首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
On a possible explanation of chromospheric line asymmetries of solar flares   总被引:1,自引:0,他引:1  
M. D. Ding  C. Fang 《Solar physics》1996,166(2):437-440
We discuss the relationship between the chromospheric downward motions and the line asymmetries in solar flares by using a simple model. It is found that both the blue asymmetry and red asymmetry of the H line can be caused by downward motions, as long as the moving material is confined to different heights in the chromosphere. The Ca ii K line, however, mainly shows a red asymmetry. The results can qualitatively explain some observations.  相似文献   

2.
A model of the R CrB star chromosphere is calculated on the basis of the observed profiles of the Ca II H and K lines and IR triplet and D lines of Na I and H-alpha. The calculated profiles of Ca II H and K lines and IR triplet and H-alpha are in good agreement with the observed ones both for an undisturbed state and for the light minimum. The line profiles for the light minimum are calculated under the assumption that the minimum is attributed to obscuring of the star disc with a dust cloud. In this case, the chromosphere is not hydrostatic since the column density at the chromosphere base is two orders of magnitude higher as compared to that in a hydrostatic model. The model proposed is more extended, less dense at the chromosphere base, and denser in the upper chromosphere. The extension of the calculated chromosphere is about 3 star radii. The density in the chromosphere is 108–1010 atoms per 1 cm3 and the temperature is 5000–7000 K. Agreement of the calculated and observed profiles of Na I D absorption lines is possible if we assume that, around the star, there is a cold envelope containing Na I atoms which expands with a velocity of about 30 km/s. This envelope is beyond the chromosphere, but near enough for the star and the envelope to be observed as a single whole. The optical thickness of the envelope in the Na I D2 line is 1.8. At the brightness minimum, this envelope illuminated with the star light yields additional emission attributed to resonant scattering in the Na I D lines.  相似文献   

3.
Chromosphere layers of solar flares were investigated according to the observed profiles of the Hα line. A two-strand flare was observed on September 4, 1990. Spectra were obtained with the ATsU-26 solar horizontal telescope at Terskol Peak Observatory (3100 m). Spectra photometry is performed for two bright nodes of one strand of the flare. Some profiles are superposed to the ejection. The observed profiles are characterized by high emissions in the wings of the Hα line (up to 10–12 Å) under relatively low intensity in the center of Hα (r = 0.35–0.6). To explain such profile behavior we calculated flare models with two or three components. Separate components of the model correspond to unresolved details in the flare area and therefore the averaged profile is calculated. Emission in the far wings is explained by model components with deep heating of chromosphere layers. These occupy 5–12% of the total area. Noticeable emission asymmetry is explained by ray velocities of up to 70 km/s and more. The models are determined by agreement of the observed and calculated profiles. We processed several photometric profiles for seven observations. The temperature in the models with deep heating in the lower cromosphere is increased by 1000–2500 K with respect to the model with an undisturbed chromosphere VAL-C. The second feature of the observed profiles is their high asymmetry and shift with respect to the undisturbed profiles. This can be explained by the opposite motion of the material. We revealed that for the most of the profiles the line-of-sight velocities were directed to the observer in the upper chromosphere (10–100 km/s) and from the observer in the lower chromosphere (5–20 km/s).  相似文献   

4.
We studied changes in thermodynamic parameters of the chromosphere at the initial stage of the two-ribbon solar flare accompanied by a surge that occurred on September 4, 1990. The inhomogeneous semiempirical models of the flare chromosphere and surge are constructed for four observation moments. The spectra were obtained with the ATsU-26 horizontal solar telescope of the Main Astronomical Observatory of the National Academy of Sciences of Ukraine (Terskol Peak). Photometric transections of the spectra passed through two bright kernels of one of the flare ribbons and through the surge. The comparison of the observed profiles of the line Hα in the solar active and quiet-Sun regions reveals the substantial emission in the line wings (up to 1–1.2 nm) with a residual intensity of 0.6–0.77 at the center of the line profiles. Calculations within the two-component models of the chromosphere have shown that this may be the evidence of the existence of the details (unresolved by the telescope and occupying 5–12% of the total area) with a deep heating of the chromosphere layers. A strong asymmetry of the line profiles and the shift with respect to the line profile for the quiet-Sun region are explained by peculiarities of the line-of-sight velocity distribution over the height. It is found that the motion is directed to the observer in the upper chromosphere (10–30 km/s) and from the observer in the lower chromosphere (5–20 km/s) for the larger part of the active region under study. According to the models calculated for the surge, the line-of-sight velocities reach a value of 70 km/s.  相似文献   

5.
The problem of hydrodynamic response of the solar chromosphere on impulsive heating by energetic electrons is discussed. All basic physical processes are considered in a one-dimensional approximation, due to presence of a strong magnetic field. The calculations are performed for the heating of the chromosphere by electrons having a power-law energetic spectrum. In the upper chromosphere the electron temperature rises rapidly to values of order 107 K. The ion temperature is more than the order of magnitude less than the temperature of electrons. The heated high-temperature chromospheric plasma expands into corona with a velocity up to 1500 km s–1. In more dense layers, the fast re-emission of supplied energy takes place. This process gives rise to short-lived EUV flash. Just below the flare transition layer the thermal instability produces cold plasma condensation which moves downward at a velocity exceeding the sonic one in the quiet chromosphere.  相似文献   

6.
D.E. Innes  G. Tóth 《Solar physics》1999,185(1):127-141
Small-scale explosive events or microflares occur throughout the chromospheric network of the Sun. They are seen as sudden bursts of highly Doppler-shifted spectral lines of ions formed at temperatures in the range 2×104–5×105 K. They tend to occur near regions of cancelling photospheric magnetic fields and are thought to be directly associated with magnetic field reconnection. Recent observations have revealed that they have a bi-directional jet structure reminiscent of Petschek reconnection. In this paper compressible MHD simulations of the evolution of a current sheet to a steady Petschek, jet-like configuration are computed using the Versatile Advection Code. We obtain velocity profiles that can be compared with recent ultraviolet line-profile observations. By choosing initial conditions representative of magnetic loops in the solar corona and chromosphere, it is possible to explain the fact that jets flowing outward into the corona are more extended and appear before jets flowing towards the chromosphere. This model can reproduce the high Doppler-shifted components of the line profiles, but the brightening at low velocities, near the center of the bi-directional jet, cannot be explained by this simple MHD model.  相似文献   

7.
A theoretical study of the influence of propagating acoustic pulses in the solar chromosphere upon the line profiles of the Ca ii resonance and infrared triplet lines has been made. The major objective has been to explain the observed asymmetries seen in the cores of the H and K lines and to predict the temporal behavior of the infrared lines caused by passing acoustic or shock pulses. The velocities in the pulses, calculated from weak shock theory, have been included consistently in the non-LTE calculations. The results of the calculations show that these lines are very sensitive to perturbations in the background atmosphere caused by the pulses. Only minor changes in the line shapes result from including the velocities consistently in the line source function calculations. The qualitative changes in the line profiles vary markedly with the strength of the shock pulses. The observed differences in the K line profiles seen on the quiet Sun can be explained in terms of a spectrum of pulses with different wave-lengths and initial amplitudes in the photosphere.  相似文献   

8.
By means of an inversion of H and K Ca ii line profiles the temperature and electron density in the chromosphere above the umbrae of two sunspots have been estimated. The temperature gradient 5 K km–1 exceeds the corresponding values in both quiet regions and plages. At a height of about 1500 km the umbra becomes hotter than the quiet region. At a temperature of about 10000 K the temperature gradient increases sharply. The electron density at 1500 km is approximately the same as that in the quiet chromosphere at the same height.  相似文献   

9.
High-dispersion spectra of the core of the K line of Ca ii as seen at the center of the solar disc have been reduced. Resolution on the spectra approach 1 arc sec. Line profiles of individual elements are very asymmetric and often are peaked on only one side of the line center. Variations of the line profiles and the emission peaks are discussed. The doubly reversed mean profile of the K line is explained as a spatial average of individual profiles, and it is suggested that single peaks may be caused by Doppler-shifted discrete elements in the chromosphere.Donald H. Menzel Research Fellow in Astronomy.  相似文献   

10.
An observational program at the Sacramento Peak Observatory in 1965 provided high-dispersion spectra of the solar chromosphere in several spectral regions simultaneously. These regions included various combinations of the spectral lines Hα, Hβ and H?, the D3-line of Hei, the infrared triplet of Oi, and the H- and K-lines and the infrared triplet of Caii. With the use of an image slicer the observations were made simultaneously at two heights in the solar chromosphere separated by several thousand kilometers. From these data we draw the following conclusions:
  1. Emission of different lines arises in the same chromospheric features. The intensity ratio of lines of different elements varies significantly from spicule to spicule. For the H- and K-lines of ionized calcium, this ratio remains constant, independent of wavelength throughout the line, overall intensity, and height in the chromosphere. Two rare-earth lines in the wing of the H-line show no spicular structure at all.
  2. The line-of-sight velocities of many features reverse as a function of time, although most spicules show velocities in only one direction. The simultaneous spectra at two heights show most spicules to have the same line-of-sight velocity at both. There may be an additional class of features, mostly rapidly moving, whose members have line-of-sight velocities that increase with height. These features comprise perhaps 10% of the total. Velocity changes occur simultaneously, to within 20 sec, at two heights separated by 1800 km, indicating velocities of propagation of hundreds of km/sec. The velocity field of individual features is often quite complicated; many spectral features are inclined to the direction of dispersion, implying that differential mass motions are present.
  3. The existence of anomalously broad H and K profiles is real. Even with high dispersion and the best seeing, such profiles are not resolved into smaller features. The central reversal in K, H and Hα appears to remain unshifted when the wings are displaced in wavelength, indicating that the reversal is non-spicular.
  相似文献   

11.
One dimensional magnetograph scans have been used to study the 5-min photospheric velocity oscillations and the supergranulation. The oscillations in wing brightness lead the oscillations in velocity by less than 90° in the photosphere, and about 90° in the chromosphere, suggesting that they are traveling waves at lower levels and standing waves at higher levels. Downward flows have been observed to be coincident with the chromospheric network confirming the hypothesis that material is flowing downward at supergranular boundaries.  相似文献   

12.
On the occurrence of blue asymmetry in chromospheric flare spectra   总被引:1,自引:0,他引:1  
We present observations of optical spectra of a flare in which blue line asymmetry was seen for more than 4 min close to the flare onset. The maximum blue asymmetry coincided with the maximum of a hard X-ray and microwave burst. We discuss possible interpretations of the blue asymmetry and conclude that the most plausible one is electron-beam heating with return current. Although this process predicts downflows in the lower transition region and upper chromosphere, its ultimate effect on the line profiles can be blue asymmetry: the upper layers moving away from us absorb the radiation of the red peak thus lowering its intensity in comparison to the blue one.  相似文献   

13.
Sawyer  C. 《Solar physics》1974,37(1):63-74
Solar Physics - Oscillating velocity fields can be observed on Hα filtergrams as a shifting pattern of intensity fluctuations known as ‘the galloping chromosphere’. The...  相似文献   

14.
To identify and understand the underlying physical mechanisms of total solar and UV irradiance variability and to estimate the contribution of various chromospheric features to UV irradiance, detailed analysis of spatially resolved data is required. The various chromospheric features have been segregated and different parameters have been derived from CaII K Spectroheliograms of NSO/Sac Peak and Kodaikanal Observatory and compared with UV irradiance flux measured in MgII h and k lines by NOAA 9 satellite. The important results of this detailed analysis of CaII K Images of 1992 together with UV irradiance data will be discussed in this paper.  相似文献   

15.
The asymmetry of Hα line profiles is an important characteristic in the spectral observations of chromospheric flares, as well as one of the important observational facts of the dynamical process in solar flares. Based on the observed data of the solar spectrograph of Purple Mountain Observatory, some typical asymmetric Hα line profiles are presented. Taking the effects of the nonthermal excitation and ionization of hydrogen atoms into consideration, the asymmetry characteristics of Hα line profiles under different atmospheric models are calculated, and a semi-empirical study on the observed line profiles is thereby made. The results indicate that the downward motion of the chromospheric condensation region can cause the red and blue asymmetries of Hα spectra. We have tried to reproduce the observed asymmetry characteristics in specific flares. It is found that, besides the energy flux of nonthermal particles, the magnitude of spectral index and the height of the velocity field affect the line profile, the flare's atmospheric background model also has some influence on the line profile.  相似文献   

16.
We have obtained a large amount of high-dispersion spectra of Arcturus using our coude spectrograph attached to our 1-metre telescope. From this collection, we picked out an unbroken sequence of 5 spectra of the CaII H and K lines taken in a period of 4 hours on 1984 February 14. Their analysis shows that we were possibly witnessing a chromospheric eruption on the star. The following sequence was seen: the line profile became asymmetrical — the asymmetry remained while the peak emission increased — the profile became symmetrical once again. The largest asymmetry was 20% between the red and violet components of K2, and the maximum peak emission was some 20% above normal. There were also changes in K1. At the peak emission of K2 emission core appeared in the self-absorbed centre of K3.  相似文献   

17.
We study the Ca ii K, H, and λ 849.8 nm line profiles in two regions of the quiet Sun, one being located in the extensive low-latitude coronal hole observed on 3 through 5 August 2003, and the other being located outside the coronal hole. Comparison of the profiles was carried out separately for cells and cell boundaries of the chromospheric network. Our principal result is that space- and time-averaged profiles of the central self-reversal in the coronal hole sites differ from those outside of the hole: Intensities of the K3 and H3 central depressions are increased in the cells but are unchanged in the network; the height of the K2 peaks is reduced in the cells and particularly in the network; the central self-reversal asymmetry is intensified in the network. Distinctions appear at a high confidence level. Line wings as well as average characteristics of the infrared line remain practically unchanged. We discuss probable causes for this behavior of the lower chromosphere lines.  相似文献   

18.
The shapes of the Ca ii H and K lines in sunspot umbral spectra vary from single asymmetric peaks near the centre of the disk to almost symmetric double peaks at the limb. In addition, there are other differences in the behaviour of both H and K lines in sunspots compared to the quiet Sun. The whole complex of the phenomena observed can not be explained by large scale chromosphere motions. Instead, a satisfactory model reproducing in detail peculiarities of the umbral emission reversals contains a cloud of emitting and absorbing gas located above the chromosphere, which flows into the sunspot. The radiation field parameters in such a cloud are consistent with the concept of weak quiescent prominences above the umbra.  相似文献   

19.
The evolutionary and spatial characteristics of the motions in the flaring chromosphere of a 2B/M2.3 flare are investigated by analyzing the asymmetry in the Hα profiles. The possibility of reconciling the results of observations with the theory of chromospheric evaporation is considered. The spectroscopic Hα observations of the flare performed with the KG-2 CrAO coronagraph with a temporal resolution of 5–10 s and a spatial resolution as high as 1 arcsec cover all stages of flare development. The following results have been obtained: (1) The Hα profile asymmetry is a general characteristic of the flare emission irrespective of its intensity and its belonging to different structural features and phases of flare development. (2) Most of the Hα emission profiles in flare regions exhibit a red asymmetry. However, a blue asymmetry was observed in small local regions at all stages of flare development. (3) A red asymmetry that appeared before the onset of the impulsive phase and persisted after its end was observed at the sites of main energy release, i.e., the energy source responsible for the dynamical processes in the flare came into operation earlier and existed longer than the HXR emission. (4) The asymmetry pattern changed with flare phase: the red wing intensity dominated in the pre-impulsive phase and at the onset of the impulsive and gradual phases (while the line core was unshifted or slightly shifted). At the maximum of the impulsive phase, the nearly symmetric profiles with extended wings were redshifted as a whole, i.e., the entire emitting volume moved down with a velocity of several tens of km/s. This type of asymmetry cannot be explained by the dynamical model of chromospheric condensation (Canfield and Gayley 1987). (5) The Hα profiles show no evidence of chromospheric heating by a beam of nonthermal electrons during the impulsive phase (Canfield et al. 1984). (6) The lifetime of the downflows and the change in their velocities with time are inconsistent with the dynamical model of chromospheric condensation (Fisher 1989). (7) The morphological features of the velocity field are also inconsistent with the theory of chromospheric evaporation, because the highest differently directed velocities were detected at the flare loop tops, not at the sites of main energy release. We conclude that the investigated flare shows spectral features that are inconsistent with the standard chromospheric evaporation model.  相似文献   

20.
I have determined horizontally averaged non-thermal velocities from Jensen and Orrall's (1963) observations of Doppler widths of weak rare-earth emission lines in the wings of H and K. Combining these results with previous rare-earth line results, I conclude that this velocity in the low chromosphere (300–600 km) is 2.0 ± 0.2 km/s, and changes little with height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号