首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Langevin CD  Guo W 《Ground water》2006,44(3):339-351
This paper presents an approach for coupling MODFLOW and MT3DMS for the simulation of variable-density ground water flow. MODFLOW routines were modified to solve a variable-density form of the ground water flow equation in which the density terms are calculated using an equation of state and the simulated MT3DMS solute concentrations. Changes to the MODFLOW and MT3DMS input files were kept to a minimum, and thus existing data files and data files created with most pre- and postprocessors can be used directly with the SEAWAT code. The approach was tested by simulating the Henry problem and two of the saltpool laboratory experiments (low- and high-density cases). For the Henry problem, the simulated results compared well with the steady-state semianalytic solution and also the transient isochlor movement as simulated by a finite-element model. For the saltpool problem, the simulated breakthrough curves compared better with the laboratory measurements for the low-density case than for the high-density case but showed good agreement with the measured salinity isosurfaces for both cases. Results from the test cases presented here indicate that the MODFLOW/MT3DMS approach provides accurate solutions for problems involving variable-density ground water flow and solute transport.  相似文献   

2.
3.
Tonkin M  Tajani Z 《Ground water》2012,50(2):296-300
It is often necessary to simulate the influx to a groundwater model of water containing dissolved contaminants. Until fairly recently, users of MODFLOW and MT3DMS were restricted to varying the flux of water and contaminants on a stress-period basis: when a time-varying loading pattern required simulation, the modeler's only recourse was to discretize the model into many stress periods. From a practical standpoint this is cumbersome, while from a technical standpoint it requires that the modeler define a priori an appropriate time discretization that can accurately reproduce time-varying flow and mass loading. This is particularly undesirable when attempting to infer a time-varying flow or mass loading using inverse methods. The advent of the Flow and Head Boundary (FHB) package in the late 1990s greatly mitigated these limitations from the flow perspective. The recent release of the Hydrocarbon Spill Source (HSS) package for MT3DMS has essentially removed the limitation from the contaminant mass perspective. This Methods Note verifies the FHB and HSS packages by comparison with more commonly used boundary packages and highlights some benefits of their combined use, with reference to the reconstruction of historic flow and mass fluxes through inverse modeling. (Note: The Flow and Head Boundary and Hydrocarbon Spill Source packages are referred to throughout as "FHB" and "HSS", respectively,--that is, omitting version number suffixes--as the discussion presented should apply to all releases of each package.).  相似文献   

4.
5.
This study describes the development of a general model for reaction in and performance of spatially heterogeneous bioreactors such as treatment wetlands. The modeled domain possesses local-scale velocities, reaction rates and transverse dispersion coefficients that are functions of an underlying heterogeneity variate representing one or more controlling biophysical attributes, for example, reactive surface area (submerged plant) density. Reaction rate coefficients are treated as related to local velocities in an inverse square fashion via their mutual dependence upon the variate. The study focuses on the solution for the steady-state case with constant inlet concentration. Results compare well with exact solutions developed for laterally-bounded systems in which the heterogeneity is represented explicitly. Employing the bicontinuum analogue of a second-order model, an expression for an effective longitudinal dispersion coefficient as a function of travel distance is developed using the method of moments. The result provides insights into the behavior of concentration as transverse mixing drives the system asymptotically toward Fickian longitudinal dispersion. The model may represent an improvement over other approaches for characterizing treatment wetland performance because it accounts for evolving shear flow dispersion, and because parameters are few in number, physically based, and invariant with mean velocity.  相似文献   

6.
In this note, we present a public domain analytical reactive transport modeling tool (ART3D, version 2.0). The tool is developed in FORTRAN and can be used for solving a system of a set of partial differential equations coupled with a first-order reaction network. ART3D uses a novel analytic solution technique proposed by Clement. The new software includes options for performing Monte Carlo simulations and automated parameter estimation.  相似文献   

7.
This paper aims to assess MODFLOW and MT3D capabilities for simulating the spread of contaminants from a river exhibiting an unusual relationship with an alluvial aquifer, with the groundwater head higher than the river head on one side and lower on the other (flow‐through stream). A series of simulation tests is conducted using a simple hypothetical model so as to characterize and quantify these limitations. Simulation results show that the expected contaminant spread could be achieved with a specific configuration composed of two sets of parameters: (1) modeled object parameters (hydraulic groundwater gradient, hydraulic conductivity values of aquifer and streambed), and (2) modeling parameters (vertical discretization of aquifer, horizontal refinement of stream modeled with River [RIV] package). The influence of these various parameters on simulation results is investigated, and potential complications and errors are identified. Contaminant spread from stream to aquifer is not always reproduced by MT3D due to the RIV package's inability to simulate lateral exchange fluxes between stream and aquifer. This paper identifies the need for a MODFLOW streamflow package allowing lateral stream‐aquifer interactions and streamflow routine calculations. Such developments could be of particular interest for modeling contaminated flow‐through streams.  相似文献   

8.
We present a family of p-enrichment schemes. These schemes may be separated into two basic classes: the first, called fixed tolerance schemes, rely on setting global scalar tolerances on the local regularity of the solution, and the second, called dioristic schemes, rely on time-evolving bounds on the local variation in the solution. Each class of p-enrichment scheme is further divided into two basic types. The first type (the Type I schemes) enrich along lines of maximal variation, striving to enhance stable solutions in “areas of highest interest.” The second type (the Type II schemes) enrich along lines of maximal regularity in order to maximize the stability of the enrichment process. Each of these schemes are tested on three model systems. The first is an academic exact system where basic analysis is easily performed. Then we discuss a pair of application model problems arising in coastal hydrology. The first being a contaminant transport model, which addresses a declinature problem for a contaminant plume with respect to a bay inlet setting. And the second, a multicomponent chemically reactive flow model of estuary eutrophication arising in the Gulf of Mexico.  相似文献   

9.
We used a three-dimensional MODFLOW model, paired with MT3D, to simulate hyporheic zones around debris dams and meanders along a semi-arid stream. MT3D simulates both advective transport and sink/source mixing of solutes, in contrast to particle tracking (e.g. MODPATH), which only considers advection. We delineated the hydrochemically active hyporheic zone based on a new definition, specifically as near-stream subsurface zones receiving a minimum of 10% surface water within a 10-day travel time. Modeling results indicate that movement of surface water into the hyporheic zone is predominantly an advective process. We show that debris dams are a key driver of surface water into the subsurface along the experimental reach, causing the largest flux rates of water across the streambed and creating hyporheic zones with up to twice the cross-sectional area of other hyporheic zones. Hyporheic exchange was also found in highly sinuous segments of the experimental reach, but flux rates are lower and the cross-sectional areas of these zones are generally smaller. Our modeling approach simulated surface and ground water mixing in the hyporheic zone, and thus provides numerical approximations that are more comparable to field-based observations of surface–groundwater exchange than standard particle-tracking simulations.  相似文献   

10.
Numerical modeling of 3-D terrain effect on MT field   总被引:1,自引:0,他引:1  
Using the boundary element method, the numerical modeling problem of three-dimensional terrain effect on magnetotelluric (MT) field is solved. This modeling technique can be run on PC in the case of adopting special net division. The result of modeling test for 2-D terrain by this modeling technique is basically coincident with that by 2-D modeling technique, but there is a great difference between the results of 3-D and 2-D modeling for 3-D terrain. Project supported by the National Natural Science Foundation of China.  相似文献   

11.
复杂地形、地质条件的大地电磁数据解释容易出现假象,采用三维正演技术模拟地形和地表不均匀体的背景响应,对实测数据阻抗相位不变量进行校正,实现更准确的定性分析;对三维异常体模型的合成数据进行一维、二维多参数反演试算,以确定地形剧变区选择反演技术的最佳方案.合成数据的试反演结果显示一维反演水平切片假异常较多,二维反演能压制测向假异常,但不能压制走向的假异常,水平切片多出现测向条带.使用本文提出的阻抗相位不变量校正法扣除地形、地表背景响应,结合一维、二维反演,能使实际资料解释成果更加可靠.  相似文献   

12.
Both Eulerian and Lagrangian reactive transport simulations in natural media require selection of a parameter that controls the “promiscuity” of the reacting particles. In Eulerian models, measurement of this parameter may be difficult because its value will generally differ between natural (diffusion-limited) systems and batch experiments, even though both are modeled by reaction terms of the same form. And in Lagrangian models, there previously has been no a priori way to compute this parameter. In both cases, then, selection is typically done by calibration, or ad hoc. This paper addresses the parameter selection problem for Fickian transport by deriving, from first principles and D (the diffusion constant) the reaction-rate-controlling parameters for particle tracking (PT) codes and for the diffusion–reaction equation (DRE). Using continuous time random walk analysis, exact reaction probabilities are derived for pairs of potentially reactive particles based on D and their probability of reaction provided that they collocate. Simultaneously, a second PT scheme directly employing collocation probabilities is derived. One-to-one correspondence between each of D, the reaction radius specified for a PT scheme, and the DRE decay constant are then developed. These results serve to ground reactive transport simulations in their underlying thermodynamics, and are confirmed by simulations.  相似文献   

13.

传统三维大地电磁各向异性模拟均是基于规则六面体网格,计算精度有限且较难拟合复杂地质条件.本文采用面向目标自适应非结构矢量有限元法,对三维大地电磁各向异性介质进行模拟.首先从电场双旋度方程出发,利用伽辽金方法建立变分方程;然后利用电流密度连续性条件构建适合大地电磁各向异性问题的加权后验误差估计方法,实现面向目标的网格自适应正演;最后通过典型算例分析各向异性对网格自适应和大地电磁响应的影响特征以及各向异性的识别方法.本文算法能够高精度地拟合起伏地表和任意各向异性介质,适用于分析复杂地电条件大地电磁响应特征,为提高大地电磁资料解释水平提供了理论基础.

  相似文献   

14.
Stochastic Environmental Research and Risk Assessment - Heterogeneity in waste rock piles (WRPs) determines uncertainty in acid mine drainage (ARD) predictions from these deposits. Numerical...  相似文献   

15.
Deposition from at least three episodes of glaciation left a complex glacial-drift aquifer system in central Illinois. The deepest and largest of these aquifers, the Sankoty-Mahomet Aquifer, occupies the lower part of a buried bedrock valley and supplies water to communities throughout central Illinois. Thin, discontinuous aquifers are present within glacial drift overlying the Sankoty-Mahomet Aquifer. This study was commissioned by local governments to identify possible areas where a regional water supply could be obtained from the aquifer with minimal adverse impacts on existing users. Geologic information from more than 2,200 existing water well logs was supplemented with new data from 28 test borings, water level measurements in 430 wells, and 35 km of surface geophysical profiles. A three-dimensional (3-D) hydrostratigraphic model was developed using a contouring software package, a geographic information system (GIS), and the 3-D geologic modeling package, EarthVision. The hydrostratigraphy of the glacial-drift sequence was depicted as seven uneven and discontinuous layers, which could be viewed from an infinite number of horizontal and vertical slices and as solid models of any layer. Several iterations were required before the 3-D model presented a reasonable depiction of the aquifer system. Layers from the resultant hydrostratigraphic model were imported into MODFLOW, where they were modified into continuous layers. This approach of developing a 3-D hydrostratigraphic model can be applied to other areas where complex aquifer systems are to be modeled and is also useful in helping lay audiences visualize aquifer systems.  相似文献   

16.
We present a numerical method for multiphase chemical equilibrium calculations based on a Gibbs energy minimization approach. The method can accurately and efficiently determine the stable phase assemblage at equilibrium independently of the type of phases and species that constitute the chemical system. We have successfully applied our chemical equilibrium algorithm in reactive transport simulations to demonstrate its effective use in computationally intensive applications. We used FEniCS to solve the governing partial differential equations of mass transport in porous media using finite element methods in unstructured meshes. Our equilibrium calculations were benchmarked with GEMS3K, the numerical kernel of the geochemical package GEMS. This allowed us to compare our results with a well-established Gibbs energy minimization algorithm, as well as their performance on every mesh node, at every time step of the transport simulation. The benchmark shows that our novel chemical equilibrium algorithm is accurate, robust, and efficient for reactive transport applications, and it is an improvement over the Gibbs energy minimization algorithm used in GEMS3K. The proposed chemical equilibrium method has been implemented in Reaktoro, a unified framework for modeling chemically reactive systems, which is now used as an alternative numerical kernel of GEMS.  相似文献   

17.
CO2+ O2 in-situ leaching(ISL) of sandstonetype uranium ore represents the third generation of solution mining in China.In this study,reactive transport modeling of the interaction between hydrodynamic and geochemical reactions is performed to enable better prediction and regulation of the CO2+ O2 in-situ leaching process of uranium.Geochemical reactions between mining solutions and rock,and the kinetic uranium dissolution controlled by O2(aq...  相似文献   

18.
With growing importance of water resources in the world, remediations of anthropogenic contaminations due to reactive solute transport become even more important. A good understanding of reactive rate parameters such as kinetic parameters is the key to accurately predicting reactive solute transport processes and designing corresponding remediation schemes. For modeling reactive solute transport, it is very difficult to estimate chemical reaction rate parameters due to complex processes of chemical reactions and limited available data. To find a method to get the reactive rate parameters for the reactive urea hydrolysis transport modeling and obtain more accurate prediction for the chemical concentrations, we developed a data assimilation method based on an ensemble Kalman filter (EnKF) method to calibrate reactive rate parameters for modeling urea hydrolysis transport in a synthetic one-dimensional column at laboratory scale and to update modeling prediction. We applied a constrained EnKF method to pose constraints to the updated reactive rate parameters and the predicted solute concentrations based on their physical meanings after the data assimilation calibration. From the study results we concluded that we could efficiently improve the chemical reactive rate parameters with the data assimilation method via the EnKF, and at the same time we could improve solute concentration prediction. The more data we assimilated, the more accurate the reactive rate parameters and concentration prediction. The filter divergence problem was also solved in this study.  相似文献   

19.
基于MNS技术的三维大地电磁场正演模拟方法研究   总被引:2,自引:0,他引:2       下载免费PDF全文
张罗磊  于鹏  王家林  陈晓  李洋 《地球物理学报》2010,53(11):2715-2723
目前大地电磁三维正演模拟的主要问题是计算效率偏低.Pankratov等提出了一种精确的、稳定的和宽频的三维电磁场正演计算方法,并成功应用于大地电磁场正演模拟中.该方法使用体积积分方程法,利用改进的Neumann序列(MNS)技术来求解Maxwell方程,成功地避免了解大型的线性方程组.在本文中针对这一主要问题尝试引入了广义双共轭梯度法来迭代求改进的Neumann序列中的解,与传统的迭代方法相比可以提高迭代的效率.同时使用了将格林函数分解为两部分在波数域求解,这样比常规的利用快速汉克尔变换求解效率更高.最后试验了两个模型,并与三维交错网格有限差分法计算结果相比较,证明该方法的正确与有效,并且通过具体计算表明该方法在精度保证的条件下计算速度上具有明显的优势.  相似文献   

20.
The spatial distribution of reactive minerals in the subsurface is often a primary factor controlling the fate and transport of contaminants in groundwater systems. However, direct measurement and estimation of heterogeneously distributed minerals are often costly and difficult to obtain. While previous studies have shown the utility of using hydrologic measurements combined with inverse modeling techniques for tomography of physical properties including hydraulic conductivity, these methods have seldom been used to image reactive geochemical heterogeneities. In this study, we focus on As-bearing reactive minerals as aquifer contaminants. We use synthetic applications to demonstrate the ability of inverse modeling techniques combined with mechanistic reactive transport models to image reactive mineral lenses in the subsurface and quantify estimation error using indirect, commonly measured groundwater parameters. Specifically, we simulate the mobilization of arsenic via kinetic oxidative dissolution of As-bearing pyrite due to dissolved oxygen in the ambient groundwater, which is an important mechanism for arsenic release in groundwater both under natural conditions and engineering applications such as managed aquifer recharge and recovery operations. The modeling investigation is carried out at various scales and considers different flow-through domains including (i) a 1D lab-scale column (80 cm), (ii) a 2D lab-scale setup (60 cm × 30 cm) and (iii) a 2D field-scale domain (20 m × 4 m). In these setups, synthetic dissolved oxygen data and forward reactive transport simulations are used to image the spatial distribution of As-bearing pyrite using the Principal Component Geostatistical Approach (PCGA) for inverse modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号