首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seismic attributes such as: amplitude envelope, instantaneous phase and cosine of instantaneous phase of 2D post-stack seismic data facilitates structural and stratigraphic interpretation of shallow marine offshore, Krishna-Godavari basin. Two seismic sections namely, X and Y oriented N-S passing through wells W-1 andW-2 respectively are considered for seismic attribute analysis and porosity prediction. The gamma ray log trend indicates deposition of cleaning upward sediment. Coarsening upward, clayey-silty-sandy bodies, making a series of about 50-60 m thickness, have been evidenced from the gamma ray log. An extensional structural style comprising growth faults is associated with the progradational style of deposition. Four seismic zones have been distinguished. These zones differ in amplitude, frequency and continuity of the reflectors. Channel sands of Cretaceous age of Raghavapuram shale are identified in well log, seismic section and its acoustic impedance section. Major stratigraphic horizons along with faults extending to basement are marked with the help of attribute analysis. Porosity is mapped from transformation of acoustic impedance. The shales/unconsolidated sediments measure a high porosity with low impedance and the more porous sands are in an intermediate range. The predicted impedance and porosity values may be erroneous beyond the drilled depth because of non availability of well log data for calibration.  相似文献   

2.
The multichannel seismic reflection data (MCS data) obtained in the Arktika-2014 expedition revealed the essential fact that must be taken into account by the tectonic model of the Central Arctic region. The Brookian, Lower Cretaceous, and Upper Jurassic unconformities are continuously traced from the North Chukchi offshore trough into the Podvodnikov Basin, indicating that the depocenter in the latter accumulated both Cretaceous sedimentary sequences and Early–Middle Mesozoic ones.  相似文献   

3.
The Upper Jurassic to Lower Cretaceous platform‐slope to basinal carbonate strata cropping out in Gargano Promontory (southern Italy) are partly dolomitized. Fieldwork and laboratory analyses (petrographic, petrophysical and geochemical) allowed the characterization of the dolomite bodies with respect to their distribution within the carbonate succession, their dimensions, geometries, textural variability, chemical stability, age, porosity, genetic mechanisms and relation with tectonics. The dolomite bodies range from metres to kilometres in size, are fault‐related and fracture‐related, and probably formed during the Early Cretaceous at <500 m burial depths and temperatures <50°C. The proposed dolomitization model relies on mobilization of Early Cretaceous seawater that flowed, downward and then upward, along faults and fractures and was modified in its isotopic composition moving through Triassic and Jurassic strata that underlie the studied dolomitized succession. Despite the numerous cases reported in literature, this study demonstrates that hydrothermal and/or high‐temperature fluids are not necessarily required for fault‐controlled dolomitization. Distribution and geometries of dolomite bodies can be used for palaeotectonic reconstructions, as they partly record the characteristics (size, attitude and kinematics) of the palaeo‐faults, even if not preserved, that controlled dolomitization. In Gargano Promontory, dolomites record Early Cretaceous palaeo‐faults from metres to kilometres long, striking north‐west/south‐east to east/west and characterized by normal to strike‐slip kinematics. Dolomitization increases the matrix porosity by up to 7% and, therefore, can improve the geofluid storage capacity of tight, platform‐slope to basinal limestones. The results have a great significance for characterization of geofluid (for example, hydrocarbons) reservoirs hosted in similar dolomitized carbonate successions. Distribution, size and shapes of reservoir rocks (i.e. dolomite bodies) could be broadly predictable if the characteristics of the palaeo‐fault system present at the time of dolomitization are known.  相似文献   

4.
在系统观察岩心的基础上,从单井相分析入手,结合地震相和测井相模式,以及大量岩矿、粒度等分析化验资料,对巴音都兰凹陷下白垩统巴彦花群的物源方向、沉积体系、构造岩相带及含油性进行了研究。认为区内具有东、西两大物源区、五大水系控制着十一个砂体的平面展布,最终,划分了扇三角洲等五种沉积体系,总结出具平台型陡坡扇三角洲等六种构造岩相带,并着重对有别于典型单断箕状凹陷的三种构造岩相带的含油性进行了初步探讨。  相似文献   

5.
Passive seismic approaches, using a single-station, enable rapid, cost-effective and non-invasive estimates of the thickness of sedimentary rocks overlying crystalline basement. This approach was applied to estimate the Cenozoic and Cretaceous succession beneath the Nullarbor Plain in southeastern Western Australia. Passive seismic data acquired at the majority of the 94 sites show a single, strong resonance frequency peak between 0.4 and 0.6 Hz suggesting an impedance contrast of a single subsurface layer. Modelling these resonance frequencies against known stratigraphy at 12 drill holes shows that this impedance contrast corresponds to the contact of the base of the Cenozoic–Cretaceous sedimentary succession of the Eucla and Bight basins with the crystalline basement. Data from the remaining sites produced sediment thickness estimates ranging from only tens of metres near the western edge of the Nullarbor Plain to over 860 m near its southern margin. Near this margin, rapid thickening of the sedimentary cover is coincident with an interpreted paleosea-cliff or indicative of localised faulting. Beneath the Western Australian portion of the Nullarbor Plain the sedimentary cover is on average 320 m thick with the succession thinning gradually towards the margins of the basin. A passive seismic approach is thus seen as a useful screening tool for the mineral exploration industry in areas that are under cover allowing for better targeting and cost-reduction in greenfields exploration.  相似文献   

6.
This study was undertaken to determine the structural evolution of a normal fault array using detailed kinematic analysis of normal fault tip propagation and linkage, adding to the growing pool of research on normal fault growth. In addition, we aim to provide further insight into the evolution of the offshore Otway Basin, Australia. We use three-dimensional (3D) seismic reflection data to analyse the temporal and spatial evolution of a Late Cretaceous–Cenozoic age normal fault array located in the Gambier Embayment of the offshore Otway Basin, South Australia. The seismic reflection data cover a NW–SE-oriented normal fault array consisting of six faults, which have grown from the linkage of numerous, smaller segments. This fault array overlies and has partial dip-linkage to E–W-striking, basement-involved faults that formed during the initial Tithonian–Barremian rifting event in the Otway Basin. Fault displacement analysis suggests four key stages in the post-Cenomanian growth history of the upper array: (1) nucleation of the majority of faults resulting from resumed crustal extension during the early Late Cretaceous; (2) an intra-Late Cretaceous period of general fault dormancy, with the nucleation of only one newly formed fault; (3) latest Cretaceous nucleation of another newly formed fault and further growth of all other faults; and (4) continued growth of all faults, leading to the formation of the Cenozoic Gambier Sub-basin in the Otway Basin. Our analysis also demonstrates that Late Cretaceous faults, which are located above and dip-link to basement-involved faults, display earlier nucleation and greater overall throw and length, compared with those which do not link to basement-involved faults. This is likely attributed to increased rift-related stress concentrations in cover sediments above the upper tips of basement faults. This study improves our understanding of the geological evolution of the presently under-explored Gambier Embayment, offshore Otway Basin, South Australia by documenting the segmented growth style of a Late Cretaceous normal fault array that is located over, and interacts with, a reactivated basement framework.  相似文献   

7.
Normal faulting and the deep subsurface flow of salt are key processes controlling the structural development of many salt-bearing sedimentary basins. However, our detailed understanding of the spatial and temporal relationship between normal faulting and salt movement is poor due to a lack of natural examples constraining their geometric and kinematic relationship in three-dimensions. To improve our understanding of these processes, we here use 3D seismic reflection and borehole data from the Egersund Basin, offshore Norway, to determine the structure and growth of a normal fault array formed during the birth, growth and decay of an array of salt structures. We show that the fault array and salt structures developed in response to: (i) Late Triassic-to-Middle Jurassic extension, which involved thick-skinned, sub-salt and thin-skinned supra-salt faulting with the latter driving reactive diapirism; (ii) Early Cretaceous extensional collapse of the walls; and (iii) Jurassic-to-Neogene, active and passive diapirism, which was at least partly coeval with and occurred along-strike from areas of reactive diapirism and wall collapse. Our study supports physical model predictions, showcasing a three-dimensional example of how protracted, multiphase salt diapirism can influence the structure and growth of normal fault arrays.  相似文献   

8.
This study documents sediment infill features and their responses to the tectonic evolution of the Sichuan Basin and adjacent areas. The data include a comparison of field outcrops, well drillings, inter-well correlations, seismic data, isopach maps, and the spatial evolution of sedimentary facies. We divided the evolutionary history of the Sichuan Cretaceous Basin into three stages based on the following tectonic subsidence curves: the early Early Cretaceous (145–125 Ma), late Early Cretaceous to early Late Cretaceous (125–89.8 Ma), and late Late Cretaceous (89.8–66 Ma). The basin underwent NW–SE compression with northwestward shortening in the early Early Cretaceous and was dominated by alluvial fans and fluviolacustrine sedimentary systems. The central and northern areas of the Sichuan Basin were rapidly uplifted during the late Early Cretaceous to early Late Cretaceous with southwestward tilting, which resulted in the formation of a depression, exhibited southwestward compression, and was characterized by aeolian desert and fluviolacustrine deposits. The tectonic framework is controlled by the inherited basement structure and the formation of NE mountains, which not only affected the clastic supply of the sedimentary basin but also blocked warm-wet currents from the southeast, which changed the climatic conditions in the late Late Cretaceous. The formation and evolution of Cretaceous sedimentary basins are closely related to synchronous subtle far-field tectonism and changes in climate and drainage systems. According to the analysis of the migration of the Cretaceous sedimentation centers, different basin structures formed during different periods, including periods of peripheral mountain asynchronous thrusting and regional differential uplift. Thus, the Sichuan Cretaceous sedimentary basin is recognized as a superimposed foreland basin.  相似文献   

9.
南海南、北陆缘中生代构造层序及其沉积环境   总被引:1,自引:0,他引:1  
新生代海底扩张,使南海陆缘分为南、北两部分。南部礼乐地块与南海北缘在扩张之前构成了统一的活动陆缘。通过对南、北陆缘的钻井研究和井旁地震剖面解释,发现二者的中生界均具有4 个地震层序及3 个构造层。南北陆缘构造层序及物源分析表明,早白垩世礼乐地块与南海北缘曾发生碰撞拼贴。早白垩世的南海北缘地区沉积环境由海陆过渡相向陆相演化,相应的礼乐地区是由浅海相向滨海相演化,二者反映出相同的向上变浅旋回,说明在南、北陆缘拼贴之后,两者具有了统一的构造沉积背景。到晚白垩世末,两区均隆升为陆,且遭受剥蚀; 南海北缘地区上白垩统部分被剥蚀,而距俯冲边界更近的礼乐地区上白垩统则被剥蚀殆尽。  相似文献   

10.
The article considers problems related to the geological structure and geodynamic history of sedimentary basins of the Barents Sea. We analyze new seismic survey data obtained in 2005–2016 to refine the geological structure model for the study area and to render it in more detail. Based on the data of geological surveys in adjacent land (Novaya Zemlya, Franz Josef Land, and Kolguev Island), drilling, and seismic survey, we identified the following geodynamic stages of formation of the East Barents megabasin: Late Devonian rifting, the onset of postrift sinking and formation of the deep basin in Carboniferous–Permian, unique (in terms of extent) and very rapid sedimentation in the Early Triassic, continued thermal sinking with episodes of inversion vertical movements in the Middle Triassic–Early Cretaceous, folded pressure deformations that formed gently sloping anticlines in the Late Cretaceous–Cenozoic, and glacial erosion in the Quaternary. We performed paleoreconstructions for key episodes in evolution of the East Barents megabasin based on the 4-AR regional profile. From the geometric modeling results, we estimated the value of total crustal extension caused by Late Devonian rifting for the existing crustal model.  相似文献   

11.
The Bilelyeri Group comprises complexly deformed Mesozoic sedimentary rocks of continental-margin affinities (Kumluca Zone). These are structurally intercalated between a coeval carbonate platform to the west (Bey Daǧlari Zone) and late Triassic ophiolitic rocks and sediments, interpreted as emplaced marginal oceanic crust, to the east (Gödene Zone). Four formations erected in the Bilelyeri Group record the later stages of continental rifting and the progressive development of part of a Mesozoic passive continental margin. The two late Triassic formations, the Telekta? Tepe and the Hatipalani Formations, are dominated by terrigenous clastic and calcareous clastic sediments, including large detached blocks of reef limestone. These rocks were laid down by mostly mass-flow and turbidity-flow into steep-sided rift depressions. Organic reefs were constructed in bordering shallow seas while terrigenous clastic sediment was shed from exposed basement horsts. Thick sequences of mafic lavas were extruded (Norian) in axial parts of the rift zones, followed by a regional change to deposition of pelagic Halobia-bearing limestone. This culminated in a major hiatus involving large-scale sliding of shallow-water limestones into deeper water. The Jurassic to early Cretaceous Dereköy Formation mostly consists of siltstones, radiolarian cherts and mudstones, intercalated with redeposited limestones and black shales. During this time parts of the margin were bordered by major offshore carbonate complexes constructed partly on basement fragments previously rifted off the parent continental areas. Black shales and reduced hemipelagic sediments were deposited in an elongate trough between the main platform and an offshore complex to the east. Some degree of margin reactivation in the early Cretaceous is indicated by renewed deposition of turbiditic sandstone and chloritic clays in some distal sequences. Strong relative enrichment of manganese in some horizons is attributed to offshore volcanic exhalations. Subsequent regional subsidence in the mid-to late Cretaceous is suggested by a switch to predominantly calcareous, pelagic sedimentation on the adjacent platform and the offshore massifs as well as on the Bilelyeri margin. Tectonic disruption of the platform edge during the late Cretaceous is implied by major redeposition of shallow-water shelf limestones in proximal Bilelyeri sequences. The Bilelyeri margin and the adjacent Gödene Zone were tectonically deformed in latest Cretaceous to early Tertiary time and were thrust over the adjacent Bey Daǧlari platform in the early Miocene. Viewed in an East Mediterranean perspective, the Bilelyeri sequences were part of a locally north-south trending segment of a regionally east-west margin to a substantial oceanic area further south. This segment apparently suffered significant strike-slip deformation both during its construction and its later emplacement. Instructive comparisons can be made with other areas of the East Mediterranean, especially south-west Cyprus.  相似文献   

12.
利用最新的钻井、地震资料,对东非凯瑞巴斯盆地(Kerimbas Basin)进行构造–地层解释和构造演化过程恢复。结果显示,凯瑞巴斯盆地共发育了4期构造变形:(1)二叠纪–早侏罗世晚期的冈瓦纳陆内裂谷活动,全区发生伸展构造变形;(2)早侏罗世晚期–早白垩世晚期马达加斯加向南漂移,全区发生右行走滑变形;(3)新发现晚白垩世局部伸展构造变形;(4)中新世–第四纪的东非裂谷海域分支活动,导致研究区发生第三期伸展构造变形,形成凯瑞巴斯盆地现今地堑形态。三期伸展构造变形的应力方向均为近E-W向,断层展布方向均为近S-N向。每一期构造变形的范围,强度及对沉积地层的控制作用差异显著。凯瑞巴斯盆地控坳断层活动具有继承性。基于研究结果,建立凯瑞巴斯盆地构造成因模式。冈瓦纳陆内裂谷活动有利于二叠系–下侏罗统构造圈闭的形成,并沟通了烃源岩和储层,有利深层油气的聚集;东非裂谷海域分支裂谷活动沟通了前新生界烃源岩和西部陆坡古近系储层,但同时也破坏了盆地内及东部的圈闭。断层不发育的西部陆坡为主要油气聚集区。  相似文献   

13.
Incised-valley shale systems are renowned as the fruitful exploration domains. However, the stratigraphic heterogeneity is significant, and thus, identifying the porous compartments within the thin-bedded and fractured shale system is one of the unconventional stratigraphic challenges. We present an innovative scheme for the exploration of the porous unconventional resources within the south Indus basin, Pakistan. The continuous wavelet transforms (CWT) exclusively detects the porous shales within the complete fractured system as compared to the full spectrum seismic data interpretation tool. The seismic amplitude, instantaneous frequency, and reflection strength tools show some tuning effects due to lithology and fluids. However, the tuning block of 28 Hz envelope sub-bands in conjunction with instantaneous phase tool accurately mark out the shale-plugged pinch out reservoirs. The synthetic wedge model based on the conventional seismic wavelet resolves the shale bed (incised-valley shale-filled lens) of about 23 m thickness, but shows limited imaging capability due to frequency band limitation for the porous shale locale. The acoustic impedance based on instantaneous spectral porosity modeling using the tuning volume of 28 Hz CWT has spectacularly resolved the thin-beds (gas shows) within the porosity range of 20 to 30%, which may have implications for future exploration of unconventional stratigraphic plays.  相似文献   

14.
新疆库鲁克塔格地区盆山构造热演化史   总被引:2,自引:1,他引:1       下载免费PDF全文
利用磷灰石构造热年代学年龄、有机质成熟度指标、磷灰石裂变径迹热史模拟和单井EASY%Ro反演等方法,对新疆库鲁克塔格地区盆山系统开展盆山构造热演化史研究。结果表明,磷灰石年龄记录了早白垩世(99~1244 Ma)、晚白垩世(66~87 Ma)和古近纪(284~63 Ma)3次抬升过程;有机质成熟度指标和磷灰石裂变径迹热史模拟反映出海西期构造抬升过程。单井热史模拟表明,孔雀河斜坡下古生界烃源岩在志留纪末-早泥盆世到达最大热演化程度,模拟最大古地温梯度为356 ℃/100 m,侏罗纪末古地温梯度为31 ℃/100 m,焉耆盆地南部凹陷侏罗纪晚期模拟最大古地温梯度达415 ℃/100 m。海西期剧烈的造山运动使孔雀河斜坡由沉积转入剥蚀演化阶段,对油气成藏具有重要意义,晚白垩世隆升使孔雀河斜坡及焉耆盆地侏罗纪烃源岩热演化停止。  相似文献   

15.
A seismological evaluation of the Red Sea margin is presented in this contribution based on the concept of seismotectonic regionalization. The geology and the tectonic structure are critically reviewed to define regions of homogeneous seismicity in the study area, and available seismicity data are implemented to estimate the seismic parameters of the region. The results of the study are applied to evaluate the seismic hazard of an offshore platform site.  相似文献   

16.
Seismic velocity analysis is a crucial part of seismic data processing and interpretation which has been practiced using different methods. In contrast to time consuming and complicated numerical methods, artificial neural networks (ANNs) are found to be of potential applicability. ANN ability to establish a relationship between an input and output space is considered to be appropriate for mapping seismic velocity corresponding to travel times picked from seismograms. Accordingly a preliminary attempt is made to evaluate the applicability of ANNs to determine velocity and dips of dipping layered earth models corresponding to travel time data. The study is based on synthetic data generated using inverse modeling approach for three earth models. The models include a three-layer structure with same dips and same directions, a three-layer model with different dips and same directions, as well as a two-layer model with different dips and directions. An ANN structure is designed in three layers, namely, input, output, and hidden ones. The training and testing process of the ANN is successfully accomplished using the synthetic data. The evaluation of the applicability of the trained ANN to unknown data sets indicates that the ANN can satisfactorily compute velocity and dips corresponding to travel times. The error intervals between the desired and calculated velocity and dips are shown to be acceptably small in all cases. The applicability of the trained ANN in extrapolating is also evaluated using a number of data outside of the range already known to ANN. The results indicate that the trained ANN acceptably approximates the velocity and dips. Furthermore, the trained ANN is also evaluated in terms of capability of handling deficiency in input data where acceptable results were also achieved in velocity and dip calculations. Generally, this study shows that velocity analysis using ANNs can promisingly tackle the challenge of retrieving an initial velocity model from the travel time hyperbolas of seismic data.  相似文献   

17.
以地质统计学为基础的三维地质建模技术已成为当今储层精细描述中的一项关键技术,但该项技术存在着一个最大的限制就是对硬数据的密度要求十分苛刻,因而多用于井网密度大的已开发区的储层精细描述。而在勘探区块,多采用地震属性资料作为软约束,来弥补资料不足的缺陷。本文以我国海上某油田为例,探讨了应用地震反演资料约束三维储层建模的几种方法,并提出"多条件、多级约束"的建模策略。研究表明,有效地应用包括地震信息在内的多学科信息进行岩相随机建模,能有效地弥补井间信息不足的缺陷,降低地质模型的不确定性,所建立的模型能很好地综合井资料的纵向高精度和地震资料的横向高精度信息,可以成功地应用三维随机建模技术解决勘探开发阶段的储层精细描述问题。  相似文献   

18.
《China Geology》2020,3(4):633-642
Oil and gas resources are short in Pakistan and no commercially viable oil and gas sources have been yet discovered in its offshore areas up to now. In this study, the onshore-offshore stratigraphic correlation and seismic data interpretation were conducted to determine the oil and gas resource potential in the Offshore Indus Basin, Pakistan. Based on the comprehensive analysis of the results and previous data, it is considered that the Cretaceous may widely exist and three sets of source rocks may be developed in the Offshore Indus Basin. The presence of Miocene mudstones has been proven by drilling to be high-quality source rocks, while the Cretaceous and Paleocene–Eocene mudstones are potential source rocks. Tectonic-lithologic traps are developed in the northwestern part of the basin affected by the strike-slip faults along Murray Ridge. Furthermore, the Cretaceous and Paleocene–Eocene source rocks are thick and are slightly affected by volcanic activities. Therefore, it can be inferred that the northwestern part of Offshore Indus Basin enjoys good prospects of oil and gas resources.  相似文献   

19.
如何深入了解中国东部北黄海盆地东部坳陷岩浆活动特征是目前研究的前沿之一.为探讨早白垩世异常剧烈岩浆活动的区域构造成因并揭示中国东部的构造动力学机制,利用井-震及岩浆岩测试资料,对北黄海盆地岩浆活动特征及其与区域构造的耦合关系进行研究.在空间上刻画了岩浆的侵入相、喷出相的地震反射特征及沿深大断裂展布的平面分布特征;在时间上划分出了包括早白垩世108~115 Ma、134~145 Ma在内的4期岩浆活动.结合区域地质分析认为早白垩世早期,伊泽奈琦板块沿北北西斜向俯冲于欧亚板块之下,太平洋板块向南西方向俯冲,板块剪切作用导致郯庐断裂带左旋走滑,使得盆地处于左旋伸展环境中,内部形成派生的北西向右旋、近南北向左旋的次级共轭断裂系并控制岩浆上侵底辟活动.经过综合分析,厘清了盆地岩浆活动及断裂演化过程与区域板块运动之间的耦合关系.   相似文献   

20.
阿北凹陷下白垩统阿尔善组水下扇沉积特征   总被引:2,自引:0,他引:2  
本文对二连盆地阿北凹陷主要产油层段阿尔善组水下扇体的沉积构造、粒度、重矿物以及电性等特征进行了详细的分析,并应用层序地层学方法将阿尔善组划分为2个三级层序,结合地震解释成果,首次以三级层序为单位勾绘了扇体平面形态展布图,确定了扇根、扇中和扇端3个亚相的沉积区域,建立了水下扇沉积相模式,并对其沉积演化做了简要的分析.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号