate conditions for effective diffusion and development of technologies — particularly for the agricultural sector — would seem a desirable strategy. Perhaps, more importantly, the simulation results show that the assumption of exogenously determined technological progress may be inappropriate, in which case the potential adverse impacts of a future warming of the global climate are likely to be fewer than is indicated in this study — if prevailing constraints on productivity growth in the major food and feed grains are ‘released’ by endogenous advances in technology.  相似文献   

8.
Agriculture and forestry will be particularly sensitive to changes in mean climate and climate variability in the northern and southern regions of Europe. Agriculture may be positively affected by climate change in the northern areas through the introduction of new crop species and varieties, higher crop production and expansion of suitable areas for crop cultivation. The disadvantages may be determined by an increase in need for plant protection, risk of nutrient leaching and accelerated breakdown of soil organic matter. In the southern areas the benefits of the projected climate change will be limited, while the disadvantages will be predominant. The increased water use efficiency caused by increasing CO2 will compensate for some of the negative effects of increasing water limitation and extreme weather events, but lower harvestable yields, higher yield variability and reduction in suitable areas of traditional crops are expected for these areas. Forestry in the Mediterranean region may be mainly affected by increases in drought and forest fires. In northern Europe, the increased precipitation is expected to be large enough to compensate for the increased evapotranspiration. On the other hand, however, increased precipitation, cloudiness and rain days and the reduced duration of snow cover and soil frost may negatively affect forest work and timber logging determining lower profitability of forest production and a decrease in recreational possibilities. Adaptation management strategies should be introduced, as effective tools, to reduce the negative impacts of climate change on agricultural and forestry sectors.  相似文献   

9.
Food production in China is a fundamental component of the national economy and driver of agricultural policy. Sustaining and increasing output to meet growing demand faces significant challenges including climate change, increasing population, agricultural land loss and competing demands for water. Recent warming in China is projected to accelerate by climate models with associated changes in precipitation and frequency of extreme events. How changes in cereal production and water availability due to climate change will interact with other socio-economic pressures is poorly understood. By linking crop and water simulation models and two scenarios of climate (derived from the Regional Climate Model PRECIS) and socio-economic change (downscaled from IPCC SRES A2 and B2) we demonstrate that by the 2040s the absolute effects of climate change are relatively modest. The interactive effects of other drivers are negative, leading to decreases in total production of ?18% (A2) and ?9% (B2). Outcomes are highly dependent on climate scenario, socio-economic development pathway and the effects of CO2 fertilization on crop yields which may almost totally offset the decreases in production. We find that water availability plays a significant limiting role on future cereal production, due to the combined effects of higher crop water requirements (due to climate change) and increasing demand for non-agricultural use of water (due to socio-economic development). Without adaptation, per capita cereal production falls in all cases, by up to 40% of the current baseline.By simulating the effects of three adaptation scenarios we show that for these future scenarios China is able to maintain per capita cereal production, given reasonable assumptions about policies on land and water management and progress in agricultural technology. Our results are optimistic because PRECIS simulates much wetter conditions than a multi-model average, the CO2 crop yield response function is highly uncertain and the effects of extreme events on crop growth and water availability are likely to be underestimated.  相似文献   

10.
This modeling study addresses the potential impacts of climate change and changing climate variability due to increased atmospheric CO2 concentration on soybean (Glycine max (L.) Merrill) yields in theMidwestern Great Lakes Region. Nine representative farm locations and six future climate scenarios were analyzed using the crop growth model SOYGRO. Under the future climate scenarios earlierplanting dates produced soybean yield increases of up to 120% above current levels in the central and northern areas of the study region. In the southern areas, comparatively small increases (0.1 to 20%) and small decreases (–0.1 to–25%) in yield are found. The decreases in yield occurred under the Hadley Center greenhouse gas run (HadCM2-GHG), representing a greater warming, and the doubled climate variability scenario – a more extreme and variableclimate. Optimum planting dates become later in the southern regions. CO2fertilization effects (555 ppmv) are found to be significant for soybean, increasing yields around 20% under future climate scenarios.For the study region as a whole the climate changes modeled in this research would have an overall beneficial effect, with mean soybean yield increases of 40% over current levels.  相似文献   

11.

Water shortage and climate change are the most important issues of sustainable agricultural and water resources development. Given the importance of water availability in crop production, the present study focused on risk assessment of climate change impact on agricultural water requirement in southwest of Iran, under two emission scenarios (A2 and B1) for the future period (2025–2054). A multi-model ensemble framework based on mean observed temperature-precipitation (MOTP) method and a combined probabilistic approach Long Ashton Research Station-Weather Generator (LARS-WG) and change factor (CF) have been used for downscaling to manage the uncertainty of outputs of 14 general circulation models (GCMs). The results showed an increasing temperature in all months and irregular changes of precipitation (either increasing or decreasing) in the future period. In addition, the results of the calculated annual net water requirement for all crops affected by climate change indicated an increase between 4 and 10 %. Furthermore, an increasing process is also expected regarding to the required water demand volume. The most and the least expected increase in the water demand volume is about 13 and 5 % for A2 and B1 scenarios, respectively. Considering the results and the limited water resources in the study area, it is crucial to provide water resources planning in order to reduce the negative effects of climate change. Therefore, the adaptation scenarios with the climate change related to crop pattern and water consumption should be taken into account.

  相似文献   

12.
气候变化对中国农业生产的影响研究进展   总被引:54,自引:6,他引:48       下载免费PDF全文
气候变化已成为当今科学界、各国政府和社会公众普遍关注的环境问题之一,气候变化可能对生态系统和社会经济产生灾难性影响,农业是受气候变化影响最直接的脆弱行业。因此,气候变化对农业生产的影响研究一直是气候变化研究领域中的热点问题之一。该文系统介绍了有关全球气候变化对中国农业生产影响研究的现状与进展,包括气候变化对农业影响的研究方法、大气中温室气体浓度增加对农作物的影响试验、气候变化对农业气候资源的影响、气候变化对农作物生长发育和产量的影响、气候变化对农业种植制度和品种布局的影响、气候变化对农作物气候生产潜力和气候资源利用率的影响等,指出当前在研究气候变化对农业影响评估中存在的问题,提出了今后应加强对气候变化情景和预测模式不确定性的研究、气候变化对农业影响的方法研究。此外,气候变化背景下极端天气气候事件对农业生产的影响以及气候变化对农业病虫害的影响研究等仍较薄弱,有待进一步加强和深入。  相似文献   

13.
This study examines the sensitivity of maize and sorghum crops to global warming in Botswana, a country with arid climatic conditions and shortfalls in locally produced grain. The vulnerability of the maize and sorghum crops to climate change were studied using crop simulation models while climate change scenarios were generated from Global Circulation Models. Simulated yields indicated that rain-fed crop production under the observed climate was a small fraction of what could be produced under optimal conditions. The gap was attributed to both physical (especially lack of rain) and socio-economic constraints. Using the southern African core climate change scenario, simulated yields declined by 36% in the case of maize and 31% for sorghum in the sand veldt region. Yield reductions from thehard veldt region were in the order of 10% for both maize and sorghum. The growing season became shorter, the average reduction in days in the sand veldt region being 5 and 8 days for maize and sorghum respectively, and correspondingly, 3 and 4 days over the hard veldt region. The food security option currently followed in Botswana was found to be a good adaptive strategy under a changed climate.  相似文献   

14.
Nearly all of Ethiopia’s agriculture is dependent on rainfall, particularly the amount and seasonal occurrence. Future climate change predictions agree that changes in rainfall, temperature, and seasonality will impact Ethiopia with dramatic consequences. When, where, and how these changes will transpire has not been adequately addressed. The objective of our study was to model how projected climate change scenarios will spatially and temporally impact cereal production, a dietary staple for millions of Ethiopians. We used Maxent software fit with crop data collected from household surveys and bioclimatic variables from the WorldClim database to develop spatially explicit models of crop production in Ethiopia. Our results were extrapolated to three climate change projections (i.e., Canadian Centre for Climate Modeling and Analysis, Hadley Centre Coupled Model v3, and Commonwealth Scientific and Industrial Research Organization), each having two emission scenarios. Model evaluations indicated that our results had strong predictability for all four cereal crops with area under the curve values of 0.79, 0.81, 0.79, and 0.83 for teff, maize, sorghum, and barley, respectively. As expected, bioclimatic variables related to rainfall were the greatest predictors for all four cereal crops. All models showed similar decreasing spatial trends in cereal production. In addition, there were geographic shifts in land suitability which need to be accounted for when assessing overall vulnerability to climate change. The ability to adapt to climate change will be critical for Ethiopia’s agricultural system and food security. Spatially explicit models will be vital for developing early warning systems, adaptive strategies, and policy to minimize the negative impacts of climate change on food production.  相似文献   

15.
Climate changes, associated with accumulation of greenhouse gases, are expected to have a profound influence on agricultural sustainability in Israel, a semi-arid area characterized by a cold wet winter and a dry warm summer. Accordingly this study explored economic aspects of agricultural production under projected climate-change scenarios by the “production function” approach, as applied to two representative crops: wheat, as the major crop grown in Israel’s dry southern region, and cotton, representing the more humid climate in the north. Adjusting outputs of the global climate model HadCM3 to the specific research locations, we generated projections for 2070–2100 temperatures and precipitations for two climate change scenarios. Results for wheat vary among climate scenarios; net revenues become negative under the severe scenario (change from −145 to −273%), but may increase under the moderate one (−43 to +35%), depending on nitrogen applied to the crop. Distribution of rain events was found to play a major role in determining yields. By contrast, under both scenarios cotton experiences a considerable decrease in yield with significant economic losses (−240 and −173% in A2 and B2 scenarios, respectively). Additional irrigation and nitrogen may reduce farming losses, unlike changes in seeding dates.  相似文献   

16.
Policy measures regarding adaptation to climate change include efforts to adjust socio-economic and ecologic systems. Colombia has undertaken various measures in terms of climate change mitigation and adaptation since becoming a party of the Kyoto protocol in 2001 and a party of the United Nations Framework Convention on Climate Change (UNFCCC) in 1995. The first national communication to the UNFCCC stated how Colombian agriculture will be severely impacted under different emission scenarios and time frames. The analyses in this document further support that climate change will severely threaten the socioeconomics of Colombian agriculture. We first query national data sources to characterize the agricultural sector. We then use 17 Global Circulation Model (GCM) outputs to quantify how Colombian agricultural production may be affected by climate change, and show the expected changes to years 2040–2069 (“2050”) under the A2 scenario of the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios (SRES-A2) and the overall trends in both precipitation and temperature to 2100. We then evaluate expected changes within different regions and measure the proportion of area affected within each crop’s distributional range. By 2050, climatic change in Colombia will likely impact 3.5 million people, 14?% of national GDP corresponding to agriculture, employment of 21?% of the population, agro-industries, supply chains, and food and nutritional security. If no adaptation measures are taken, 80?% of crops would be impacted in more than 60?% of their current areas of cultivation, with particularly severe impacts in high value perennial and exportable crops. Impacts also include soil degradation and organic matter losses in the Andes hillsides; likely flooding in the Caribbean and Pacific coasts; niche losses for coffee, fruit, cocoa, and bananas; changes in prevalence of pests and diseases; and increases in the vulnerabilities of non-technically developed smallholders. There is, however, still time to change the current levels of vulnerability if a multidisciplinary focus (i.e., agronomic, economic, and social) in vulnerable sectors is undertaken. Each sub-sector and the Government need to invest in: (1) data collection, (2) detailed, regionally-based impact assessments, (3) research and development, and (4) extension and technology transfer. Support to vulnerable smallholders should be given by the state in the form of agricultural insurance systems contextualized under the phenomenon of climate change. A national coordination scheme led by (but not restricted to) the Ministry of Agriculture and Rural Development (MADR) with the contributions of national and international institutions is needed to address agricultural adaptation.  相似文献   

17.
This integrated study examines the implications of changes in crop water demand and water availability for the reliability of irrigation, taking into account changes in competing municipal and industrial demands, and explores the effectiveness of adaptation options in maintaining reliability. It reports on methods of linking climate change scenarios with hydrologic, agricultural, and planning models to study water availability for agriculture under changing climate conditions, to estimate changes in ecosystem services, and to evaluate adaptation strategies for the water resources and agriculture sectors. The models are applied to major agricultural regions in Argentina, Brazil, China, Hungary, Romania, and the US, using projections of climate change, agricultural production, population, technology, and GDP growth.For most of the relatively water-rich areas studied, there appears to be sufficient water for agriculture given the climate change scenarios tested. Northeastern China suffers from the greatest lack of water availability for agriculture and ecosystem services both in the present and in the climate change projections. Projected runoff in the Danube Basin does not change substantially, although climate change causes shifts in environmental stresses within the region. Northern Argentina's occasional problems in water supply for agriculture under the current climate may be exacerbated and may require investments to relieve future tributary stress. In Southeastern Brazil, future water supply for agriculture appears to be plentiful. Water supply in most of the US Cornbelt is projected to increase in most climate change scenarios, but there is concern for tractability in the spring and water-logging in the summer.Adaptation tests imply that only the Brazil case study area can readily accommodate an expansion of irrigated land under climate change, while the other three areas would suffer decreases in system reliability if irrigation areas were to be expanded. Cultivars are available for agricultural adaptation to the projected changes, but their demand for water may be higher than currently adapted varieties. Thus, even in these relatively water-rich areas, changes in water demand due to climate change effects on agriculture and increased demand from urban growth will require timely improvements in crop cultivars, irrigation and drainage technology, and water management.  相似文献   

18.
The potential impacts of CO2-induced climate change on terrestrial carbon storage was estimated using the Holdridge Life-Zone Classification and four climate change scenarios derived from general circulation models. Carbon values were assigned to life-zones and their associated soils from published studies. All four scenarios suggest an increase in area occupied by forests although details of predicted patterns vary among the scenarios. There is a poleward shift of the forested zones, with an increase in the areal extent of tropical forests and a shift of the boreal forest zone into the region currently occupied by tundra. Terrestrial carbon storage increased from 0.4% (8.5 Gt) to 9.5% (180.5 Gt) above estimates for present conditions. These changes represent a potential reduction of 4 to 85 ppm on elevated atmospheric CO2 levels.  相似文献   

19.
This paper presents the method to develop response surface diagrams (RSD) suitable to evaluate the impacts of climate change on potential crop production and crop area. The diagrams depict the response of different agricultural crops to average long-term changes in ambient temperature and precipitation on a country basis. They take into account the spatial and seasonal variability of climate, and differences in the climate response of important crops. RSDs for Germany and the Democratic Republic of Congo illustrate that countries and crop types differ greatly in their sensitivity to unit changes in long-term average climate. In comparing the area-weighted RSDs for Germany and Democratic Republic of Congo, it was found that the potential production in Germany of a weighted aggregation of crops is mainly sensitive to changes in temperature, whereas the potential crop production in the Democratic Republic of Congo mainly responds to changes in precipitation (over the specified ranges of climate variables). The RSDs can provide a visual overview of these varying sensitivities, and are a convenient and simple-to-understand method to summarize crop responses to climate change in a particular country.  相似文献   

20.
We assert that the simulation of fine-scale crop growth processes and agronomic adaptive management using coarse-scale climate change scenarios lower confidence in regional estimates of agronomic adaptive potential. Specifically, we ask: 1) are simulated yield responses tolow-resolution climate change, after adaptation (without and with increased atmospheric CO2), significantly different from simulated yield responses tohigh-resolution climate change, after adaptation (without and with increased atmospheric CO2)? and 2) does the scale of the soils information, in addition to the scale of the climate change information, affect yields after adaptation? Equilibrium (1 × CO2 versus 2 × CO2)climate changes are simulated at two different spatial resolutions in the Great Plains using the CSIRO general circulation model (low resolution) and the National Center for Atmospheric Research (NCAR) RegCM2 regional climate model (high resolution). The EPIC crop model is used to simulate the effects of these climate changes; adaptations in EPIC include earlier planting and switch to longer-season cultivars. Adapted yields (without and with additional carbon dioxide) are compared at the different spatial resolutions. Our findings with respect to question 1 suggest adaptation is more effective in most cases when simulated with a higher resolution climate change than its more generalized low resolution equivalent. We are not persuaded that the use of high resolution climate change information provides insights into the direct effects of higher atmospheric CO2 levels on crops beyond what can be obtained with low resolution information. However, this last finding may be partly an artifact of the agriculturally benign CSIRO and RegCM2 climate changes. With respect to question 2, we found that high resolution details of soil characteristics are particularly important to include in adaptation simulations in regions typified by soils with poor water holding capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号