首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The conduit system of heat fluids in diapiric belt of Yinggehai basin is dominantly vertical faults and fractures. Detailed research on the formation mechanism and their occurrence features shows that the faults and fractures can be classified into three types: intrastratal dispersive hydrofracture, puncturing fault and upwarping-extensional fault. The development of the fault and fracture system not only resulted in the changes of the temperature and pressure fields in the basin, but also affected the hydrocarbon migration in the overpressured system. These faults and fractures constituted the main pathways for vertical hydrocarbon migration, and opening and closing intermittently led to episodic expulsion of overpressured fluid compartment. Thus there formed the pool-forming model of multi-source mixing and ploy-stage migration and accumulation for hydrocarbons in the Yinggehai basin. Project jointly supported by the Ministry of Science and Technology of China (Grant No.95-Pre-39) and the National Natural Science Foundation of China (Grant No. 49732005), and A Hundred Excellent Researchers Foundation from the Ministry of Land and Resources.  相似文献   

2.
The Red Fault system is one of the main growth faults found in the South Eugene Island Basin, a salt withdrawal minibasin located offshore Louisiana, in the Gulf of Mexico. This fault system corresponds to a lateral boundary between fluid overpressured compartments. In addition, there is a set of observations indicating that the Red Fault system exhibits rapid episodic migration of fluids. This fault represents an example of preferential pathway for the upward episodic migration of overpressured hydrocarbons from deep, heavily pressured, compartments on time scales of years. The migrations of fluids into active growing faults could take the form of propagating surges (solitary waves) that propagate upward along the fault planes in a wave-like manner at km/yr. Solitary waves represent a very efficient mechanism for the upward transport of fluids along growth faults in sedimentary basins generating its own permeability. In addition, this mechanism is compatible with the fact that the fault plane is observed to sustain a static pore fluid pressure difference between its two sides. The propagation of solitary waves in active growth faults appears as a fundamental mechanism to understand the nature of upward fast migration of fluids along active growth faults in compartimentalized sedimentary basins.  相似文献   

3.
The Dongfang 13-1 is located in the diapiric structure belt of the Yinggehai Basin. The formation pressure of its main gas reservoir in the Miocene Huangliu Formation is up to 54.6 MPa(pressure coefficient=1.91) and the temperature is as high as 143°C(geothermal gradient 4.36°C/100 m), indicating that it is a typical high-temperature and overpressured gas reservoir. The natural gas is interpreted to be coal-type gas derived from the Miocene mature source rocks containing type II2-III kerogens as evidenced by high dryness index of up to 0.98 and heavy carbon isotopes, i.e., the δ13C1 ranging from -30.76‰ to -37.52‰ and δ13C2 ranging from -25.02‰ to -25.62‰. The high temperature and overpressured Miocene petroleum system is related mainly to diapir in the Yinggehai Basin and contains more pore water in the overpressured reservoirs due to undercompaction process. The experimental and calculated results show that the solubility of natural gas in formation water is as high as 10.5 m3/m3 under the temperature and pressure conditions of the Sanya Formation, indicating that at least part of the gas may migrate in the form of water-soluble phase. Meanwhile, the abundant gas source in the Basin makes it possible for the rapid saturation of natural gas in formation water and exsolution of soluble gas. Therefore, the main elements controlling formation of the Dongfang 13-1 gas pool include that(1) the diapir activities and accompanying changes in temperature and pressure accelerate the water-soluble gas exsolution and release a lot of free gas;(2) submarine fan fine sandstone in the Huangliu Formation provides good gas-water segregation and accumulation space; and(3) the overlying overpressured mud rocks act as effective caps. The accumulation mechanism reveals that the high temperatural and high pressure structure belt near the diapir structures has a good potential for large and medium-sized gas field exploration.  相似文献   

4.
The Junggar Basin is one of the largest and most petroliferous superimposed petroleum basins in China. The central depression area has become the frontier field for petroleum exploration. The characteristics of potential source rocks and reservoir sandstones, and the pressure regime in the central Junggar Basin were studied. Permian shales are dominated by hydrogen-rich, oil-prone algal organic matter, and Jurassic mudstones are dominated by hydrogen-poor, higher-plant derived organic matter. These source rocks are widespread and have been mature for hydrocarbon generation, suggesting good to excellent exploration potential, both for crude oils and for natural gases. The deeply buried Jurassic sandstones usually have low porosity and permeability. However, sandstones beneath the Jurassic/Cretaceous unconformity display relatively high porosity and permeability, suggesting that meteoric water leaching had improved the quality of the sandstones. Overpressure developed over much of the central Junggar Basin. The overpressured rocks are characterized by slightly increased interval transit time, low sandstone permeability, increased organic matter maturity, and high relative hydrocarbon-gas contents. Mudstones in the overpressured system have quite the same clay mineral compositions as mudstones in the lower part of the normally pressured system. Overpressure generation in the central Junggar Basin is best to be explained as the result of hydrocarbon generation and fluid retention in low-permeability rocks. Petroleum generated from Permian and Jurassic source rocks could migrate laterally through preferential petroleum migration pathways and accumulated in structural traps or lithological traps in the overpressured system, or migrate vertically through faults/hydraulic fractures into the overlying, normally pressured system and accumulate in structural or lithological traps. Therefore, commercial petroleum reservoirs could be potentially found in both the overpressured system, and in the normally pressured system.  相似文献   

5.
The modeling of formation pressure in Yinggehai shows that DF1-1 diapir has oscilla-torily released thermal fluids twice since 5.0 Ma, which may be controlled by the multi-structural subsidences and their accompanying thermal events. Using thermal indicators of formation temperature by DST, I/S mixed clay minerals, homogeneous temperature of inorganic fluid inclusion and δ13C of methane to trace the thermal fluid migrating order and path, we found that there are two orders of natural gas migration-accumulation in the upper site over the top of the overpressured compartment. Based on the oscillatory development of formation pressure, we postulate there would exist earlier (before 5.0 Ma) gas accumulation in their deeper site.  相似文献   

6.
The Median Tectonic Line (MTL) is a first‐order tectonic boundary that separates the Sanbagawa and Ryoke metamorphic belts. Documented large‐scale top‐to‐the‐north normal displacements along this fault zone have the potential to contribute to the exhumation of the Sanbagawa high‐pressure metamorphic belt. Fluid inclusion analyses of vein material formed associated with secondary faults within the Sanbagawa belt affected by movement on the MTL show normal movement was initially induced under temperatures greater than around 250°C. Microstructures of quartz and K‐feldspar comprising the vein material suggest a deformation temperature of around 300°C, supporting the results of fluid inclusion analyses and suggesting deformation at depths of around 10 km. The retrograde P–T path of the Sanbagawa metamorphic rocks and the estimated isochore of the fluid inclusions do not intersect. The semi‐ductile structures of surrounding rocks and lack of evidence for hydrothermal metamorphism around the veins imply the temperature of the rocks was similar to that of the fluid. These observations suggest fluid pressure of the veins was lower than lithostatic pressure close to the MTL.  相似文献   

7.
抽水蓄能电站建于基岩中。文中运用变形岩石显微构造分析方法和同位素年龄测定法重点分析测试了场区三个主要断层—F_(7012)、F_1和F_9中的断层岩和方解石脉。测试结果得出三条断层都有多期活动,早期活动相当强烈,并在规模较大的F_1断层上发现有古地震遗迹,后来断层活动的强度逐斩衰减。F_(7012)断层最后一次较强烈活动的时代为距今20万年前左右,活动时的差应力约120MP,具有左旋滑动的性质,断层活动的上限时间为距今15万年前左右。  相似文献   

8.
The effectiveness of gas accumulation processes is controlled by several main geological factors in-cluding charging force,features of gas conduit,sealing properties of caprock,etc. Based on the analysis and statistics of the large-medium size gas accumulations in China,the main parameters,in-cluding the excess pressure difference between the source rock and reservoir bed,the area coefficient of the gas conduit,and the thickness or displacement pressure of caprock,and the criteria for the as-sessment of gas accumulation processes have been established. Using the parameters and the criteria above,the effectiveness of gas accumulation processes in the Kuqa depression was quantitatively evaluated. By integrating the parameters of the excess pressure difference between the source rock and reservoir bed,the area coefficient of fault conduit system,and the caprock thickness in gas charging period,a comprehensive assessment of the effectiveness of gas accumulation in the Kuqa depression has been made. The result reveals that the Tubei-Dawan area,the Central Kelasu area and the Dongqiu-Dina area are three highly-effective areas for gas accumulation in the Kuqa depression.  相似文献   

9.
Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3–5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if fluid overpressures are localised within the fault zone and the surrounding rock retains significant tensile strength. Migrating pore fluids interact both statically and dynamically with normal faults. Static effects include consideration of the relative permeability of the faults with respect to the country rock, and juxtaposition effects which determine whether a fault is transmissive to flow or acts as an impermeable barrier. Strong directional permeability is expected in the subhorizontal σ2 direction parallel to intersections between minor faults, extension fractures, and stylolites. Three dynamic mechanisms tied to the seismic stress cycle may contribute to fluid redistribution: (i) cycling of mean stress coupled to shear stress, sometimes leading to postfailure expulsion of fluid from vertical fractures; (ii) suction pump action at dilational fault jogs; and, (iii) fault-valve action when a normal fault transects a seal capping either uniformly overpressured crust or overpressures localised to the immediate vicinity of the fault zone at depth. The combination of σ2 directional permeability with fluid redistribution from mean stress cycling may lead to hydraulic communication along strike, contributing to the protracted earthquake sequences that characterise normal fault systems.  相似文献   

10.

The Cretaceous in southern China is mainly a set of red and mauve clastic rock, with evaporation layers. For lack of source rock, it has been paid little attention to in the exploration process. With the development of research on hydrocarbon exploration, the masses of Cretaceous reservoirs and shows have been found in recent years. This means that the Cretaceous has great exploration potential. According to the research, authors find that the high-quality reservoir and efficient cap rocks develop in the Cretaceous. At the same time, the Cretaceous and underlying Paleozoic-Early Mesozoic marine strata and overlying Cenozoic nonmarine strata constitute a superimposed basin. Moreover, high-quality source rocks developed in the above-mentioned two sets of strata. In the south, especially in the middle and lower Yangtze region since the Himalayan strong rift was associated with a large number of faults, These faults connect the Cretaceous reservoir and its overlying and underlying source rocks, forming the fault-based and unconformity-based discontinuous source-reservoir-cap accumulation assemblages. Because the Cretaceous has the abundant oil and gas from Paleogene source rocks or Mesozoic-Paleozoic source rocks with secondary hydrocarbon generation ability, three types of reservoirs develop in the Cretaceous: “new-generating and old-reservoiring” reservoirs, “old-generating andnew-reservoiring” reservoirs, and few “self-generating andself-reservoiring” reservoirs. The hydrocarbon enrichment depends on two key factors. Firstly, Cretaceous reservoirs are near to the source kitchens, so its oil and gas source is ample. Secondly, the fault system is well developed, which provides the necessary conducting systems for hydrocarbon accumulation.

  相似文献   

11.
The Cretaceous in southern China is mainly a set of red and mauve clastic rock, with evaporation layers. For lack of source rock, it has been paid little attention to in the exploration process. With the development of research on hydrocarbon exploration, the masses of Cretaceous reservoirs and shows have been found in recent years. This means that the Cretaceous has great exploration potential. According to the research, authors find that the high-quality reservoir and efficient cap rocks develop in the Cretaceous. At the same time, the Cretaceous and underlying Paleozoic-Early Mesozoic marine strata and overlying Cenozoic nonmarine strata constitute a superimposed basin. Moreover, high-quality source rocks developed in the above-mentioned two sets of strata. In the south, especially in the middle and lower Yangtze region since the Himalayan strong rift was associated with a large number of faults, These faults connect the Cretaceous reservoir and its overlying and underlying source rocks, forming the fault-based and unconformity-based discontinuous source-reservoir-cap accumulation assemblages. Because the Cretaceous has the abundant oil and gas from Paleogene source rocks or Mesozoic-Paleozoic source rocks with secondary hydrocarbon generation ability, three types of reservoirs develop in the Cretaceous: “new-generating and old-reservoiring” reservoirs, “old-generating andnew-reservoiring” reservoirs, and few “self-generating andself-reservoiring” reservoirs. The hydrocarbon enrichment depends on two key factors. Firstly, Cretaceous reservoirs are near to the source kitchens, so its oil and gas source is ample. Secondly, the fault system is well developed, which provides the necessary conducting systems for hydrocarbon accumulation.  相似文献   

12.
Whether or not ruptures nucleate in fluid-overpressured crust (λ v = P f/σ v > 0.4) is important because pore-fluids overpressured above hydrostatic lower fault frictional strength and may also vary through the earthquake cycle, acting as an independent variable affecting fault failure. Containment of fluid overpressure is precarious because pressure-dependent activation of faults and fractures allows drainage from overpressured portions of the crust. Discharge of fluids through activated fault-fracture permeability (fault-valve action) decreases overpressure so that subsequent failure depends on the cycling of both overpressure and frictional strength as well as tectonic stress. Geometric and mechanical considerations suggest that fluid overpressures are more likely to develop and be sustained in compressional/transpressional regimes as opposed to extensional/transtensional tectonic settings. On the basis of geophysical observations and force-balance analyses, subduction interface shear zones appear to be strongly but variably overpressured to near-lithostatic levels (λ v > 0.9) over the full depth range of seismogenic megathrusts. Strong overpressuring at seismogenic depths is also documented in active fold-thrust belts and in areas of ongoing compressional inversion (e.g., northern Honshu) where inherited normal faults are reactivated as steep reverse faults, requiring near-lithostatic overpressures (λ v → 1.0) at depths of rupture initiation. Evidence for overpressuring around strike-slip faults is less clear but tends to be strongest in areas of transpression. In areas of extensional tectonics coincident with particularly high fluid discharge, there is some evidence of overpressuring concentrated towards the base of the seismogenic zone. In general, because of the limited resolution of geophysical techniques, it is easier to make the case for rupture propagation through overpressured crust than to make a definitive case for the direct involvement of overpressured fluids in rupture nucleation, though in some instances the circumstantial evidence is compelling. An unresolved related issue is the heterogeneity of overpressuring. Do the active fault zones themselves serve as fluid conduits that are locally overpressured with respect to the surrounding crust?  相似文献   

13.
1 An out-of-line northwest trending tectonic beltin the middle part of the Yanshan Orogenic Belt The tectonic framework of the intraplate YanshanOrogenic Belt is dominated by east-west and northeastextending structures as revealed by many geologists.There lies, however, a 100-km-long enigmatic out-of-line northwest extending tectonic complex in the mid-dle part of the Yanshan Orogenic Belt (fig. 1). Theresearch on the geometry, kinematics, timing of thiscomplex tectonic belt and its r…  相似文献   

14.
In this paper we present the results of a geostructural study on active faults in central Italy, where seismogenic fault zones occur as part of a Quaternary network dissecting and/or inverting earlier tectonic features of the central Apennines fold and thrust belt. In our work we focus on the possibility of using structurally-oriented quantitative analysis of fault fabrics and fluid inclusion studies for assessing the hydraulic properties and scaling relations of fault zones in order to evaluate the role and effects of the interaction between rock and fluids in the brittle deformation of strained crustal rock volumes. The results of our study show that this approach is appropriate for (i) assessing the structural permeability of faulted and fractured rock volumes, (ii) defining the conduit/barrier behaviour of fault zones to fluid flow, (iii) mapping spatial variations of the fluid pressure across different fault segments, (iv) evaluating the maturity of a structural network and the degree of interaction of linked structural discontinuities, (v) assessing fluid composition and the conditions of deformation by means of microstructural and fluid inclusion data.  相似文献   

15.
本实验研究了地壳内对压组合构造和对张组合构造中垂断层蠕滑,破裂错动时对主震断层(底断层)应力积累过程的影响,并结合实际地震活动中的一些现象进行了讨论。所得结论如下: 1.当垂断层蠕滑时,对压组合构造中垂直于底断层的压应力增大,它可以延迟主震发生但增大发震的能量;对张组合构造中垂直于底断层的压应力减小,剪应力略有增大,因而可以促使主震发生。2.如果垂断层某一部分为原来锁住的愈合断层或为完整介质,当其突然破裂错动时,可以使对张组合构造中的底断层的剪应力突然增大,同时压应力减小,因此前震序列中这类垂断层上的较大前震可看作底断层上主震即将来临的信号。3.由垂断层破裂前后单轴压力不变和位移不变的实验结果说明了地壳中主震断层应力集中的过程。4.底断层的主震破裂可以使处于引张状态的垂断层上余震发育甚至发生强余震。本文还应用实验结果对前震活动的条带现象进行了解释,这将有助于判定对压组合构造中主震的断层面。  相似文献   

16.
Rock deformation has an important effect on the spatial distribution and temporal evolution of permeability in the Earth’s crust. Hydromechanical coupling is of fundamental significance to natural fluid–rock interaction in porous and fractured hydrothermal systems, and in the assessment and production of hydrocarbon resources and geothermal energy. Shearing and fracturing of rocks can lead to the creation or destruction of permeability when fractures or faults form, or when existing structures are reactivated. Changes in stress orientation or fluid pressure can drive rock failure and create dilating fault zones that have the potential to focus fluid flow, or to breach seals above overpressured fluid compartments. Here, numerical models of deformation and fluid flow related to Mesoproterozoic copper mineralisation at Mount Isa, Australia, are presented that show how changes in deformation geometry in multiply deformed geological architectures relate to changes in dilation patterns, fluid pathways and flow geometry. Coupled numerical simulations of deformation and fluid flow can be useful tools to better understand structural control on fluid flow in hydrothermal mineral systems.  相似文献   

17.
腾冲地区地壳速度结构的有限差分成像   总被引:1,自引:1,他引:0       下载免费PDF全文
利用流动台网和固定台站的地震观测数据,采用有限差分层析成像方法反演了腾冲及邻近地区的地壳P波速度结构,分析了腾冲火山区的岩浆活动和龙陵七级地震的深部构造成因.研究结果表明,腾冲火山区的地壳结构具有明显的非均匀性,浅表层偏低的速度主要为盆地内部的松散沉积层、新生代火山堆积及断裂附近的流体裂隙和热泉活动所致;5~15 km之间的高速体可能代表了早期火山通道内冷却固结的岩浆侵入体或难挥发的超铁镁质残留体;地壳深部的低速体则反映了熔融或半熔融的岩浆体,推断火山区下方的岩浆活动与龙陵七级地震震源区地壳深部的岩浆侵入来自同一源区--现今壳内岩浆活动的主要区域.龙陵震源区的地壳速度结构横向变化较大,怒江断裂东侧和龙陵断裂西侧为高速特征,介质应变强度较大,为应力积累的主要载体;两断裂之间的低速区向下延伸至下地壳,可能与地壳深部的岩浆侵入有关;龙陵断裂和怒江断裂明显控制了这一区域的岩浆活动,七级地震正是发生在断裂下方的速度边界附近.地壳介质强度的横向变化导致了震源区应力积累的不均一性,深部岩浆的聚集和动力作用是龙陵地区发生强震的主要原因.  相似文献   

18.
The detection and interpretation of hydrogen in fault gases   总被引:1,自引:0,他引:1  
Hydrogen gas can be released by chemical and mechanical changes in crustal rocks. Once released, it is highly mobile, buoyant, and almost insoluble in groundwater. A fault system may act as a conduit, allowing hydrogen to accumulate in soil gases near a surface expression. Since hydrogen is scarce in ambient air, its presence at elevated levels in soil gases may be a tool for fault mapping. In order to evaluate this tool, we surveyed eleven different faults by measuring the concentration of hydrogen and methane in 2 to 21 soil-gas samples that were collected near each of them. The sense of motion at four of those faults is normal (western United States, Greece), at five it is strike-slip or dip-slip (California, Colorado, Japan), and at two it is thrusting (California). At four of these faults (Hebgen Lake, Yellowstone, Yamasaki, Burro Mountain) maximum concentrations of hydrogen ranged from 80 ppm to 70% and methane from 300 ppm to 5%. All other sites showed ambient levels of both gases, except for one sample taken at Mt. Borah, Idaho, that was 2% methane. From this preliminary study it is not clear whether the presence of hydrogen is correlated uniquely to the location of faults or whether it occurs randomly. The conditions required to produced and accumulate hydrogen are also not clear. Excess hydrogen may well be produced by different mechanisms in different geological regimes. For example, if ferrous hydroxide is present in local rocks, it may react to produce hydrogen. Detailed and extensive studies are needed to clarify the connection between hydrogen and tectonic faulting.  相似文献   

19.
本文对中非铜矿带造山带基本地质构造特征进行了分析,阐述了其大地构造演化模式,认为造山带的加丹加超群标准地层剖面由4个群组成,分别为罗安群、木瓦夏群、下昆代隆古群和上昆代隆古群,底部沉积岩时代为8.8亿年,其中以5.5~5.6亿年的卢菲利造山运动产生大规模北东向逆推作用为主要造山事件,并认为裂谷拉张与陆陆碰撞为本区大地构造演化的基本模式。  相似文献   

20.
2008汶川地震之后,多个研究组对龙门山的新生代剥蚀历史进行了研究,但是在龙门山推覆构造带中段,剥蚀历史研究主要集中在彭灌杂岩,而彭灌杂岩东侧(即中央断裂下盘)的热年代学资料相对缺乏,其剥蚀历史还比较模糊.对于彭灌杂岩东侧岩体的新生代剥蚀历史研究,不仅可以了解龙门山推覆构造带的新生代断层活动历史,而且对于青藏高原东缘的新生代隆升机制具有重要约束作用.在前人热年代学研究基础上,在龙门山推覆构造带中段中央断裂和前山断裂附近补充了一些裂变径迹样品.采用外探测器法(external detector method)对样品进行裂变径迹分析,实验测试在台湾中正大学裂变径迹实验室完成.实验获得了6个锆石裂变径迹和6个磷灰石裂变径迹年龄.前山断裂上盘,AFT(磷灰石裂变径迹)年龄以小鱼洞断裂为界存在明显的差异,其中小鱼洞断裂以南的样品AFT年龄为39Ma,小鱼洞断裂以北的4个AFT年龄介于6—8 Ma之间.研究揭示出中央断裂和前山断裂的新生代活动性以NW向小鱼洞断裂为界存在较大差异:距今8Ma以来,小鱼洞断裂以北,中央断裂和前山断裂的平均垂向滑动速率分别为约0.1mm·a-1和约0.55mm·a-1;小鱼洞断裂以南,平均垂向滑动速率则分别为约0.55mm·a-1和约0.1mm·a-1.低温热年代学方法获得的断层新生代垂向滑动速率与汶川地震断层垂向同震位移分布基本一致.前山断裂(小鱼洞断裂以北)距今8 Ma以来北西-南东向水平缩短量达到8~12km,表明地壳缩短是造成龙门山抬升和剥蚀的重要因素之一.本研究结论不支持下地壳增厚模型对于龙门山隆升的解释.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号