首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism by which high-pressure metamorphosed continental material is emplaced at high structural levels is a major unsolved problem of collisional orogenesis. We suggest that the emplacement results from partial subduction of the continental margin which, because of its high flexural rigidity, produces a rapid change in the trajectory of the descending slab. We assume a two-fold increase in effective elastic thickness of the lithosphere as the continental margin approaches the subduction zone, and calculate the flexural profile of a thin plate for progressive downward migration of the zone of increased rigidity. We assess the effect of changes in the flexural profile on the overlying accretionary prism and mantle wedge as the continent approaches by estimating the extra stresses that are imposed on the wedge due to the bending moment exerted by the continental part of the plate. The wedges overlying the subduction zones, and the subducting slab itself, experience substantial extra compressional stress at depths of around 100 km, and extensional stress at shallower depths, as the continental margin passes through the zone of maximum curvature. The magnitudes of such extra stresses are probably adequate to effect significant deformation of the wedge and/or the descending plate, and are experienced in a time interval of less than 5 m.y. for typical subduction rates. The spatial variation of yield stresses in the region of the wedge and descending slab indicates that much of this deformation may be taken up in the crustal part of the descending slab, which is the weakest region in the deeper parts of the subduction zone. This may result in rapid upward migration of the crust of the partially subducted continental margin, against the flow of subduction. High-pressure metamorphosed terranes emplaced by the mechanism envisaged in this paper would be bounded by thrust faults below and normal faults above. Movement on the faults would have been coeval, and would have resulted in rapid unroofing of the high-pressure terranes, synchronous with arrival of the continental margin at the subduction zone and, therefore, relatively early in the history of a collisional orogen.  相似文献   

2.
大陆岩石圈流变结构研究进展及存在问题   总被引:7,自引:4,他引:7       下载免费PDF全文
自20世纪60年代以来,大陆岩石圈流变学取得了较大的进展,理论和应用研究不断深入.理论上,人们不仅认识到在构造运动中岩石圈介质是流变体而非简单的刚体性和弹性体;并利用矿物和岩石的实验结果提出了岩石圈流变分层的概念,建立了一维流变模型;进而用流变的观点解释了一些具体构造现象,而且开始了三维流变结构的研究,提出了岩石圈流变结构的横向分块纵向分层的观点.应用上,人们已从把流变强度曲线简单地运用于运动学或动力学模型的阶段,进入了在三维空间中定量研究地球动力学问题的阶段.随着岩石圈流变学研究的深入及大陆岩石圈的复杂性,新的问题也不断涌现.  相似文献   

3.
Thermo-mechanical physical modelling of continental subduction is performed to investigate the exhumation of deeply subducted continental crust. The model consists of two lithospheric plates made of new temperature sensitive analogue materials. The lithosphere is underlain by liquid asthenosphere. The continental lithosphere contains three layers: the weak sedimentary layer, the crust made of a stronger material, and of a still stronger lithospheric mantle. The whole model is subjected to a constant vertical thermal gradient, causing the strength reduction with depth in each lithospheric layer. Subduction is driven by both push force and pull force. During subduction, the subducting lithosphere is heating and the strength of its layers reduces. The weakening continental crust reaches maximal depth of about 120 km and cannot subduct deeper because its frontal part starts to flow up. The subducted crust undergoes complex deformation, including indicated upward ductile flow of the most deeply subducted portions and localised failure of the subducted upper crust at about 50-km depth. This failure results in the formation of the first crustal slice which rises up between the plates under the buoyancy force. This process is accompanied by the delamination of the crustal and mantle layers of the subducting lithosphere. The delamination front propagates upwards into the interplate zone resulting in the formation of two other crustal slices that also rise up between the plates. Average equivalent exhumation rate of the crustal material during delamination is about 1 cm/year. The crust-asthenosphere boundary near the interplate zone is uplifted. The subducted mantle layer then breaks off, removing the pull force and thereby stopping the delamination and increasing horizontal compression of the lithosphere. The latter produces shortening of the formed orogen and the growth of relief. The modelling reveals an interesting burial/exhumation evolution of the sedimentary cover. During initial stages of continental subduction the sediments of the continental margin are dragged to the overriding plate base and are partially accreted at the deep part of the interplate zone (at 60-70 km-depth). These sediments remain there until the beginning of delamination during which the pressure between the subducted crust and the overriding plate increases. This results in squeezing the underplated sediments out. Part of them is extruded upwards along the interplate zone to about 30-km depth at an equivalent rate of 5-10 cm/year.  相似文献   

4.
Stress in the lithosphere: Inferences from steady state flow of rocks   总被引:9,自引:0,他引:9  
Mechanical data and flow processes from steady state deformation experiments may be used to infer the state of stress in the lithosphere and asthenosphere. Extrapolations of flow equations to a representative geologic strain rate of 10–14/sec. for halite, marble, quartzite, dolomite, dunite and enstatolite are now warranted because the steady state flow processes in the experiments are identical to those in rocks and because the geotherms are reasonably well established. More direct estimates are obtained from free dislocation densities, subgrain sizes and recrystallized grain sizes all of which are functions only of stress. Using the last of these techniques, we have estimated stress profiles as a function of depth from xenoliths in basalts and kimberlites, whose depths of equilibration were determined by pyroxene techniques, from four different areas of subcontinental and suboceanic upper mantle. The results are similar and indicate stress differences of about 200 to 300 bars at 40 to 50 km, decaying to a few tens of bars at depths betow 100 km. These stresses are reasonable and are in accord with extrapolations of the mechanical data provided that allowance is made for a general increase in strain rate and decrease in viscosity with depth.  相似文献   

5.
The Chiang Khong segment of the Chiang Khong–Lampang–Tak Volcanic Belt is composed of three broadly meridional sub‐belts of mafic to felsic volcanic, volcaniclastic, and associated intrusive rocks. Associated sedimentary rocks are largely non‐marine red beds and conglomerates. Three representative Chiang Khong lavas have Late Triassic (223–220 Ma) laser ablation inductively coupled mass‐spectroscopy U–Pb zircon ages. Felsic‐dominated sequences in the Chiang Khong Western and Central Sub‐belts are high‐K calc–alkaline rocks that range from basaltic to dominant felsic lavas with rare mafic dykes. The Western Sub‐belt lavas have slightly lower high field strength element contents at all fractionation levels than equivalent rocks from the Central Sub‐belt. In contrast, the Eastern Sub‐belt is dominated by mafic lavas and dykes with compositions transitional between E‐mid‐oceanic ridge basalt and back‐arc basin basalts. The Eastern Sub‐belt rocks have higher FeO* and TiO2 and less light rare earth element enrichment than basalts in the high‐K sequences. Basaltic and doleritic dykes in the Western and Central sub‐belts match the composition of the Eastern Sub‐belt lavas and dykes. A recent geochemical study of the Chiang Khong rocks concluded that they were erupted in a continental margin volcanic arc setting. However, based on the dominance of felsic lavas and the mainly non‐marine associated sediments, we propose an alternative origin, in a post‐collisional extensional setting. A major late Middle to early Late Triassic collisional orogenic event is well documented in northern Thailand and Yunnan. We believe that the paucity of radiometric dates for arc‐like lavas in the Chiang Khong–Lampang–Tak Volcanic Belt that precede this orogenic event, coupled with the geochemistry of the Chiang Khong rocks, and strong compositional analogies with other post‐collisional magmatic suites, are features that are more typical of volcanic belts formed in a rapidly evolving post‐collisional, basin‐and range‐type extensional setting.  相似文献   

6.
The intensive Mesozoic magmatism in the North China Craton (NCC) has drawn great attention for its particular geochemical signatures (e.g. high-K), petrogenesis and tectonic setting. The North Taihang complex represents the westernmost magmatic belt of th…  相似文献   

7.
Kenshiro  Otsuki 《Island Arc》1992,1(1):51-63
Abstract The Izanagi plate subducted rapidly and obliquely under the accretionary terrane of Japan in the Cretaceous before 85 Ma. A chain of microcontinents collided with it at about 140 Ma. In southwest Japan the major part of it subducted thereafter, but in northeast Japan it accreted and the trench jumped oceanward, resulting in a curved volcanic front. The oblique subduction and the underplated microcon-tinent caused uplifting of high-pressure (high-P) metamorphic rocks and large scale crustal shortening in southwest Japan. The oblique subduction caused left-lateral faulting and ductile shearing in northeast Japan. The arc sliver crossed over the high-temperature (high-T) zone of arc magmatism, resulting in a wide high-T metamorphosed belt. At about 85 Ma, the subduction mode changed from oblique to normal and the tectonic mode changed drastically. Just after this the Kula/Pacific ridge subducted and the subduction rate of the Pacific plate decreased gradually, causing the intrusion of huge amounts of granite magma and the eruption of acidic volcanics from large cauldrons. The oblique subduction of the Pacific plate resumed at 53 Ma and the left-lateral faults were reactivated.  相似文献   

8.
Subduction‐related volcanic rocks are widespread in the Central Pontides of Turkey, and represented by the Hamsaros volcanic succession in the Sinop area to the north. The volcanic rocks display high‐K calc‐alkaline, shoshonitic and ultra‐K affinities. 40Ar/39Ar age data indicate that the rocks occurred during the Late Cretaceous (ca 82 Ma), and the volcanic suites were coeval. Primitive mantle‐normalized trace element patterns of all the lavas are characterized by strong enrichments in large ion lithophile elements (LILE) (Rb, Ba, K, and Sr), Th, U, Pb, and light rare earth elements (LREE; La, Ce) and prominent negative Nb, Ta, and Ti anomalies, all typical of subduction‐related lavas. There is a systematic increase in the enrichment of incompatible trace elements from the high‐K calc‐alkaline lavas through the shoshonitic to the ultra‐K lavas. In addition, the shoshonitic and ultra‐K lavas have significantly higher 87Sr/86Sr (0.70666–0.70834) and lower 143Nd/144Nd (0.51227–0.51236) initial ratios than coexisting high‐K calc‐alkaline lavas (87Sr/86Sr 0.70576–0.70613, 143Nd/144Nd 0.51245–0.51253). Geochemical and isotopic data show that the shoshonitic and ultra‐K rocks cannot be derived from the high‐K calc‐alkaline suite by any shallow level differentiation process, and point to a derivation from distinct mantle sources. The shoshonitic and ultra‐K rocks were derived from metasomatic veins related to melting of recycled subducted sediments, but the high‐K calc‐alkaline rocks from a lithospheric source metasomatized by fluids from subduction zone.  相似文献   

9.
~~Ce anomaly in minerals of eclogite and garnet pyroxenite from Dabie-Sulu ultrahigh pressure metamorphic belt:Tacking subducted sediment formed under oxidizing conditions@Deltlef Günther$Institute of Inorganic Chemistry,ETHZürich,Universitatsstrasse6,CH-092Zürich,Switzerland~~…  相似文献   

10.
Abstract : The Hidaka metamorphic belt consists of an island-arc assembly of lower to upper crustal rocks formed during early to middle Paleogene time and exhumed during middle Paleogene to Miocene time. The tectonic evolution of the belt is divided into four stages, D0rs, D1, D2rs, and D3, based on their characteristic deformation, metamorphism, and igneous activity. The premetamorphic and igneous stage (D0) involves tectonic thickening of an uppermost Cretaceous and earliest Tertiary accretionary complex, including oceanic materials in the lower part of the complex. D1 is the stage of prograde metamorphism with increasing temperatures at a constant pressure during an early phase, and with a slight decrease of pressure at the peak metamorphic phase, accompanying flattening of metamorphic rocks and intrusions of mafic to intermediate igneous rocks. At the peak, incipient partial melting of pelitic and psammitic gneisses took place in the amphibolite–granulite facies transition zone, the melt and residuals cutting the foliations formed by flattening. In the deep crust, large amounts of S-type tonalite magma formed by crustal anatexis, intruded into the granulite facies gneiss zone and also into the upper levels of the metamorphic sequence during the subsequent stage. During D1 stage, mafic and intermediate magmas supplied and transported heat to form the arc-type crust and at the same time, the magmatic underplating caused extensional doming of the crust, giving rise to flattening and vertical uplifting of the crustal rocks. D2 stage is characterized by subhorizontal top-to-the-south displacement and thrusting of lower to upper crustal rocks, forming a basal detachment surface (décollement) and duplex structures associated with intrusions of S-type tonalite. Deformation structures and textures of high-temperature mylonites formed along the décollement, as well as the duplex structures, show that the D2 stage movement occurred under a N-S trending compressional tectonic regime. The depth of intra-crustal décollement in the Hidaka belt was defined by the effect of multiplication of two factors, the fraction of partial melt which increases downward, and the fluid flux which decreases downward. The crustal décollement, however, might have extended to the crust-mantle boundary and/or to the lithosphere and asthenosphere boundary. The subhorizontal movement was transitional to a dextral-reverse-slip (dextral transpression) movement accompanied by low-temperature mylonitization with retrograde metamorphism, the stage defined as D3. The crustal rocks from the basal décollement to the upper were tilted eastward on the N–S axis and exhumed during the D3 stage. During D2 and D3 stages, the intrusion of crustal acidic magmas enhanced the crustal deformation and exhumation in the compressional and subsequent transpressional tectonic regime.  相似文献   

11.
A model involving buoyancy, wedging and thermal doming is postulated to explain the differential exhumation of ultrahigh-pressure (UHP) metamorphic rocks in the Dabie Mountains, China, with an emphasis on the exhumation of the UHP rocks from the base of the crust to the upper crust by opposite wedging of the North China Block (NCB). The Yangtze Block was subducted northward under the NCB and Northern Dabie microblock, forming UHP metamorphic rocks in the Triassic (240–220 Ma). After delamination of the subduction wedge, the UHP rocks were exhumed rapidly to the base of the crust by buoyancy (220–200 Ma). Subsequently, when the left-lateral Tan–Lu transform fault began to be activated, continuous north–south compression and uplifting of the orogen forced the NCB to be subducted southward under the Dabie Orogen (`opposite subduction'). Opposite subduction and wedging of the North China continental crust is responsible for the rapid exhumation of the UHP and South Dabie Block units during the Early Jurassic, at ca 200–180 Ma at a rate of ∼ 3.0 mm/year. The UHP eclogite suffered retrograde metamorphism to greenschist facies. Rapid exhumation of the North Dabie Block (NDB) occurred during 135–120 Ma because of thermal doming and granitoid formation during extension of continental margin of the Eurasia. Amphibolite facies rocks from NDB suffered retrograde metamorphism to greenschist facies. Different unit(s) and terrane(s) were welded together by granites and the wedging ceased. Since 120–110 Ma, slow uplift of the entire Dabie terrane is caused by gravitational equilibrium.  相似文献   

12.
Cong  Bolin  Wang  Qingchen  Zhai  Mingguo  Zhang  Ruyuan  Zhao  Zhongyan Ye  Kai 《Island Arc》1994,3(3):135-150
Abstract Based on petrological, structural, geological and geochronological research, the authors summarize the progress of ultra-high pressure (UHP) metamorphic rock study since 1989 by Chinese geoscientists and foreign geoscientists in the Dabie-Su-Lu region. The authors introduce and discuss a two-stage exhumation process for the UHP metamorphic rocks that have various lithologies; eclogite, ultramafics, jadeitic quartzite, gneiss, schist and marble. The metamorphic history of UHP metamorphic rocks is divided into three stages, that is, the pre-eclogite stage, coesite eclogite stage, and retrograde stage. Prior to UHP metamorphism, the ultramafics had a high temperature environment assemblage of mantle and others had blueschist facies assemblages. The granulite facies assemblages, which have recorded a temperature increase event with decompression, have developed locally in the Weihai basaltic rocks. Isotopic ages show a long range from > 700 Ma to 200 Ma. The diversity in protoliths of UHP metamorphic rocks may be related to the variation of isotopic ages older than 400 Ma. The Sm-Nd dating of ~ 220 Ma could reflect the initial exhumation stage after the peak UHP metamorphism in relation to the collision between the Sino-Korean and Yangtze blocks and subsequent events. Petrological and structural evidence imply a two-stage exhumation process. During the initial exhumation, the UHP metamorphic rocks were sheared and squeezed up in a high P/T regime. In the second exhumation stage the UHP metamorphic rocks were uplifted and eventually exposed with middle crustal rocks.  相似文献   

13.
阴山造山带位于鄂尔多斯盆地的北缘,这一地带不仅是构造活动强、弱的变异地域,且为盆、山的耦合地带,故在造山带与盆地地域具有各异的深层动力过程.本文基于高精度人工源地震宽角反射、折射探测和高分辨率的数据采集,通过反演求得了满都拉—鄂尔多斯—榆林—延川长达650 km剖面辖区的岩石圈精细层、块结构.研究结果表明:①沿该剖面由南向北地壳厚度为40~45 km;在不同构造单元其介质、结构均不相同;速度分布、空间结构形态和界面起伏及属性亦存在着明显差异;上地幔顶部速度为8.0~8.1 km/s;②沿剖面存在5条深、大断裂,且将该区切割成为壳、幔结构明显差异的4个构造单元,即鄂尔多斯盆地、盆山耦合地带、阴山造山带、内蒙构造带,它们各自具有固有的深层过程和动力学响应.同时厘定了阴山造山带与内蒙构造带之间的白云鄂博深、大断裂带是古亚洲洋的南界.在这里不仅导致了阴山造山带的形成,而且聚集了诸多的金属矿产资源,地震亦频繁活动.基于上述研究表明,阴山造山带—鄂尔多斯盆地耦合地带的壳、幔结构复杂、呈现出速度结构各异的层、块状展布.显然,在这一错综的成山、成盆、成岩、成矿和成灾地带,有着特异的深层过程和动力机制.  相似文献   

14.
For the Triassic continental collision, subduction and orogenesis in the Dabie-Sulu belt, a lot of data on petrology, geochemistry and chronology have been published[1]. However, so far no depositional records on the Triassic syn-collisional orogenesis of…  相似文献   

15.
Abstract The central part of Abukuma metamorphic belt consists of two geologic units, the Gosaisho Group and the Takanuki Group. Although the deformation styles differ between the Gosaisho and the Takanuki Groups, their rock facies show a gradual transition. In both Groups early regional low-pressure (over 3 kb) metamorphism has been overprinted by contact metamorphism. Evidence for the P/T condition of the regional metamorphism is recorded in cores of armored minerals. Metamorphic zones have been defined on mineral rim assemblages of meta-mafite, meta-pelite and meta-calc-siliceous schist and on the degree of graphitization of meta-pelite. The mineral-core chemistry of plagioclase, Ca-amphibole and garnet changes with increasing metamorphic grade, and indicates that the regional metamorphism of the Gosaisho Group took place in a high pressure region of the andalusite stability field. The Takanuki metamorphic rocks are structurally overlain by the Gosaisho Group and have undergone regional metamorphism whose conditions have passed near the triple point of Al-silicates and kyanite has crystallized. The contact aureoles in both groups are developed around middle Cretaceous granitic intrusions. Rims of plagioclase, Ca-amphibole and garnet overgrew on the mineral-cores during the contact metamorphism. The regional metamorphism began after the sedimentation of Jurassic chert and was succeeded by the contact metamorphism in the middle Cretaceous.  相似文献   

16.
A new U–Pb zircon geochronological study for the Hida metamorphic and plutonic rocks from the Tateyama area in the Hida Mountains of north central Japan is presented. The U–Pb ages of metamorphic zircon grains with inherited/detrital cores in paragneisses suggest that a metamorphic event took place at around 235–250 Ma; the cores yield ages around 275 Ma, 300 Ma, 330 Ma, 1 850 Ma, and 2 650 Ma. New age data, together with geochronological and geological context of the Hida Belt, indicate that a sedimentary protolith of the paragneisses is younger than 275 Ma and was crystallized at around 235–250 Ma. Detrital ages support a model that the Hida Belt was located in the eastern margin of the North China Craton, which provided zircon grains from Paleoproterozoic to Paleozoic rocks and also from Archean and rare Neoproterozoic rocks. Triassic regional metamorphism possibly reflects collision between the North and South China Cratons.  相似文献   

17.
The traditional view of the rheology of the continental lithosphere, sometimes known as the “jelly sandwich model”, consists of a strong upper crust, a weak lower crust, and a strong upper lithospheric mantle. Some authors argue, however, that the lithospheric mantle is weak and contributes little to the total strength and the effective elastic thickness of the lithosphere; this weakness is claimed to be due to the mantle being wet or subjected to temperatures higher than usually believed. This paper uses the relationship between rheology of the lithosphere and heat flow to calculate theoretical effective elastic thicknesses for three regions of the central Iberian Peninsula (the Duero Basin, the Spanish Central System and the Tajo Basin), taking into account the contribution of the crust and the lithospheric mantle, for dry and wet rheologies. We found that a wet peridotite rheology for the lithospheric mantle is generally consistent with independent (based on Bouguer coherence or flexural modeling) estimates of the effective elastic thickness for the study area, whereas a dry peridotite rheology cannot be reconciled with them. Moreover, the contribution of the mantle to the bending moment of the lithosphere, and therefore to both the effective elastic thickness and the total strength of the lithosphere, is important, and it may even be the dominant contribution. Therefore, the jelly sandwich model may be considered valid for the central Iberian Peninsula.  相似文献   

18.
The occurrence of ultrahigh pressure (UHP) minerals, such as coesite and diamond in crustal rocks in orogenic belts suggests that a huge amount of continental crust can be subducted to man-tle depth during the continental-continental collision[1—6]. This…  相似文献   

19.
The chemical variation of the Earth’s mantle rocks has been interpreted to reflect multiple episodes of partial melting. With the increasing of melt generation and extraction, the readily molten minerals and incompatible elements decrease in the residual mantle peridotite. The present-day gladiate of the Earth, however, cannot cause mantle batch melting[1], nor 40% partial melting that allows pyroxenes to be completely dissolved into melt and forms dunite[2,3]. Recent studies show that mantl…  相似文献   

20.
MAKOTO TAKEUCHI 《Island Arc》2011,20(2):221-247
Detrital chloritoids were extracted from the Lower Jurassic sandstones in the Joetsu area of central Japan. The discovery of detrital chloritoids in the Joetsu area, in addition to two previous reports, confirms their limited occurrence in the Jurassic strata of the Japanese islands. This finding emphasizes the importance of the denudation of chloritoid‐yielding metamorphic belts in Jurassic provenance evolution, in addition to a change from an active volcanic arc to a dissected arc that has already been described. Possible sources for the detrital chloritoids from the Jurassic sandstones are the Permo–Triassic chloritoid‐yielding metamorphic rocks distributed in dispersed tectonic zones (Hida, Unazuki, Ryuhozan and Hitachi Metamorphic Rocks), which are in fault contact with Permian to Jurassic accretionary complexes in the Japanese islands. This is because all of these pre‐Jurassic chloritoid‐yielding metamorphic rocks have a Carboniferous–Permian depositional age and a Permo–Triassic metamorphic age, whereas a Permian–Triassic metamorphic age on the Hitachi Metamorphic Rocks remains unreported. In addition, most metamorphic chloritoids imply a former stable land surface that has evolved into an unstable orogenic area. Therefore, the chloritoid‐yielding metamorphic rocks might form a continuous metamorphic belt originating from a passive continental margin in East Asia. Evidence from paleontological and petrological studies indicates that the Permo–Triassic metamorphic belt relates to a collision between the Central Asian Orogenic Belt and the North China Craton. The evolution of the Permian–Jurassic provenance of Japanese detrital rocks indicates that the temporal changes in detritus should result from sequences of collision‐related uplifting processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号