首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Microlensing events are usually selected among single-peaked non-repeating light curves in order to avoid confusion with variable stars. However, a microlensing event may exhibit a second microlensing brightening episode when the source or/and the lens is a binary system. A careful analysis of these repeating events provides an independent way to study the statistics of wide binary stars and to detect extrasolar planets. Previous theoretical studies predicted that 0.5–2 per cent of events should repeat due to wide binary lenses. We present a systematic search for such events in about 4000 light curves of microlensing candidates detected by the Optical Gravitational Lensing Experiment (OGLE) towards the Galactic bulge from 1992 to 2007. The search reveals a total of 19 repeating candidates, with six clearly due to a wide binary lens. As a by-product, we find that 64 events (∼2 per cent of the total OGLE-III sample) have been misclassified as microlensing; these misclassified events are mostly nova or other types of eruptive stars. The number and importance of repeating events will increase considerably when the next-generation wide-field microlensing experiments become fully operational in the future.  相似文献   

2.
A comprehensive new approach is presented for deriving probability densities of physical properties characterizing the lens and source that constitute an observed galactic microlensing event. While previously encountered problems are overcome, constraints from event anomalies and model parameter uncertainties can be incorporated into the estimates. Probability densities for given events need to be carefully distinguished from the statistical distribution of the same parameters among the underlying population from which the actual lenses and sources are drawn. Using given model distributions of the mass spectrum, the mass density, and the velocity distribution of Galactic disc and bulge constituents, probability densities of lens mass, distance, and the effective lens–source velocities are derived, where the effect on the distribution that arises from additional observations of annual parallax or finite-source effects, or the absence of significant effects, is shown. The presented formalism can also be used to calculate probabilities for the lens to belong to one or another population and to estimate parameters that characterize anomalies. Finally, it is shown how detection efficiency maps for binary-lens companions in the physical parameters, such as companion mass and orbital semimajor axis, arise from values determined for the mass ratio and dimensionless projected separation parameter, including the deprojection of the orbital motion for elliptical orbits. Compared to the naive estimate based on 'typical values', the detection efficiency for low-mass companions is increased by mixing in higher detection efficiencies for smaller mass ratios (i.e. smaller masses of the primary).  相似文献   

3.
4.
We present observations of eight Galactic bulge microlensing events taken with the 1.0-m Jacobus Kapteyn Telescope (JKT) on La Palma during 2000 June and July. The JKT observing schedule was optimized using a prioritizing algorithm to automatically update the target list. For most of these events we have sampled the light curves at times where no information was available from the OGLE alert team. We assume a point-source point-lens (PSPL) model and perform a maximum likelihood fit to both our data and the OGLE data to constrain the event parameters of the fit. We then refit the data assuming a binary lens and proceed to calculate the probability of detecting planets with mass ratio   q = 10−3  . We have seen no clear signatures of planetary deviations on any of the eight events and we quantify constraints on the presence of planetary companions to the lensing stars. For two well-observed events, 2000BUL31 and 2000BUL33, our detection probabilities peak at ∼30 and ∼20 per cent respectively for   q = 10−3  and   a ∼ R E  for a  Δχ2  threshold value of 60.  相似文献   

5.
Recently, Heyrovský & Sasselov investigated the sensitivity of single-lens gravitational microlensing event light curves to spots and found that, during source transit, spots can cause deviations in amplification larger than 2 per cent, and thus be detectable. In this paper, we explore the feasibility of spot detection from the observations of binary-lens microlensing events instead of single-lens events. For this we investigate the sensitivity of binary-lens event light curves to spots and compare it with that of single-lens events. From this investigation, we find that during caustic crossings the fractional amplification deviations of light curves from those of spotless source events are equivalent to those of single-lens events, implying that spots can also be detected with a similar photometric precision to that required for spot detection by observing single-lens events. We discuss the relative advantages of observing binary-lens events over the observations of single-lens events in detecting stellar spots.  相似文献   

6.
Detection of caustic crossings of binary-lens gravitational microlensing events is important because by detecting them one can obtain useful information about both the lens and the source star. In this paper, we compute the distribution of the intervals between two successive caustic crossings, f ( t cc), for Galactic bulge binary-lens events to investigate the observational strategy for the optimal detection and resolution of caustic crossings. From this computation, we find that the distribution is highly skewed towards short t cc and peaks at t cc∼1.5 d. For the maximal detection of caustic crossings, therefore, prompt initiation of follow-up observations for intensive monitoring of events will be important. We estimate that, under the strategy of the current follow-up observations with a second caustic-crossing preparation time of ∼2 d, the fraction of events with resolvable caustic crossing is ∼80 per cent. We find that if the follow-up observations can be initiated within 1 d after the first caustic crossing by adopting more aggressive observational strategies, the detection rate can be improved to ∼90 per cent.  相似文献   

7.
We present a systematic search for parallax microlensing events among a total of 512 microlensing candidates in the OGLE II data base for the  1997–1999  seasons. We fit each microlensing candidate with both the standard microlensing model and a parallax model that accounts for the Earth's motion around the Sun. We then search for the parallax signature by comparing the χ 2 of the standard and parallax models. For the events which show a significant improvement, we further use the 'duration' of the event and the signal-to-noise ratio as criteria to separate true parallax events from other noisy microlensing events. We have discovered one convincing new candidate, sc33_4505, and seven other marginal cases. The convincing candidate (sc33_4505) is caused by a slow-moving, and likely low-mass, object, similar to other known parallax events. We found that irregular sampling and gaps between observing seasons hamper the recovery of parallax events. We have also searched for long-duration events that do not show parallax signatures. The lack of parallax effects in a microlensing event puts a lower limit on the Einstein radius projected on to the observer plane, which in turn imposes a lower limit on the lens mass divided by the relative lens–source parallax. Most of the constraints are however quite weak.  相似文献   

8.
We investigate the pattern of anomalies in the light curves of caustic-crossing binary microlensing events induced by spot(s) on the lensed source star. To this end, we perform simulations of events with various models of spots. From these simulations we find that the spot-induced anomalies take various forms depending on the physical state of spots, which is characterized by the surface brightness contrast, the size, the number, the umbra/penumbra structure, the shape and the orientation with respect to the sweeping caustic. We also examine the feasibility of distinguishing the two possibly degenerate types of anomalies caused by a spot and a transiting planet and find that in many cases the degeneracy can be separated from the characteristic multiple deviation feature in the spot-induced anomaly pattern caused by the multiplicity of spots.  相似文献   

9.
10.
Despite the suspected binarity for a significant fraction of Galactic lenses, the current photometric surveys detected binary microlensing events only for a small fraction of the total events. The detection efficiency is especially low for non-caustic crossing events, which comprise the majority of the binary lensing events, as a result of the absence of distinctive features in their light curves combined with small deviations from the standard light curve of a single point-mass event. In addition, even if they are detected, it will be difficult to determine the solution of the binary lens parameters owing to the severe degeneracy problem. In this paper, we investigate the properties of binary lensing event expected when they are astrometrically observed by using high-precision interferometers. For this, we construct vector field maps of excess centroid shifts, which represent the deviations of the binary lensing centroid shifts from those of a single lensing event as a function of source position. From the analysis of the maps, we find that the excess centroid shifts are substantial in a considerably large area around caustics. In addition, they have characteristic sizes and directions depending strongly on the source positions with respect to the caustics and the resulting trajectories of the light centroid (astrometric trajectories) have distinctive features, which can be distinguished from the deviations caused by other reasons. We classify the types of the deviations and investigate where they occur. Because of the strong dependence of the centroid shifts on the lens system geometry combined with the distinctive features in the observed astrometric trajectories, astrometric binary lensing observations will provide an important tool that can probe the properties of the Galactic binary lens population.  相似文献   

11.
12.
13.
Simulations of planetary microlensing at high magnification that were carried out on a cluster computer are presented. It was found that the perturbations owing to two-thirds of all planets occur in the time interval  −0.5 t FWHM,0.5 t FWHM  with respect to the peak of the microlensing light curve, where   t FWHM  is typically ∼14 h. This implies that only this restricted portion of the light curve need be intensively monitored for planets – a very significant practical advantage. Nearly all planetary detections in high-magnification events will not involve caustic crossings. We discuss the issues involved in determining the planetary parameters in high magnification events. Earth-mass planets may be detected with 1-m class telescopes if their projected orbital radii lie within about 1.5–2.5 au. Giant planets are detectable over a much larger region. For multiplanet systems the perturbations caused by individual planets can be separated under certain conditions. The size of the source star needs to be determined independently, but the presence of spots on the source star is likely to be negligible, as is the effect of planetary motion during an event.  相似文献   

14.
The availability of a robust and efficient routine for calculating light curves of a finite source magnified due to bending of its light by the gravitational field of an intervening binary lens is essential for determining the characteristics of planets in such microlensing events, as well as for modelling stellar lens binaries and resolving the brightness profile of the source star. However, the presence of extended caustics, and the fact that the images of the source star cannot be determined analytically while their number depends on the source position (relative to the lens system), makes such a task difficult in general. Combining the advantages of several earlier approaches, an adaptive contouring algorithm is presented, which only relies on a small number of simple rules and operations on the adaptive search grid. By using the parametric representation of critical curves and caustics found by Erdl & Schneider, seed solutions to the adaptive grid are found, which ensures that no images or holes are missed.  相似文献   

15.
Gravitational microlensing events of high magnification have been shown to be promising targets for detecting extrasolar planets. However, only a few events of high magnification have been found using conventional survey techniques. Here we demonstrate that high-magnification events can be readily found in microlensing surveys using a strategy that combines high-frequency sampling of target fields with on-line difference imaging analysis. We present 10 microlensing events with peak magnifications greater than 40 that were detected in real-time towards the Galactic bulge during 2001 by the Microlensing Observations in Astrophysics (MOA) project. We show that Earth-mass planets can be detected in future events such as these through intensive follow-up observations around the event peaks. We report this result with urgency as a similar number of such events are expected in 2002.  相似文献   

16.
17.
Some of the difficulties in determining the underlying physical properties that are relevant for observed anomalies in microlensing light curves, such as the mass and separation of extrasolar planets orbiting the lens star, or the relative source–lens parallax, are already anchored in factors that limit the amount of information available from ordinary microlensing events and in the way these are being parametrized. Moreover, a real-time detection of deviations from an ordinary light curve while these are still in progress can only be done against a known model of the latter, and such is also required for properly prioritizing ongoing events for monitoring in order to maximize scientific returns. Despite the fact that ordinary microlensing light curves are described by an analytic function that only involves a handful of parameters, modelling these is far less trivial than one might be tempted to think. A well-known degeneracy for small impacts, and another one for the initial rise of an event, makes an interprediction of different phases impossible, while in order to determine a complete set of model parameters, the fundamental characteristics of all these phases need to be properly assessed. While it is found that the wing of the light curve provides valuable information about the time-scale that absorbs the physical properties, the peak flux of the event can be meaningfully predicted only after about a third of the total magnification has been reached. Parametrizations based on observable features not only ease modelling by bringing the covariance matrix close to diagonal form, but also allow good predictions of the measured flux without the need to determine all parameters accurately. Campaigns intending to infer planet populations from observed microlensing events need to invest some fraction of the available time into acquiring data that allow to properly determine the magnification function.  相似文献   

18.
Gaudi & Gould showed that close companions of remote binary systems can be efficiently detected by using gravitational microlensing via the deviations in the lensing light curves induced by the existence of the lens companions. In this paper, we introduce another channel to detect faint close-in binary companions by using microlensing. This method utilizes a caustic-crossing binary lens event with a source also composed of binary stars, where the companion is a faint star. Detection of the companion is possible because the flux of the companion can be highly amplified when it crosses the lens caustic. The detection is facilitated since the companion is more amplified than the primary because it, in general, has a smaller size than the primary, and thus experiences less finite source effect. The method is an extension of the previous one suggested to detect close-in giant planets by Graff & Gaudi and Lewis & Ibata and further developed by Ashton & Lewis. From the simulations of realistic Galactic bulge events, we find that companions of K-type main-sequence or brighter stars can be efficiently detected from the current type of microlensing follow-up observations by using the proposed method. We also find that compared with the method of detecting lens companions for which the efficiency drops significantly for binaries with separations ≲0.2 of the angular Einstein ring radius, θ E, the proposed method has an important advantage of being able to detect companions with substantially smaller separations down to ∼     .  相似文献   

19.
Interferometers from the ground and space will be able to resolve the two images in a microlensing event. This will at least partially lift the inherent degeneracy between physical parameters in microlensing events. To increase the signal-to-noise ratio, intrinsically bright events with large magnifications will be preferentially selected as targets. These events may be influenced by finite source size effects both photometrically and astrometrically. Using observed finite source size events as examples, we show that the fringe visibility can be affected by ∼5–10 per cent, and the closure phase by a few degrees – readily detectable by ground and space interferometers. Such detections will offer unique information about the lens–source trajectory relative to the baseline of the interferometers. Combined with photometric finite source size effects, interferometry offers a way to measure the angular sizes of the source and the Einstein radius accurately. Limb-darkening changes the visibility by a small amount compared with a source with uniform surface brightness, marginally detectable with ground-based instruments. We discuss the implications of our results for the plans to make interferometric observations of future microlensing events.  相似文献   

20.
A search for extrasolar planets was carried out in three gravitational microlensing events of high magnification, MACHO  98–BLG–35  , MACHO  99–LMC–2  and OGLE  00–BUL–12  . Photometry was derived from observational images by the MOA and OGLE groups using an image subtraction technique. For MACHO  98–BLG–35  , additional photometry derived from the MPS and PLANET groups was included. Planetary modelling of the three events was carried out in a supercluster computing environment. The estimated probability for explaining the data on MACHO  98–BLG–35  without a planet is <1 per cent. The best planetary model has a planet of mass ∼(0.4–1.5)× M Earth at a projected radius of either ∼1.5 or ∼2.3 au. We show how multiplanet models can be applied to the data. We calculate exclusion regions for the three events and find that Jupiter-mass planets can be excluded with projected radii from as wide as about 30 au to as close as around 0.5 au for MACHO  98–BLG–35  and OGLE  00–BUL–12  . For MACHO  99–LMC–2  , the exclusion region extends out to around 10 au and constitutes the first limit placed on a planetary companion to an extragalactic star. We derive a particularly high peak magnification of ∼160 for OGLE  00–BUL–12  . We discuss the detectability of planets with masses as low as Mercury in this and similar events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号