首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frances Wall 《Geology Today》2004,20(5):181-184
Geology Today often features letters from geologists working on active volcanoes. Some of the most famous letters from a volcano were written by Sir William Hamilton from Vesuvius in Italy, during the 18th century and earned him the title of 'the first volcanologist'.  相似文献   

2.
Mud volcanoes are important pathways for CH4 emission from deep buried sediments; however, the importance of gas fluxes have hitherto been neglected in atmospheric source budget considerations. In this study, gas fluxes have been monitored to examine the stability of their chemical compositions and fluxes spatially, and stable C isotopic ratios of CH4 were determined, for several mud volcanoes on land in Taiwan. The major gas components are CH4 (>90%), “air” (i.e. N2 + O2 + Ar, 1–5%) and CO2 (1–5%) and these associated gas fluxes varied slightly at different mud volcanoes in southwestern Taiwan. The Hsiao-kun-shui (HKS) mud volcano emits the highest CH4 concentration (CH4 > 97%). On the other hand, the Chung-lun mud volcano (CL) shows CO2 up to 85%, and much lower CH4 content (<37%). High CH4 content (>90%) with low CO2 (<0.2%) are detected in the mud volcano gases collected in eastern Taiwan. It is suggestive that these gases are mostly of thermogenic origin based on C1 (methane)/C2 (ethane) + C3 (propane) and δ13CCH4 results, with the exception of mud volcanoes situated along the Gu-ting-keng (GTK) anticline axis showing unique biogenic characteristics. Only small CH4 concentration variations, <2%, were detected in four on-site short term field-monitoring experiments, at Yue-shi-jie A, B, Kun-shui-ping and Lo-shan A. Preliminary estimation of CH4 emission fluxes for mud volcanoes on land in Taiwan fall in a range between 980 and 2010 tons annually. If soil diffusion were taken into account, the total amount of mud volcano CH4 could contribute up to 10% of total natural CH4 emissions in Taiwan.  相似文献   

3.
Four new sulfur isotope ratios of native volcanic sulfur are given and it is shown that isotope distributions are best presented with histograms.Possible causes governing the isotope compositions of native volcanic sulfur are briefly discussed.With 1 Figure  相似文献   

4.
Groundwater at the Azores archipelago is a strategic resource for the freshwater supply. Freshwater, mineral and thermal water discharges occur in the archipelago, and especially at the Fogo and Furnas volcanoes (São Miguel). These discharges provide data for case studies of groundwater chemistry from volcanic monitoring due to the stable composition of the sampled waters. The mineral and thermal discharges are mainly of sodium bicarbonate types and present a large range of temperatures, from cold springs to waters at about 90 °C. Some boiling discharges have a sulfate-dominated composition, suggesting a steam-heating mechanism. Geochemical studies on these mineral and thermal waters began in the 19th century. Data gathered since these earlier studies provide a baseline for pH, temperature, CO2 and major-element composition. Weekly measurements of pH and temperature also denote a rather stable behavior.  相似文献   

5.
Italian active volcanoes   总被引:3,自引:0,他引:3  
The eruptive histories, styles of activity and general modes of operation of the main active Italian volcanoes,Etna, Vulcano, Stromboli, Vesuvio, Campi Flegrei and Ischia, are described in a short summary.  相似文献   

6.
7.
We present here new measurements of sulfur dioxide and hydrogen sulfide emissions from Vulcano, Etna, and Stromboli (Italy), made by direct sampling at vents and by filter pack and ultraviolet spectroscopy in downwind plumes. Measurements at the F0 and FA fumaroles on Vulcano yielded SO2/H2S molar ratios of ≈0.38 and ≈1.4, respectively, from which we estimate an H2S flux of 6 to 9 t · d−1 for the summit crater. For Mt. Etna and Stromboli, we found SO2/H2S molar ratios of ≈20 and ≈15, respectively, which combined with SO2 flux measurements, suggest H2S emission rates of 50 to 113 t · d−1 and 4 to 8 t · d−1, respectively. We observe that “source” and plume SO2/H2S ratios at Vulcano are similar, suggesting that hydrogen sulfide is essentially inert on timescales of seconds to minutes. This finding has important implications for estimates of volcanic total sulfur budget at volcanoes since most existing measurements do not account for H2S emission.  相似文献   

8.
The 1990s were designated the International Decade of Natural Disaster Reduction (IDNDR) by the United Nations and considerable research effort has gone into achieving a better understanding of volcanic processes and public understanding of volcanic phenomena. Some eruptions have been predicted successfully and thousands of lives have been saved through evacuation and well co-ordinated aid programmes.  相似文献   

9.
Over the past few decades, substantial progress has been made to overcome the technical difficulties of continuously measuring volcanic SO2 emissions. However, measurements of CO2 emissions still present many difficulties, partly due to the lack of instruments that can directly measure CO2 emissions and partly due to its strong atmospheric background. In order to overcome these difficulties, a commonly taken approach is to combine differential optical absorption spectroscopy (DOAS) by using NOVAC scan-DOAS instruments for continuous measurements of crateric SO2 emissions, and electrochemical/NDIR multi-component gas analyser system (multi-GAS) instruments for measuring CO2/SO2 ratios of excerpts of the volcanic plume. This study aims to quantify the representativeness of excerpts of CO2/SO2 ratios measured by Multi-GAS as a fraction of the whole plume composition, by comparison with simultaneously measured CO2/SO2 ratios using cross-crater Fourier transform infrared spectroscopy (FTIR). Two study cases are presented: Telica volcano (Nicaragua), with a homogenous plume, quiescent degassing from a deep source and ambient temperature, and Turrialba volcano (Costa Rica), which has a non-homogeneous plume from three main sources with different compositions and temperatures. Our comparison shows that in our “easier case” (Telica), FTIR and Multi-GAS CO2/SO2 ratios agree within a factor about 3 %. In our “complicated case” (Turrialba), Multi-GAS and FTIR yield CO2/SO2 ratios differing by approximately 13–25 % at most. These results suggest that a fair estimation of volcanic CO2 emissions can be provided by the combination of DOAS and Multi-GAS instruments for volcanoes with similar degassing conditions as Telica or Turrialba. Based on the results of this comparison, we report that by the time our measurements were made, Telica and Turrialba were emitting approximately 100 and 1,000 t day?1 of CO2, respectively.  相似文献   

10.
The problem with trying to understand how active volcanoes such as Mount Etna work is that we cannot see what is going on inside them. We can try to get around the difficulty by examining the exposed interiors of ancient volcanoes and by utilizing geophysical techniques that allow us to monitor subterranean magma behaviour by recording associated ground deformation, locating thermal anomalies and monitoring seismic tremors. In conjunction with this geophysical work, we can simulate the internal 'plumbing' of an active volcano using that common culinary aid, gelatine  相似文献   

11.
1990 saw the start of a major international research initiative aimed at the development of a better understanding of how active volcanoes behave and of the threat that some pose to life and property, with a view to reducing the effects of volcanic disasters in the 1990s. The initiative forms part of a multidisciplinary approach devoted to reducing natural disasters of all kinds in the last decade of the millenium, designated by the United Nations as the International Decade for Natural Disaster Reduction (IDNDR). Critical to the success of the initiative is the development and utilization of better volcanic surveillance programmes. These will be partly based on the use of established techniques such as seismic and ground-deformation monitoring, but will increasingly incorporate more innovative methods such as satellite remote sensing and the measurement of microgravity and micromagnetic changes.  相似文献   

12.
13.
Four Fe-rich deposits, two occurring at springs, one on boulders in a stream and the fourth in a stream bed on andesitic volcanoes in the North Island, New Zealand, have been investigated by mineralogical techniques. They have poorly-ordered structure with compositions intermediate between those of ferrihydrite and hisingerite. Electron microscopy revealed solid spheres of 30 Å dia which formed 0.1-0.5 μm aggregates. Surface areas, as measured by ethylene glycol monoethyl ether, were close to 600 m2/g.X-ray diffraction gave weak patterns similar to both ferrihydrite and hisingerite. Infrared absorption showed a shift in the Si-O stretching band from 965 to 1020 cm?1 with decreasing amounts of Fe and increasing amounts of Si. These frequencies imply the presence of Fe-O-Si bonds in these materials. Desilication, by treatment with KOH in the laboratory, resulted in a conversion of these intermediates towards ferrihydrite.  相似文献   

14.
Aviation hazards from volcanoes: the state of the science   总被引:1,自引:0,他引:1  
  相似文献   

15.
The locations and information about the sizes of 61 mud volcanoes on the Italian mainland and Sicily, plus an area of mud diapirism in the Italian Adriatic Sea, are presented. Data about the emission products are also provided. The majority of these mud volcanoes are found where thick sedimentary sequences occur within a zone of tectonic compression associated with local plate tectonic activity: the movement of the Adriatic microplate between the converging African and Eurasian plates. The principal gas emitted by these mud volcanoes is methane, which probably originates from deep within the sediments. Other mud volcanoes, associated with igneous volcanism, produce mainly carbon dioxide. The mud diapirs in the Adriatic Sea are thought to form as a result of the mobilization of shallow gassy sediments. It has been shown that radon emissions from mud volcanoes are indicators of forthcoming earthquake events. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.

活火山是指1万年来有过喷发历史的全新世火山。火山的高分辨年代学对火山灾害评估和火山分类具有重要意义。对于缺乏历史记载的全新世火山,直接对火山岩进行同位素定年很困难。本文利用具有高时间分辨率的镭-钍-铀非平衡确定中国东部年轻火山的年龄。根据镭-钍-铀同位素,海南岛的马鞍岭和雷虎岭是全新世火山(马鞍岭:4.3ka;雷虎岭:4.7ka);镜泊湖火山(4.9ka)也是全新世火山;龙岗火山存在晚更新世和全新世活动(7.0ka,15.0ka);大兴安岭阿尔山和诺敏河Ra/Th非平衡消失但230Th/238U非平衡显著,属于晚更新世喷发(阿尔山:63ka;诺敏河:71ka)。海南岛的马鞍岭火山、雷虎岭火山和东北地区的龙岗火山、镜泊湖火山,是4座活火山。至于东北地区的阿尔山和诺敏河火山是否是活火山,有待测试更多样品的Ra/Th同位素。五大连池老黑山和火烧山有历史喷发记录,这与它们都存在显著Ra/Th非平衡一致。五大连池老黑山和火烧山的岩浆滞留年龄分别小于4.2ka和3.2ka,岩浆上升速率>18~23m/y。

  相似文献   

17.
Massive sediment deposition on the Mississippi River Delta establishes reducing conditions sufficient to bring about Mn dissolution in the top millimeters of sediment. As a result, significant fluxes of dissolved Mn pass from the Delta sediments to the overlying water column. This process is examined by study of chemical partitioning of Mn in river particulates and Delta sediments and from interstitial water chemistry. Remobilized Mn is actively transported away from the Delta area with aluminosilicate detritus thereby providing “excess” Mn to the deep Gulf of Mexico at the expense of the Delta sediments.  相似文献   

18.
Composition and exhalation flux of gases from mud volcanoes in Taiwan   总被引:3,自引:0,他引:3  
Many mud volcanoes are distributed along the tectonic sutures in southern Taiwan and can be divided into five zones based on their relative positions in different tectonic domains. Most active mud volcanoes are exhaling methane-dominated gases. Nevertheless, some gases show unusual carbon dioxide-dominated and/or nitrogen-excess compositions. This implies that there are multiple sources for the gas compositions of mud volcanoes in Taiwan.For better understanding the total amount of exhalation gases and its flux, the gas flow and compositions were continuously measured in the interval of two minutes at Chung-lun (CL) bubbling mud pool for a few months. The major compositions of gases exhaling from this site were 75~90% of CO2 and 5~12% of CH4. The amount of gases exhaling from the mud pool can be estimated to be about 1.4 ton/year for CH4 and 28 ton/year for CO2, respectively. The preliminary results of exhaling gas flux from the major vents of representative active mud volcanoes, yielded an estimated total CH4 output of the mud volcanoes in Taiwan of ca. 29 ton/year during quiescent period.  相似文献   

19.
20.
Methane and CO2 emissions from the two most active mud volcanoes in central Japan, Murono and Kamou (Tokamachi City, Niigata Basin), were measured in from both craters or vents (macro-seepage) and invisible exhalation from the soil (mini- and microseepage). Molecular and isotopic compositions of the released gases were also determined. Gas is thermogenic (δ13CCH4 from −32.9‰ to −36.2‰), likely associated with oil, and enrichments of 13C in CO2 (δ13CCO2 up to +28.3‰) and propane (δ13CC3H8 up to −8.6‰) suggest subsurface petroleum biodegradation. Gas source and post-genetic alteration processes did not change from 2004 to 2010. Methane flux ranged within the orders of magnitude of 101-104 g m−2 d−1 in macro-seeps, and up to 446 g m−2 d−1 from diffuse seepage. Positive CH4 fluxes from dry soil were widespread throughout the investigated areas. Total CH4 emission from Murono and Kamou were estimated to be at least 20 and 3.7 ton a−1, respectively, of which more than half was from invisible seepage surrounding the mud volcano vents. At the macro-seeps, CO2 fluxes were directly proportional to CH4 fluxes, and the volumetric ratios between CH4 flux and CO2 flux were similar to the compositional CH4/CO2 volume ratio. Macro-seep flux data, in addition to those of other 13 mud volcanoes, supported the hypothesis that molecular fractionation (increase of the “Bernard ratio” C1/(C2 + C3)) is inversely proportional to gas migration fluxes. The CH4 “emission factor” (total measured output divided by investigated seepage area) was similar to that derived in other mud volcanoes of the same size and activity. The updated global “emission-factor” data-set, now including 27 mud volcanoes from different countries, suggests that previous estimates of global CH4 emission from mud volcanoes may be significantly underestimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号