首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The addition of phosphorus to H2O-saturated and initially subaluminous haplogranitic (Qz–Ab–Or) compositions at 200 MPa(H2O) promotes expansion of the liquidus field of quartz, a marked decrease of the solidus temperature, increased solubility limits of H2O in melt at low phosphorus concentrations, and fractionation of melt out of the haplogranite plane (projected along an Or28 isopleth) toward a peralkaline, silica-poor but quartz-saturated minimum composition. The partition coefficient for P2O5 between aqueous vapor and melt with an ASI (aluminum saturation index, mol Al/[mol Na+K])=1 is negligible (0.06), and consequently so are the effects of phosphorus on other melt-vapor relations involving major components. Phosphorus becomes more soluble in vapor, however, as the concentration of a NaPO3 component increases via the fractionation of melt by crystallization of quartz and feldspar. The experimental results here corroborate existing concepts regarding the interaction of phosphorus with alkali aluminosilicate melt: phosphorus has an affinity for alkalis and Al, but not Si. Phosphorus is incorporated into alkali feldspars by the exchange component AlPSi-2. For subaluminous compositions (ASI=1), the distribution coefficient of phosphorus between alkali feldspar and melt, D[P]Af/m, is 0.3. This value increases to D[P]Af/m=1.0 at a melt ASI value of 1.3. The increase in D[P]Af/m with ASI is expected from the fact that excess Al promotes the AlPSi-2 exchange. With this experimental data, the P2O5 content of feldspars and whole rocks can reveal important facets of crystallization and phosphorus geochemistry in subaluminous to peraluminous granitic systems.  相似文献   

2.
Boron-bearing kornerupine was synthesized in the simplest possible model system at fluid pressures and temperatures both within and outside the stability field of boron-free kornerupine. Best conditions for synthesis of single-phase products are 7 kb and 830 °C. Microprobe and wet chemical analyses as well as X-ray studies indicate compositional variations of kornerupines regarding all five constituent components: Increasing B-contents (from 0.37 to 3.32 wt% B2O3) are correlated with decreasing OH? values largely according to the Eq. B3+?3 H+; the ratio MgO∶Al2O3SiO2 varies from 4∶3∶4 in the direction towards 1∶1∶1. Thus kornerupine exhibits an at least ternary range of solid solution in the system studied. Crystallochemically speaking it is significant that, although the Mg∶Al∶Si ratio of kornerupine may remain constant with increasing boron contents, the total number of cations per formula unit increases beyond the ideal number of 14.0 as given by Moore and Bennett (1968). Considering the presence of an additional structural site at (000) it is suggested that the introduction of boron initiates a sequence of substitutions such as $$B^{[4]} \to Si^{[4] } \to A1^{[4]} \to Mg^{[6]} \to \square$$ . The filling of this site, empty in boron-free kornerupine, by Mg is connected with a loss of hydrogen located near this site. Petrologically speaking an exchange reaction relation exists between kornerupine and its coexisting fluid according to the equation Boron-free kornerupine+B2O3=boron-kornerupine+H2O. The molar fractions $$X_{B_2 O_3 } = B_2 O_3 /\left( {B_2 O_3 + H_2 O} \right)$$ of kornerupines exceed those of their coexisting fluids by about one order of magnitude. Fluids with relatively low XB 2 O 3 lead to the coexistence of kornerupine with boron-free minerals such as enstatite and sapphirine, fluids with relatively high XB 2 O 3 produce the boron-minerals grandidierite, sinhalite, and tourmaline (in the present system without Na!) in addition to kornerupine.  相似文献   

3.
According to the compositions of the underground gasfield brines in the west of Sichuan Basin,the phase equilibria in the ternary systems KBr-K2B4O7-H2O and KCl-K2B4O7-H2O at 373 K were studied using the isothermal dissolution equilibrium method.The solubilities of salts and the densities of saturated solutions in these ternary systems were determined.Using the experimental data,phase diagrams and density-composition diagrams were constructed.The two phase diagrams were simple co-saturation type,each having an invariant point,two univariant curves and two crystallization regions.The equilibrium solid phases in the ternary system KBr-K2B4O7-H2O are potassium bromide (KBr) and potassium tetraborate tetrahydrate (K2B4O7·4H2O),and those in the ternary system KCl-K2B4O7-H2O are potassium chloride (KCl) and potassium tetraborate tetrahydrate (K2B4O7·4H2O).Comparisons of the phase diagrams of the two systems at different temperatures show that there is no change in the crystallization phases,but there are changes in the size of the crystallization regions.As temperature increases,the solubility of K2B4O7·4H2O increases rapidly,so the crystallization field of K2B4O7·4H2O becomes smaller.  相似文献   

4.
Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt.The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O.The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this paper.The investigated system also provides information about the width of the P-T field in which zoisite can be stable together with an Al2SiO5 polymorph plus quartz and in which zoisite plus muscovite and quartz can be formed at the expense of anorthite and potassium feldspar. Addition of sodium will shift the boundaries of these fields to higher pressures (at given temperatures), because the pressure stability of albite is almost 10kbars above that of anorthite. Assemblages with zoisite+muscovite or zoisite+kyanite are often considered to be products of secondary or retrograde reactions. The P-T range in which hydration of granitic compositions may occur in nature is of special interest. The present paper documents the highest temperatures at which this hydration can occur in the earth's crust.  相似文献   

5.
New germanate analogs of the mineral surinamite, Mg3Al4BeSi3O16, have been synthesized with composition Mg4A4Ge3O16 (A=Al, Ga) and have been characterized by powder X-ray diffraction and transmission electron microscopy. The Al surinamite phase crystallizes with a primitive unit-cell (P2/n, a=10.153(1), b=11.708(2), c=9.920(1) Å, β=110.18 (2)° and Z=4) similar to that of the silicate mineral. The Ga surinamite-like phase crystallizes with a larger unit-cell (C2/c, a=10.308(2), b=23.690(5), c=10.057(l) Å, β=110.23 (2)° and Z=8). High-resolution electron microscopy has shown the common formation of intergrowths between the surinamite and sapphirine structures, illustrating the polysomatic structural relationship between them. Observations of disordered microstructures in the Al surinamite suggest the occurrence of a P2/n?C2/c transformation.  相似文献   

6.
The system albite-celsian-water was investigated at isothermal sections of 670, 760, 800, 900, 1000 and 1100° C at 1 Kbar. At temperatures above about 950° C the existence of a solid solution series could be shown. In the condensed part of the 930° C/1 Kbar section the partition of barium between melt and coexisting crystals was measured using an electron probe microanalyzer. The barium content of crystals grown in equilibrium with a melt is always higher than the barium content of the starting composition, so albite-celsian shows an ascending type solid solution series at low total water pressures. In the subsolidus region two types of solvi are existent, which show different ways of phase unmixing. The relatively low barium contents of natural albites are interpreted as being due to geochemical reasons rather than crystalchemical reasons.

Meinem hochverehrten Lehrer, Herrn Prof. Dr. K. Jasmund, danke ich für sein lebhaftes Interesse während der Durchführung dieser Arbeit und für die kritische Durchsicht des Manuskripts. Mein Dank gilt ferner Herrn Dr. H. A. Seck für die Einarbeitung in die experimentellen Methoden der Hydrothermalsynthese und für kritische Anmerkungen zum Manuskript. Fräulein Dr. M. Corlett danke ich für wertvolle Informationen zur Messung mit der Elektronenstrahl-Mikrosonde.

Die Untersuchung wurde mit Hilfe von Personal- und Sachmitteln durchgeführt, die Herrn Professor Dr. K. Jasmund von der Deutschen Forschungsgemeinschaft zur Verfügung gestellt worden waren.  相似文献   

7.
The stability of coexisting orthopyroxene, sillimanite and quartz and the composition of orthopyroxene in this assemblage has been determined in the system MgO-FeO-Fe2O3-Al2O3-SiO2-H2O as a function of pressure, mainly at 1,000° C, and at oxygen fugacities defined mostly by the hematite-magnetite buffer. The upper stability of the assemblage is terminated at 17 kbars, 1,000° C, by the reaction opx+Al-silicate gar+qz, proceeding toward lower pressures with increasing Fe/(Fe+Mg) ratio in the system. The lower stability is controlled by the reaction opx+sill+qz cord, which occurs at 11 kbars in the iron-free system but is lowered to 9 kbars with increasing Fe/(Fe+Mg). Spinel solid solutions are stabilized, besides quartz, up to 14 kbars in favour of garnet in the iron-rich part of the system (Fe/(Fe+Mg)0.30). Ferric-ferrous ratios in orthopyroxene are increasing with increasing ferro-magnesian ratio. At least part of the generally observed increase in Al content with Fe2+ in orthopyroxene is not due to an increased solubility of the MgAlAlSiO6 component but rather of a MgFe3+AlSiO6 component. The data permit an estimate of oxygen fugacity from the composition of orthopyroxene in coexistence with sillimanite and quartz.  相似文献   

8.
Equations for the configurational entropy and homogeneous equilibria in Ca2MgSi2O7-Ca2SiAl2O7 melilites are derived for a site constraint that does not permit Mg on the smaller T2 tetrahedral sites. This constraint leads to one ordering parameter and one composition parameter. The maximum configurational entropy for perfectly ordered crystalline solutions is 3.795 cal K–1 mol–1, corresponding to the structural formula Ca2(Mg0.33Al0.67) (Si0.67Al0.33)2O7 and not the equimolar composition Ca2(Mg0.5Al0.5)(Si0.75Al0.25)2O7. Similarly, the configuration Ca2(Si0.33Al0.67)(Si0.33Al0.67)2O7 has the maximum entropy for the gehlenite end-member composition. The tabulated entropy of end-member gehlenite at 298.15 K must be corrected by at least 2Rln2, which corresponds to a substantial correction to its Gibbs energy at high temperature. The same corrections are applicable to other minerals having two crystallographically distinct sites in a 21 ratio and where the same configurational entropy equation applies: MgFe2O4 (magnesioferrite), NiFe2O4 (trevorite), TiFe2O4 (ulvospinel), TiMg2O4, TiZn2O4, CuFe2O4, and TiFe2O5 (pseudobrookite) inasmuch as these substances prefer the same inverse ordered state as gehlenite at low temperatures. The effects of the ideal enthalpy and entropy on temperatures of homogeneous equilibria in gehlenite and MgTi2O5 are evaluated. Geological-thermometer phase diagrams of the long-range ordering parameter plotted against temperature have a sigmoidal shape for these minerals owing to the fact that this type of disordering is non-convergent.  相似文献   

9.
Hydrothermal investigation of the bulk composition CaO·Al2O3·4SiO2 + excess H2O has been conducted using conventional techniques over the temperature range 200–500° C and 500–5,000 bars P fluid. The fully ordered wairakite was synthesized unequivocally in the laboratory, probably for the first time.The gradual, sluggish and continuous transformation from disordered to ordered wairakite evidently accounts for failure by previous investigators to synthesize ordered wairakite in runs of week-long duration. The dehydration of metastable disordered wairakite to metastable hexagonal anorthite, quartz and H2O has been determined; this reaction takes place at temperatures exceeding 400° C, even at fluid pressures of 500 bars or less. The upper P fluid-T boundary of the disordered phase is equivalent to the maximum temperature curve of synthetic wairakite presented by previous investigators. The hydrothermal breakdown of natural wairakite above its stability limit appears to be a very slow process.The equilibrium dehydration of wairakite to anorthite, quartz and H2O occurs at 330±5° C at 500 bars, 348±5° C at 1,000 bars, 372±5° C at 2,000 bars and 385±5° C at 3,000 bars. Where fluid pressure equals total pressure, the thermal stability range of wairakite is about 100° C wide. At lower temperatures wairakite reacts with H2O to form laumontite. Reconnaissance experiments dealing with the effect of CO2 on stabilities of calcium zeolites suggest that wairakite or laumontite may be replaced by the assemblage calcite + montmorillonite in the presence of a CO2-bearing fluid phase.The determined P fluid -T field of wairakite is compatible with field observations in some metamorphic terrains where it is related to the shallow emplacement of granitic magma and with direct pressure-temperature measurements in certain active geothermal areas. Under inferred conditions of higher CO2/H2O ratios, essentially unmetamorphosed rocks grade directly into those characteristic of the greenschist facies; moderately high values of CO2 in carbonate-bearing rocks result in the downgrade extension of the greenschist facies at the expense of zeolite-bearing assemblages.  相似文献   

10.
The structure of glasses and melts of Na2O· 0.5Fe2O3·3SiO2 and Na2O·FeO·3SiO2 compositions have been measured using high temperature Raman spectroscopy. For the oxidized sample it has been demonstrated that there is a close structural relationship between melt and glass. No coordination changes of Fe3+ with temperature and no new anionic species have been observed in the oxidized melt. The Raman spectra of the reduced sample clearly show a decrease in the degree of polymerization, as determined by the observation of the polarization character of the spectra and the details of the change of the Raman intensities during heating in hydrogen. Mössbauer spectra suggest that Fe3+ is tetrahedrally coordinated in the oxidized glass and part of the Fe2+ is tetrahedrally coordinated in the reduced glass.  相似文献   

11.
本文采用合成溶胶凝胶中间体的技术方法,降低了硅酸盐熔体的熔化温度,并在1750~1850℃和2.0~4.0GPa条件下合面出9个SiO2-Al2O3-Na2O(K2O)系列淬火硅权盐熔体,淬火熔体中Na(K)/A1≤1属过铝质硅酸盐熔体,其激光拉曼微探针(LRM)研究表明,随压力增大,T-Onb在高频区(900~1200cm^-1)的对称和反对称伸缩振动频率明显减小,过铝质熔体中存在六配位铝,且随  相似文献   

12.
Dumortierite, generally simplified as Al7BSi3O18, was synthesized in the pure system Al2O3–B2O3–SiO2–H2O (ABSH) using gels with variable Al/Si ratios mixed with H3BO3 and H2O in known proportions as starting materials. Synthesis conditions ranged from 3 to 5 and 15 to 20 kbar fluid pressure at 650° to 880°C. On the basis of analyses, synthetic dumortierite shows relatively narrow homogeneity ranges with regard to Al/Si which, however, vary as a function of pressure: at low pressures (3–5 kbar) Al/Si is 2.77–2.94 versus 2.33–2.55 at high pressures (15–20 kbar). Outside of these homogeneity limits, dumortierite was found to coexist with quartz or corundum, depending on the starting composition. Whereas synthetic dumortierite invaribly contains 1.0 boron atom per formula unit (p.f.u.) based on 18 oxygens, the water contents vary drastically as a function of pressure and temperature (1.32–2.30 wt.% H2O or 0.85–1.47 H p.f.u.). H2O is an essential component in dumortierite. Structural formulae based on complete chemical analyses of the dumortierites synthesized reveal that there is invariably an Si-deficiency against the ideal number of 3.0 p.f.u. In the calculation procedure used here, this deficiency is balanced by assuming tetrahedral Al. The remaining Al, taken to occupy the octahedral sites, is always below the ideal number of 7.0 p.f.u. Charge-balancing the structure with the hydrogen found analytically leads to two different mechanisms of H incorporation: (1) 3H+ + octahedral vacancy for Al[6]; (2) H+ + tetrahedral Al for Si[4]. Dumortierite synthesized at high fluid pressure contains little Al[4] and, thus, little H+ of type 2; its hydrogen is predominantly present as type 1. Conversely, dumortierite formed at low fluid pressures is high in Al[4] and hydrogen type 2. The amounts of hydrogen type 1 in low-pressure dumortierites decrease with rising temperatures of synthesis. Typical structural formulae are: (Al6.670.33)[Al0.49Si2.51–O13.53(OH)1.47](BO3) for a low-pressure product, and (Al6.680.32)[Al0.09Si2.91O13.94(OH)1.06](BO3) for a high-pressure product. Independently of the synthesis conditions, dumortierite was found always to be orthorhombic, with b0/a0 deviating slightly, but significantly from the valid for hexagonal lattice geometry. As a function of increasing Al/Si in the synthetic crystals, their a0, c0, and V0 rise, whereas b0 decreases. Thus b0/a0 decreases most sensitively with rising Al/Si and also with growing Al[4]. More experimentation is required before the compositional variations of dumortierite found here can be applied successfully to geothermobarometry of natural rocks.  相似文献   

13.
To further our knowledge of the effects of volatile components on phase relationships in aluminosilicate systems, we determined the vapor saturated solidi of albite, anorthite, and sanidine in the presence of CO2 vapor. The depression of the temperature of the solidus of albite by CO2 decreases from 30° C at 10 kbar, to 10° C at 20 kbar, to about 0 at 25 kbar, suggesting that the solubility of CO2 in NaAlSi3O8 liquid in equilibrium with solid albite decreases with increasing pressure and temperature. In contrast, CO2 lowers the temperature of the solidus of anorthite by 30° C at 14 kbar, and by 70dg C at 25 kbar. This contrasting behavior of albite and anorthite is also reflected in the behavior of melting in the absence of volatile components. Whereas albite melts congruently to a liquid of NaAl-Si3O8 composition to pressures of 35 kbar, anorthite melts congruently to only about 10 kbar and, at higher pressures, incongruently to corundum plus a liquid that is enriched in SiO2 and CaO and depleted in Al2O3 relative to CaAl2Si2O8.The tendency toward incongruent melting with increasing pressure in albite and anorthite produces an increase in the activity of SiO2 component in the liquid ( ). We predict that this increases the ratio of molecular CO2/CO 3 2– in these liquids, but the experimental results from other workers are mutually contradictory. Because of the positive dP/dT of the albite solidus and the negative dP/dT of the anorthite solidus, we propose that a negative temperature derivative of the solubility of molecular CO2 in plagioclase liquids may partly explain the decrease in solubility of carbon with increasing pressure in near-solidus NaAlSi3O8 liquids, which is in contrast to that in CaAl2Si2O8 liquid. Also, reaction of CO2 with NaAlSi3O8 liquid to form CO 3 2– that is complexed with Na+ must be accompanied by a change in Al3+ from network-former to network-modifier, as Na+ is no longer abailable to charge-balance Al3+ in a network-forming role. However, when anorthite melts incongruently to corundum plus a CaO-rich liquid, the complexing of CO 3 2– with the excess Ca2+ in the liquid does not require a change in the structural role of aluminum, and it may be more energetically favorable.The depression of the temperature of the solidus of sanidine resulting from the addition of CO2 increases from 50° C at 5 kbar to 170° C at 15 kbar. In marked contrast to the plagioclase feldspars, sanidine melts incongruently to leucite plus a SiO2-rich liquid up to the singular point at 15 kbar. Above this pressure, sanidine melts congruently, resulting in a decrease in the with increasing pressure in the interval up to 15 kbar. Above this pressure, the congruent melting of sanidine results in a lower and nearly constant relative to those of albite and anorthite, and CO2 produces a nearly constant freezing-point depression of about 170° C. Because of the low at pressures above the singular point, we infer that most of the carbon dissolves as CO 3 2– , resulting in a low CO2/ CO 3 2– , but a high total carbon content.The principles derived from the studies of phase equilibria in these chemically simple systems provide some information on the structural and thermal properties of magmas. We propose that the is an important parameter in controlling the speciation of carbon in these feldspathic liquids, but it certainly is not the only factor, and it may be relatively less significant in more complex compositions. In addition, our phase-equilibria approach does not provide direct thermal and structural information as do calorimetry and spectroscopy, but the latter have been used primarily on glasses (quenched liquids) and cannot be used in situ to derive direct information on liquids at elevated pressures, as can our method. Hopefully, the results of all of these approaches can be integrated to yield useful results.Institute of Geophysics and Planetary Physics, Contribution No. 2744  相似文献   

14.
The effect of composition and temperature on the relaxed adiabatic bulk modulus of melts in the P2O5-Al2O 3-Na2SiO3 system have been investigated in the temperature range of 1140 to 1450 °C using ultrasonic interferometric methods at frequencies of 3, 5 and 7 MHz. The density of these melts was determined using Pt-double-bob Archimedean densitometry techiques. P2O5 is known to dramatically affect the structure and the chemical and physical properties of granitic and pegmatitic melts as a function of the peralkalinity of the melt. The physical results of the structural changes occurring in Na2O-Al2O3-SiO2 melt upon the addition of P2O5 are observed by variations in the properties such as density and compressibility. For the present peralkaline melts, the bulk modulus and density decrease with addition of 15 mol% P2O5, and increase with the addition of 15 mol% Al2O3. The addition of P2O5 to the present melts results in a larger increase in melt compressibility than that observed with increasing polymerization between Na2SiO3 and Na2Si2O5 melts. This would suggest that not only is the polymerization of the melt increasing with the addition of P2O5 (Mysen et al. 1981; Nelson and Tallant 1984; Gan and Hess 1992), but that the tetrahedrally co-ordinated phosphorus complexes are influencing the bond lengths and energies within the melt structure; resulting in the structure becoming more compressible than expected, although incompressible (Vaughan and Weidner 1987) tetrahedral P2O5 polyhedra (Mysen et al. 1981; Gan and Hess 1992; Toplis et al. 1994) are being added to the melt structure.  相似文献   

15.
16.
Various members of the KAlSi3O8-BaAl2Si2O8 feldspar series are hydrothermally synthesized. Cellparameters of these are calculated from diffractometer patterns and found to be similar to those of Gay and Roy. A variation diagram is constructed correlating Cn-content and values of ΔFeKα(2θ(111)CaF2—2θ(004)Fsss), which gives $${\text{Mol}}\% {\text{ Cn = 229}}{\text{.83}}\Delta {\text{2}}\theta ---{\text{190}}{\text{.81}}$$ by a least square regression fitting. Phase equilibria relation in the solidus-liquidus-region for the KAlSi3O8-BaAl2Si2O8-H2O system at 1000 kg/cm2 are investigated. It is found to be a case of simple solid solution in a binary system, with reservations at the potassium-rich side of the system. Goranson (1938) gives a temperature of about 1000°C at 1000 kg/cm2 \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) for the incongruent melting of sanidine, but the authors prefer a value around 930°C at the same \(P_{{\text{H}}_{\text{2}} {\text{O}}} \) . Reaction products of starting materials on the join KAlSi2O6-BaAl2Si2O8 and KAlSiO4-BaAl2Si2O8 gave no experimental hint for replacement of K+ by Ba++.  相似文献   

17.
The crystal structures of two new compounds (H3O)2[(UO2)(SeO4)2(H2O)](H2O)2 (1, orthorhombic, Pnma, a = 14.0328(18), b = 11.6412(13), c = 8.2146(13) Å, V = 134.9(3) Å3) and (H3O)2[(UO2)(SeO4)2(H2O)](H2O) (2, monoclinic, P21/c, a = 7.8670(12), b = 7.5357(7), c = 21.386(3) Å, β = 101.484(12)°, V = 1242.5(3) Å3) have been solved by direct methods and refined to R 1 = 0.076 and 0.080, respectively. The structures of both compounds contain sheet complexes [(UO2)(SeO4)2]2? formed by cornershared [(UO2)O4(H2O)] bipyramids and SeO4 tetrahedrons. The sheets are parallel to the (100) plane in structure 1 and to (?102) in structure 2. The [(UO2)(SeO4)2(H2O)]2? layers are linked by hydrogen bonds via interlayer groups H2O and H3O+. The sheet topologies in structures 1 and 2 are different and correspond to the topologies of octahedral and tetrahedral complexes in rhomboclase (H2O2)+[Fe(SO4)2(H2O)2] and goldichite K[Fe(SO4)2(H2O)2](H2O)2, respectively.  相似文献   

18.
19.
The morphological theory of Hartman and Perdok (1955, 1956) allows to deduce the character of a growth form {hkl} on the basis of structural data alone. Its application to the structure of whewellite leads to the identification of forms {100}, {010}, {021}, {011}, {12 \(\bar 1\) } and {121} which show during the growth a flat surface profile (flat forms F). These forms occur very frequently in the crystals we grew from pure aqueous solutions at supersaturation β≦1,90. Other forms, {001} and {10 \(\bar 1\) }, possibly show a double character (F or S, where S stays for related faces showing a stepped profile during the growth) according to the bonds assumed within some periodic bond chains (PBCs). Alternative ways of bonding water molecules lead to different structures of the same PBC. The different energy corresponding to these structures may explain the complex morphology of both natural and synthetic crystals grown at high β values.  相似文献   

20.
Experiments with synthetic starting materials of muscovite, phlogopite, zoisite, kyanite and quartz were performed in the pressure temperature range 10–25 kbar, 640–780° C under water excess conditions. The reaction muscovite+zoisite+quartz+vapor=liquid+kyanite was bracketed at 10.5 kbar/689–700° C, 15.5 kbar/709–731° C and 20 kbar/734–745° C. The equivalent reaction in the Mg-bearing system muscovitess +zoisite+quartz+vapor=liquid+kyanite+phlogopitess lies at the same temperature around 10 kbar and approximately 10° C higher around 20 kbar, compared with the Mg-free reaction. At slightly higher temperatures formation of melt and tremolitess was reversibly observed from the assemblage phlogopitess+zoisite +kyanite+quartz around 10.5 kbar/690–710° C, 15.5 kbar/720–750° C and 20.5 kbar/745–760° C. In the subsolidus region, the reaction muscovitess+talcss+ tremolitess=phlogopitess+zoisite+quartz+vapor were located in the range 700° C/16.7–19.0 kbar and 740° C/19.7–20.8 kbar. From these data, a wedge shaped stability field of phlogopitess+zoisite+quartz appears with a high P, T termination around 21 kbar/755° C. Muscovite+tremolite+talc or kyanite comes in at higher pressures. These phase relations are in qualitative accord with petrographic observations from high pressure metamorphic areas. Formation and crystallization of melts in rocks of a wide compositional range involving zoisite/epidote has been ascribed to relatively high pressures and is consistent with experimentally determined stability fields in the simplified KCMASH system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号