首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abandoned channel belts, ponds and point bar deposits of palaeochannels in the interfluve regions of the central Ganga Plain suggest changes in the morphohydrologic conditions during the Latest Pleistocene–Holocene. Stratigraphy of these ponds comprises channel sand at the base overlain by shell-bearing clayey silt. The contact of the two facies marks the phase when channels converted into standing water bodies. Point bar deposits of some palaeochannels are overlain by oxidised aeolian sand, indicating that the channel abandonment possibly occurred due to the desiccation and aridity in the region.Optically stimulated luminescence (OSL) chronometry of the pond sediments suggests that the deposition of the basal channel sand started before 13 ka and continued up to 8 ka. The ponds formed around 8–6 ka when the channel activity ceased. Evidence from the point bar deposits also indicates that the fluvial activity in the region ended sometime during 7–5 ka. This was followed by aeolian aggradation. The present study thus suggests that the hydrologic conditions in the Gangetic plains, i.e. initiation of channels and their abandonment, formation of microgeomorphologic features such as ponds and their eventual siltation, were controlled largely by climatic changes (i.e. monsoon changes) supported by tectonic activity. For the past 2 ka, increasing human and related agricultural activity has substantially accentuated the natural siltation rate of ponds.  相似文献   

2.
Large-scale dune activity in the Nebraska Sand Hills and elsewhere on the western Great Plains has been linked to prehistoric “megadroughts” that triggered the activation of regional dune fields. The effect of megadroughts on the smaller dune fields east of the Nebraska Sand Hills has never been assessed, however. This study focuses on the Duncan dune field near the confluence of the Loup and Platte rivers in eastern Nebraska. Seventeen optically stimulated luminescence age estimates were obtained and reveal two periods of dune activation that occurred between 4.4 to 3.4 ka and 0.8 to 0.5 ka. Significantly, both periods chronologically overlap large-scale dune activity identified in the Nebraska Sand Hills. Geochemical evidence indicates that the Duncan dunes received sand not only from the terrace underlying them, but also from the Loup River. These data link dune activity in the Duncan area, at least indirectly, to increased sediment supply from streams that drain the Sand Hills during megadroughts, implying the activation of the dunes occurred as an indirect response to regional megadroughts. Calculations of dune migration rates, however, argue in favor of local, drought-driven hydrologic changes as a causative factor in dune activation, in other words, a direct effect of megadroughts. Whether the impact was direct or indirect, it is highly likely that the repeated reactivation of the Duncan dunes resulted in some way from regional, large-magnitude droughts. Other paleoclimate proxies from the Great Plains tend to support this conclusion. We conclude that the megadroughts that have been identified in the Sand Hills and other Great Plains dune fields were indeed regional events with far-reaching effects.  相似文献   

3.
Studies in the middle Basento river basin supported by reliable chronological data (tephra layers and a number of absolute datings) have allowed the reconstruction of Late Pleistocene–Holocene geomorphological evolution of the middle to low Fossa Bradanica area (Basilicata, southern Italy). The original Upper Pleistocene hillslope has been dissected by deep gullies leaving relict slope pediments. Holocene filling of the Basento river valley and gullies occurred as a succession of downcut and fill episodes. A first phase of accumulation occurred in the Late Neolithic, which was followed by a downcutting between 4500 and 3700 cal. yr BP. A second deposition phase took place in the Greek–Roman period between 2800 and 1620 cal. yr BP, which was interrupted at around 2500 cal. yr BP. Another downcutting phase took place between 1620 and 1500 cal. yr BP, followed by a deposition phase between 1440 and 1000 cal. yr BP. After 1000 cal. yr BP a deep downcutting took place. Evidence collected with this study, coupled with climate data recorded in other Italian and European locations, suggests that filling and downcutting episodes in Fossa Bradanica were predominantly climate-driven. Anthropogenic impact only intensified or weakened these processes.  相似文献   

4.
The River Ganga in the central Gangetic plain shows the incision of 20 m of Late Quaternary sediments that form a vast upland terrace (T2). The incised Ganga River Valley shows two terraces, namely the river valley (terrace-T1) and the present-day flood plain (terrace-T0). Terrace-T1 shows the presence of meander scars, oxbow lakes, scroll plains, which suggests that a meandering river system prevailed in the past. The present-day river channel flows on terrace-T0 and is braided, sensu stricto. It is thus inferred that the River Ganga experienced at least two phases of tectonic adjustments: (1) incision and (2) channel metamorphosis from meandering to braided.Optical dating of samples from three different terraces has bracketed the phase of incision to be <6 and 4 ka. Different ages of the top of terrace-T2 show that this surface experienced differential erosion due to tectonic upwarping in the region, which also caused the river incision. River metamorphosis occurred some time during 4 and 0.5 ka.  相似文献   

5.
Alpa Sridhar   《Geomorphology》2007,88(3-4):285-297
This paper attempts to quantify contemporary and palaeo-discharges and changes in the hydrologic regime through the mid–late Holocene in the alluvial reach of the arid Mahi River basin in western India. The occurrence of terraces and pointbars high above active river levels and change in the width/depth ratio can be regarded as geomorphic responses to changes in discharge. Discharge estimates are made based on the channel dimensions and established empirical relations for the three types of channels: mid–late Holocene, historic (the channel that deposited extensive pointbars above the present-day average flow level) and the present ones. The bankfull discharge of the mid–late Holocene channel was  55 000 m3 s− 1 and that of the historic channel was  9500 m3 s− 1, some  25 times and  5 times greater than that of the present river (2000 m3 s− 1), respectively. Since the mid–late Holocene, the channel form has changed from wide, large-amplitude meanders to smaller meanders, and decreases in the width/depth ratio, unit stream power and the bed shear stresses have occurred. It can be inferred that there has been a trend of decreasing precipitation since the mid–late Holocene.  相似文献   

6.
柴达木盆地中部与西南部古沙丘的光释光年代学研究   总被引:2,自引:1,他引:2  
于禄鹏  赖忠平  安萍 《中国沙漠》2013,33(2):453-462
青藏高原东北部的柴达木盆地广泛分布着风成沉积,其中古沙丘主要分布在盆地东部、中部三湖区和西南缘。柴达木盆地中部和西南部两处古沙丘集中分布区靠近柴达木盆地盐湖区,与盐湖的演化有着密不可分的联系,但是这些古沙丘的形成时代至今没有具体研究。本文应用光释光定年的单片再生剂量法对这两个区域典型的古沙丘进行了风成砂沉积年代测定。结果显示研究区古沙丘的堆积开始于约4~3 ka,并延续至0.5 ka之后被固定,其形成与柴达木盆地晚全新世气候的干旱和盆地内湖泊退缩引起的砂源增加有关;古沙丘下伏的河流相沉积物形成于末次冰消期(12.6±0.8 ka)。古沙丘的固定事件对应青藏高原东北部的冰川前进期,冰川前进期的低温条件可以引起盆地内蒸发量下降和有效湿度相对增加,从而促使植被条件改善并最终使沙丘固定。  相似文献   

7.
Variations in the coupling of sediment transfer between different parts of a fluvial catchment, e.g., hillslope to axial stream, can hamper understanding but are an integral part of the geomorphological record. Depositional environments respond to a combination of land use, climate, storms (floods), and autogenic conditioning. The distribution of sediment in the upland landscapes of NW England is out of equilibrium with contemporary climate and geomorphological processes; more a function of peri- and paraglacial mobilisation of glacigenic deposits. Soil and vegetation development after deglaciation have interrupted any progression toward sediment exhaustion with sediment release controlled largely by extrinsic perturbation, with late Holocene anthropogenic activity, climate and extreme hydrological events the likely candidates. This paper presents a new radiocarbon-dated Holocene geomorphological succession for the River Hodder (NW England), alongside evaluating new palaeoecological and geoarchaeological data to discern the impacts of human activity. These data show a late Holocene expansion in human occupation and use of the landscape since the Iron Age (700–0 cal. B.C.), with more substantial changes in the character and intensity of upland land use in the last 1300 years. The geomorphological responses in the uplands were the onset of considerable and widespread hillslope erosion (gullying) and associated alluvial fan development. Interpretation of the regional radiocarbon chronology limits gullying to four, more extensive and aggressive phases after 500 cal. B.C. The downstream alluvial system has responded with considerable valley floor deposition and lateral channel migration that augmented sediment supply by remobilising the existing floodplain terraces and led to the aggradation of a series of inset alluvial terraces. The timing of these changes between states of aggradation and incision in alluvial reaches reflects the increased connectivity between the hillslope and alluvial systems. Aspects of both the regional climate and land use histories are conducive to increasing discharge and sediment flux, but the region wide lowering of erosion thresholds appears a key driver conditioning these sediment-rich conditions and producing a landscape that was more susceptible to erosion under lower magnitude flows.  相似文献   

8.
Jian Chen  Fuchu Dai  Xin Yao 《Geomorphology》2008,93(3-4):493-500
Major debris-flow deposits occur along the xerothermic valley of the upper Jinsha River. The debris-flow deposits, ranging in thickness from 1 to 20 m, invariably occupy gently inclined piedmont slopes. The sediments are presently deeply dissected by gullies, and the process of mass movement has almost ceased. Detailed textural, stratigraphical, and geochemical studies reveal the formation processes of the debris flows. Seven debris-flow incidents are noted based on the unit combination characteristics of debris-flow deposits. The age estimates of optically stimulated luminescence (OSL) show that the occurrence of debris flows started at around 10.6 kyr BP and weakened until 4.5 kyr BP, corresponding to the obvious strengthened phase of the summer monsoons in the region. The ages of the debris-flow deposits indicate that the occurrence of a mass of debris flows was a response to the intensified summer monsoon in the SE fringe of the Tibetan Plateau since the early Holocene.  相似文献   

9.
Thermoluminescence dating of relict source‐bordering dunes in the middle and upper Shoalhaven catchment show them to have been active between 19ka and 6ka. During this time, except for a brief period of dune stability sometime between 18 ka and 14ka, the climate of this area was considerably drier than present. The onset of aeolian activity here coincides with the glacial maximum indicating that it was not until then that arid or semi‐arid conditions were able to penetrate the humid coastal rim of south‐east Australia. The extension of these conditions into the early Holocene, whilst supported by the palaeobotanical record of nearby Lake George, contrasts with pollen evidence from other nearby catchments, suggesting that there were variable environmental responses throughout the south‐east highlands of NSW to the amelioration in climate during the early Holocene.  相似文献   

10.
塔克拉玛干沙漠腹地克里雅河沿岸的古绿洲与人类活动遗迹丰富,伴随着河流的变迁,遗址印记了古代文明的消失,河道成为孕育绿洲的证据.在浩瀚的沙漠中,古代文明与古绿洲属于依附关系.以圆沙古城为代表的圆沙古三角洲绿洲是孕育沙漠文明的典型.采自圆沙古城北侧深度约11 m的沉积剖面(KYN22),光释光测年和沉积学分析结果所示,剖面...  相似文献   

11.
R.M. Joeckel  G.M. Henebry   《Geomorphology》2008,102(3-4):407-418
The lower Platte River has undergone considerable change in channel and bar characteristics since the mid-1850s in four 20–25 km-long study stretches. The same net effect of historical channel shrinkage that was detected upstream from Grand Island, Nebraska, can also be detected in the lower river but differences in the behaviors of study stretches upstream and downstream from major tributaries are striking. The least relative decrease occurred downstream from the Loup River confluence, and the stretch downstream from the Elkhorn River confluence actually showed an increase in channel area during the 1940s. Bank erosion was also greater downstream of the tributaries between ca. 1860 and 1938/1941, particularly in stretch RG, which showed more lateral migration. The cumulative island area and the ratio of island area to channel area relative to the 1938/1941 baseline data showed comparatively great fluctuations in median island size in both downstream stretches. The erratic behavior of island size distributions over time indicates that large islands were accreted to the banks at different times, and that some small, newly-stabilized islands were episodically “flushed” out of the system. In the upstream stretches the stabilization of mobile bars to create new, small islands had a more consistent impact over time. Channel decrease by the abandonment of large, long-lived anabranches and by the in-place narrowing resulting from island accretion were more prominent in these upstream stretches. Across all of the study area, channel area appears to be stabilizing gradually as the rate of decrease lessens. This trend began earliest in stretch RG in the late 1950s and was accompanied by shifts in the size distributions of stabilized islands in that stretch into the 1960s. Elsewhere, even in the easternmost study stretch, stabilizing was occurring by the late 1960s, the same time frame documented by investigations of the Platte system upstream of the study area. Comprehensive management plans for the lower Platte River should account, at least in theory, for the observed differences in stream behavior upstream and downstream of the major eastern tributaries.  相似文献   

12.
西江和北江及珠江三角洲西北部汇流区广泛发育全新世的泥炭-淤泥腐木地层,结合剖面的沉积相特征和14C测年数据,对全新世沉积环境和含腐木地层的分布和环境变化进行探讨,获得以下认识:1)在西江和北江下游海侵北界以上的陆相沉积序列中,厚层泥炭主要形成于中晚全新世(7.5―1.5 cal. ka B.P.),集中堆积时间为5.0―1.5 cal. ka B.P.;2)珠江三角洲全新世海侵对三角洲边缘区陆相泥炭沼泽的形成起决定性作用,早全新世(约9―7 cal. ka B.P.)三角洲西北端的高速率河口相粉砂黏土沉积为后来的半咸水沼泽发育奠定了淤泥深厚的物质基础,而西江―北江下游陆相洪冲积或河漫滩沉积则在8 cal. ka B.P.左右开始发育,也为之后的水松泥炭沼泽繁盛奠定了基础;3)三水西南一带是中全新世西江―北江下游泛滥平原至古河口湾的过渡区,潮汐流与河流的双重作用是造成三角洲边缘区大面积泥炭沼泽湿地形成的主要原因;4)泥炭湿地生态环境大多在2.0―1.5 cal. ka B.P.前后在西江和北江被高位洪水平流沉积物埋藏,而在三角洲区域多被泛滥平原洪积物覆盖。多数剖面泥炭腐木迁移的原因与三角洲的快速加积作用导致的潮流与河流空间位置平衡被破坏和水文条件改变有关,晚全新世不断增强的人类农业活动和森林破坏与水土流失也是导致三角洲天然沼泽湿地消失的重要原因。  相似文献   

13.
Anabranching is characteristic of a number of rivers in diverse environmental settings worldwide, but has only infrequently been described from bedrock-influenced rivers. A prime example of a mixed bedrock-alluvial anabranching river is provided by a 150-km long reach of the Orange River above Augrabies Falls, Northern Cape Province, South Africa. Here, the perennial Orange flows through arid terrain consisting mainly of Precambrian granites and gneisses, and the river has preferentially eroded bedrock joints, fractures and foliations to form multiple channels which divide around numerous, large (up to 15 km long and 2 km wide), stable islands formed of alluvium and/or bedrock. Significant local variations in channel-bed gradient occur along the river, which strongly control anabranching style through an influence on local sediment budgets. In relatively long (>10 km), lower gradient reaches (<0.0013) within the anabranching reach, sediment supply exceeds local transport capacity, bedrock usually only crops out in channel beds, and channels divide around alluvial islands which are formed by accretion in the lee of bedrock outcrop or at the junction with ephemeral tributaries. Riparian vegetation probably plays a key role in the survival and growth of these islands by increasing flow roughness, inducing deposition, and stabilising the sediments. Less commonly, channels may form by eroding into once-continuous island or floodplain surfaces. In shorter (<10 km), higher gradient reaches (>0.0013) within the anabranching reach, local transport capacity exceeds sediment supply, bedrock crops out extensively, and channels flow over an irregular bedrock pavement or divide around rocky islands. Channel incision into bedrock probably occurs mainly by abrasion, with the general absence of boulder bedforms suggesting that hydraulic plucking is relatively unimportant in this setting. Mixed bedrock-alluvial anabranching also occurs in a number of other rivers worldwide, and appears to be a stable and often long-lived river pattern adjusted to a number of factors commonly acting in combination: (1) jointed/fractured granitoid rock outcrop; (2) erosion-resistant banks and islands; (3) locally variable channel-bed gradients; (4) variable flow regimes.  相似文献   

14.
The impact of large twentieth century floods on the riparian vegetation and channel morphology of the relatively wide anabranching and braided Nahal Arava, southern Israel, was documented as part of developing tools to (a) identify recent large floods, (b) determine these flood's respective magnitudes in alluvial ungauged streams, and (c) determine long-term upper bounds to flood stages and magnitudes. Along most of its course Nahal Paran, a major tributary that impacts the morphology, floods and sediments of Nahal Arava at the study reach, is a coarse-gravel, braided ephemeral stream. Downstream of the Arava–Paran confluence, aeolian and fluvial sand delivered from eastern Arava valley alters the channel morphology. The sand has accreted up to 2.5 m above the distinct current channels, facilitating the recording of large floods. This sand enhances the establishment of denser riparian vegetation (mainly Tamarix nilotica and Haloxylon persicum) that interacts with floods and affects stream morphology. A temporal association was found between specific floods recorded upstream and tree-ring ages of re-growth of flood-damaged tamarix trees (‘Sigafoos trees’) in the past 30 years. This association can be utilized for developing a twentieth century flood chronology in hyperarid ungauged basins in the region. The minimum magnitude of the largest flood that covered the entire channel width, estimated from flood deposits, is approximately 1700–1800 m3s− 1. This is a larger magnitude than the largest gauged flood of 1150 m3s− 1 that occurred in 1970 about 30 km upstream in Nahal Paran. Our estimation agrees with flood magnitude estimated from the regional envelope curve of the largest floods. Based on Holocene alluvial stratigraphy and OSL dating in the study reach we also conclude that flood stages did not reach the late Holocene ( 2.2 ka) surface and therefore we estimate a non-exceedance upper bound of  2000 m3s− 1 flood magnitudes for Nahal Arava during that interval. This study indicates that in unfavorable areas the combination of hydrology, fluvial morphology and botanic evidence can increase our understanding of ungauged basins and give information crucial for hydrology planning.  相似文献   

15.
川西高原杂谷脑河阶地的形成   总被引:8,自引:0,他引:8  
根据野外实地地貌调查,确定了川西高原杂谷脑河理县段发育了8级阶地,并对阶地沉积物进行了ESR年代测试,初步确定杂谷脑河第II,III,IV,VI级阶地约形成于距今54,125,248,481ka。阶地成因分析表明这些主要阶地序列主要是构造隆升的结果,因此,杂谷脑河各级主要阶地分别代表了川西高原中更新世以来的几次隆升事件。根据阶地高程和阶地形成年代确定的杂谷脑河下蚀速率为0.39m/ka,与大地测量获得的龙门山隆升速率 (0.3~0.4m/ka) 相一致。  相似文献   

16.
Late Quaternary alluvial induration has greatly influenced contemporary channel morphology on the anabranching Gilbert River in the monsoon tropics of the Gulf of Carpentaria. The Gilbert, one of a number of rivers in this region, has contributed to an extensive system of coalescing low-gradient and partly indurated riverine plains. Extensive channel sands were deposited by enhanced flow conditions during marine oxygen isotope (OI) Stage 5. Subsequent flow declined, probably associated with increased aridity, however, enhanced runoff recurred again in OI Stages 4–3 (65–50 ka). Aridity then capped these plains with 4–7 m of mud. A widespread network of sandy distributary channels was incised into this muddy surface from sometime after the Last Glacial Maximum (LGM) to the mid Holocene during a fluvial episode more active than the present but less so than those of OI Stages 5 and 3. This network is still partly active but with channel avulsion and abandonment now occurring largely proximal to the main Gilbert flow path.A tropical climate and reactive catchment lithology have enhanced chemical weathering and lithification of alluvium along the river resulting in the formation of small rapids, waterfalls and inset gorges, features characteristic more of bedrock than alluvial systems. Thermoluminescence (TL) and comparative optically stimulated luminescence (OSL) ages of the sediments are presented along with U/Th ages of pedogenic calcrete and Fe/Mn oxyhydroxide/ oxide accumulations. They show that calcrete precipitated during the Late Quaternary at times similar to those that favoured ferricrete formation, possibly because of an alternating wet–dry climate. Intense chemical alteration of the alluvium leading to induration appears to have prevailed for much of the Late Quaternary but, probably due to exceptional dryness, not during the LGM. The result has been restricted channel migration and a reduced capacity for the channel to adjust and accommodate sudden changes in bedload. Consequent avulsions have caused local stream powers to increase by an order of magnitude, inducing knickpoint erosion, local incision and the sudden influx of additional bedload that has triggered further avulsions. The Gilbert River, while less energetic than its Pleistocene ancestors, is clearly an avulsive system, and emphasizes the importance in some tropical rivers of alluvial induration for reinforcing the banks, generating nickpoints, reworking sediment and thereby developing and maintaining an indurated and anabranching river style.  相似文献   

17.
We used a combined approach of a two-dimensional erosion and hillslope sediment delivery model (WATEM/SEDEM) and detailed geomorphological reconstructions to quantify the different components in a sediment budget for the Geul River catchment (southern Netherlands) since the High Middle Ages. Hillslope erosion and colluvium deposition were calculated using the model, while floodplain storage was estimated using field data. Our results show that more than 80% of the total sediment production in the catchment has been stored as colluvium (mostly generated by hillslope erosion), while almost 13% is stored in the floodplain since the High Middle Ages (this situation resembles a capacity-limited system). Model results for the period prior to the High Middle Ages (with a nearly completely forested catchment) show that far less sediment was generated and that most of the sediments were directly transported to the main river valleys or out of the catchment (a supply-limited system). Geomorphological analysis of a large alluvial fan shows the sensitivity of the study area to changes in the percentage of arable land.Our combined field data-modeling study presents an elegant method to calculate a catchment sediment budget for a longer period and is able to identify and quantify the most important sediment storage elements. Furthermore, it provides a valuable tool to calculate a sediment budget while only limited dated fluvial sediment sequences are available.  相似文献   

18.
A radiocarbon-dated core, NC, taken in the alpine Blue Lake in the Snowy Mountains of southeastern Australia provides a Holocene record of sedimentation that consists mainly of organic clays. Two types of quartz grains are recovered from 81 samples from the core. One type consists of angular grains, with frequently shattered faces, which originates from granitic lithologies present within the small catchment area of the lake. The other type is characteristically rounded to subrounded, often textured with frequent silica coating and is considered to have been deposited within the lake and its catchment by aeolian processes. These aeolian grains are thought to have been transported along the main dust path that ferries aeolian dust from the Mallee region, west of the Snowy Mountains, as far as the southeastern Tasman Sea. Aeolian grains with the largest size occur over approximately the last 1.6 ka of the Holocene and this indicates an increase of climatic instability, with arid phases that commenced about 3.5 ka. At 2 ka, a wet period in southeastern Australia coincided with low aeolian input at Blue Lake. The period of consistent reduced aeolian activity spans the 7.6 to 5.5 ka interval at Blue Lake.  相似文献   

19.
葛兆帅 《地理研究》2009,28(3):592-600
利用24次全新世特大洪水序列与川渝地区近两千年的洪灾史料,对长江上游特大洪水事件和气候变化的响应机制进行了分析。从长江上游特大洪水序列与阿拉伯海记录的西南季风气候变化对比分析来看,特大洪水事件与西南季风变化具有很好的响应关系,特大洪水事件多发生于西南季风较弱的阶段,这些阶段以西南季风气候快速变化为特征,是气候剧烈波动期或气候的转型期。与北大西洋、贵州董歌洞石笋所记录的气候变化比较,特大洪水有的与全新世气候突变一致,有的则不一致,可能特大洪水事件更多表现为地方事件。与文献记载的历史洪灾事件相比,长江上游低频高量级的特大洪水事件对西南季风的变化具有更好的响应关系,而高频低量级的洪灾事件具有更高的随机性,由于历史文献记载的洪水量级差异较大,如果将他们笼统地放在一起分析,可能会掩盖洪水事件对气候变化响应机制。  相似文献   

20.
The Visdalen valley, situated at the northwestern corner of Edgeøya, was investigated with respect to lithostratigraphy and depositional environments of the Quaternary sediments. Eight major lithostratigraphic units are recognised of which seven were deposited during the Late Weichselian to early Holocene glaciation, deglaciation and the subsequent emergence of the area, and one unit deposited prior the last glaciation. Till deposition from a west-flowing glacier was followed by glaciomarine and later marine deposition of fine-grained sediments. Coarse-grained colluvial and alluvial-fan deltas were deposited along the mountainsides in the Visdalen palaeo-bay, and distal sediment gravity-flow deposits from these deltas were interbedded with the glaciomarine-marine sediments. A spit-platform (riegel) was built up across the Visdalen bay contemporaneously with the alluvial fan-deltas. Its formation was time-transgressive, with its highest part in the south close to the marine limit at 85 m a.s.l. and its lowest part in the north at ca 65 m a.s.l. The sediment source was alluvial and colluvial debris, which was entrained by longshore currents along the more exposed coast south of Visdalen and transported northwards to the final place of deposition. The bulk part of the riegel ridge is composed of progradational successions of steep foresets dipping towards NW, N and NE, and clearly rejects an earlier ice-contact model. Datings suggest that the fan-delta deposition and the riegel formation ended before 9,000 BP. A meltwater-fed lagoon with a highest level at >50m a.s.l. was formed behind the riegel ridge in which, according to varve counting, glaciolacustrine sedimentation lasted more than 250 years and occurred within the time span 9,000-8,500 BP. Gradual uplift of the area resulted in drainage of the glaciolacustrine lagoon. Beachface processes and fluvial down-cutting took place during the emergence of the area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号