首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, “observations” drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the “identical” twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.  相似文献   

2.
《Ocean Modelling》2008,20(1):1-16
Argo is a global array of profiling floats that provides temperature (T) and salinity (S) profiles from 2000 m to the surface every ten days with a nominal spatial resolution of 3°. Here we present idealized experiments where the adjoint method is used to synthesize simulated sets of Argo profiles with a general circulation model, over a one-year period, in the North Atlantic. Using a number of drifting profilers consistent with Argo deployment objectives, the simulated array permits one to identify large-scale anomalies in the hydrography and circulation, despite the presence of a simulated eddy noise of large amplitude. Model dynamics provide an objective means to distinguish eddy noise from large-scale oceanic variability, and to infer the absolute velocity field (including abyssal velocities and sea surface height) from sets of Argo profiles of T and S. In particular, our idealized experiments suggest that volume and heat transports can be efficiently constrained by sets of Argo profiles. Increasing the number of Argo floats seems to be an adequate strategy to further reduce errors in circulation estimates.  相似文献   

3.
Assimilation of satellite-derived surface datasets has been explored in the study. Three types of surface data, namely sea level anomaly, sea surface temperature and sea surface salinity, have been used in various data assimilation experiments. The emphasis has been on the extra benefit arising out of the additional sea level assimilation and hence there are two parallel runs, in one of which sea level assimilation has been withheld. The model used is a state-of-the art ocean general circulation model (OGCM) and the assimilation method is the widely used singular evolutive extended Kalman filter (SEEK). Evaluation of the assimilation skill has been carried out by comparing the simulated depth of the 20°C isotherm with the same quantity measured by buoys and Argo floats. Simulated subsurface temperature and salinity profiles have also been compared with the same profiles measured by Argo floats. Finally, surface currents in the assimilation runs have been compared with currents measured by several off-equatorial buoys. Addition of sea level has been found to substantially improve the quality of simulation. An important feature that has been effectively simulated by the addition of sea level in the assimilation scheme is the near-surface temperature inversion (2-3°C) in the northern Bay of Bengal.  相似文献   

4.
5.
An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.  相似文献   

6.
基于ROMS模式的南海SST与SSH四维变分同化研究   总被引:1,自引:0,他引:1  
卫星遥感观测获得了大量高分辨率的海面实时信息,包括海面温度(SST)和海面高度(SSH)等,同化进入数值模式可有效提升模拟精度。本文基于ROMS模式与四维变分同化方法(4DVAR),使用AVHRR SST和AVISO SSH数据,开展了南海区域同化实验。为检验同化的效果,分别利用HYCOM再分析资料和Argo温盐实测数据分析了同化结果的海面高度、流场及温盐剖面的精度。对比结果表明,SST和SSH的同化能够改善ROMS的模拟结果:同化后海面高度场能够更为准确地捕捉海洋的中尺度特征,与HYCOM海面高度再分析资料相比,平均绝对偏差和均方根误差分别为0.054 m和0.066 m;与HYCOM 10 m层流场相比,东向与北向流速平均绝对偏差分别为0.12 m/s和0.11 m/s,相比未同化均提升约0.01 m/s;温盐同化结果与Argo温盐实测具有较高的一致性,温度和盐度平均绝对偏差为0.45℃、0.077,均方根误差为0.91℃、0.11,单个的温盐廓线对比说明,同化结果与HYCOM再分析资料精度相当。  相似文献   

7.
南海Argo浮标观测结果初步分析   总被引:1,自引:0,他引:1  
对投放在南海内部的4个Argo浮标轨迹特征,温、盐结构及漂移速度进行诊断分析发现,Argo浮标剖面温、盐观测结果和气候态资料一致,同时上层海洋温、盐剖面资料表现出周期约2月的扰动信号,并且温跃层起伏与同期海表高度异常相关显著。和高度计资料计算而得的海表地转流相比,由Argo浮标漂移轨迹计算的表观流量值较小。在季节时间尺度上,Argo浮标表观流和Argo浮标所停留的中层参考面季节性海流相一致。  相似文献   

8.
Diapycnal mixing is important in oceanic circulation. An inverse method in which a semi-explicit scheme is applied to discretize the one-dimensional temperature diffusion equation is established to estimate the vertical temperature diffusion coefficient based on the observed temperature profiles. The sensitivity of the inverse model in the idealized and actual conditions is tested in detail. It can be found that this inverse model has high feasibility under multiple situations ensuring the stability of the inverse model, and can be considered as an efficient way to estimate the temperature diffusion coefficient in the weak current regions of the ocean. Here, the hydrographic profiles from Argo floats are used to estimate the temporal and spatial distribution of the vertical mixing in the north central Pacific based on this inverse method. It is further found that the vertical mixing in the upper ocean displays a distinct seasonal variation with the amplitude decreasing with depth, and the vertical mixing over rough topography is stronger than that over smooth topography It is suggested that the high-resolution profiles from Argo floats and a more reasonable design of the inverse scheme will serve to understand mixing processes.  相似文献   

9.
The impact of assimilating Argo data into an initial field on the short-term forecasting accuracy of temper- ature and salinity is quantitatively estimated by using a forecasting system of the western North Pacific, on the base of the Princeton ocean model with a generalized coordinate system (POMgcs). This system uses a sequential multigrid three-dimensional variational (3DVAR) analysis scheme to assimilate observation da- ta. Two numerical experiments were conducted with and without Argo temperature and salinity profile data besides conventional temperature and salinity profile data and sea surface height anomaly (SSHa) and sea surface temperature (SST) in the process of assimilating data into the initial fields. The forecast errors are estimated by using independent temperature and salinity profiles during the forecasting period, including the vertical distributions of the horizontally averaged root mean square errors (H-RMSEs) and the horizontal distributions of the vertically averaged mean errors (MEs) and the temporal variation of spatially averaged root mean square errors (S-RMSEs). Comparison between the two experiments shows that the assimila- tion of Argo data significantly improves the forecast accuracy, with 24% reduction of H-RMSE maximum for the temperature, and the salinity forecasts are improved more obviously, averagely dropping of 50% for H-RMSEs in depth shallower than 300 m. Such improvement is caused by relatively uniform sampling of both temperature and salinity from the Argo drifters in time and space.  相似文献   

10.
The response of an eddy-permitting ocean model to changes imposed by the use of different mean dynamic topographies (MDT) is analyzed in a multivariate assimilation context, allowing the evaluation of this impact, not only on the surface circulation, but also on the interior ocean representation. The assimilation scheme is a reduced-order sequential Kalman filter (SEEK). In a first set of experiments, high resolution sea surface temperature, along-track sea surface height and sea surface salinity from climatology are assimilated into a 1/3° resolution North and Tropical Atlantic version of the HYCOM model. In a second experiment, in situ profile data are assimilated in addition to the surface measurements.

The first set of experiments illustrates that important differences in the representation of the horizontal model circulation pattern are related to differences in the MDT used. The objective of assimilation is to improve the representation of the 3D ocean state. However, the imperfect representation of the mean dynamic topography appears to be an important limiting factor with regard to the degree of realism obtained in the simulated flow.

Vertical temperature and salinity profiles are key observations to drive a general circulation ocean model toward a more realistic state. The second set of experiments shows that assimilating them in addition to sea surface measurements is a far from trivial exercise. A specific difficulty is due to inconsistencies between the dynamic topography diagnosed from in situ observations and that diagnosed from sea surface height. These two fields obtained from different data sources do not contain exactly the same information. In order to overcome this difficulty, a strategy is proposed and validated.  相似文献   

11.
The response of an eddy-permitting ocean model to changes imposed by the use of different mean dynamic topographies (MDT) is analyzed in a multivariate assimilation context, allowing the evaluation of this impact, not only on the surface circulation, but also on the interior ocean representation. The assimilation scheme is a reduced-order sequential Kalman filter (SEEK). In a first set of experiments, high resolution sea surface temperature, along-track sea surface height and sea surface salinity from climatology are assimilated into a 1/3° resolution North and Tropical Atlantic version of the HYCOM model. In a second experiment, in situ profile data are assimilated in addition to the surface measurements.

The first set of experiments illustrates that important differences in the representation of the horizontal model circulation pattern are related to differences in the MDT used. The objective of assimilation is to improve the representation of the 3D ocean state. However, the imperfect representation of the mean dynamic topography appears to be an important limiting factor with regard to the degree of realism obtained in the simulated flow.

Vertical temperature and salinity profiles are key observations to drive a general circulation ocean model toward a more realistic state. The second set of experiments shows that assimilating them in addition to sea surface measurements is a far from trivial exercise. A specific difficulty is due to inconsistencies between the dynamic topography diagnosed from in situ observations and that diagnosed from sea surface height. These two fields obtained from different data sources do not contain exactly the same information. In order to overcome this difficulty, a strategy is proposed and validated.  相似文献   

12.
This paper proposes a new method to retrieve salinity profiles from the sea surface salinity(SSS) observed by the Soil Moisture and Ocean Salinity(SMOS) satellite. The main vertical patterns of the salinity profiles are firstly extracted from the salinity profiles measured by Argo using the empirical orthogonal function. To determine the time coefficients for each vertical pattern, two statistical models are developed. In the linear model, a transfer function is proposed to relate the SSS observed by SMOS(SMOS_SSS) with that measured by Argo, and then a linear relationship between the SMOS_SSS and the time coefficient is established. In the nonlinear model, the neural network is utilized to estimate the time coefficients from SMOS_SSS, months and positions of the salinity profiles. The two models are validated by comparing the salinity profiles retrieved from SMOS with those measured by Argo and the climatological salinities. The root-mean-square error(RMSE) of the linear and nonlinear model are 0.08–0.16 and 0.08–0.14 for the upper 400 m, which are 0.01–0.07 and 0.01–0.09 smaller than the RMSE of climatology. The error sources of the method are also discussed.  相似文献   

13.
利用最优插值数据同化方法对Argo资料进行了网格化实验,得到了与WOA05较为一致的结果,验证了最优插值法对Argo资料网格化的有效性,并为加快开发制作适用于海洋模式和数据分析的Argo网格化数据集打下了很好的基础。  相似文献   

14.
文章利用果蝇优化广义回归神经网络算法FOAGRNN (fruit fly optimization algorithm, FOA; generalized regression neural network, GRNN)对SODA (simple ocean data assimilation)再分析数据进行训练, 构建海表温度、盐度、海面高度与次表层温盐场之间的投影关系模型, 并在全球范围使用SODA和卫星遥感数据评估了模型的应用性能。首先, 利用独立的2016年SODA海表数据作为模型输入进行理想重构试验, 结果显示全球重构温、盐平均均方根误差(MRMSE)分别为0.36℃和0.08‰, 与世界海洋图集WOA13资料相比减小约50%和60%。然后, 利用卫星观测的海表信息作为模型输入进行实际应用试验, 并与Argo观测剖面进行比较评估。试验结果表明, 重构模型能有效表征海水温、盐特征, 其中重构温、盐MRMSE分别为0.79℃和0.16‰, 相比WOA气候态减小27%和11%。误差的垂向分布显示, 重构温度RMSE从海表向下迅速增大, 至100m达到峰值1.35℃, 而后又迅速回落,至250m处为0.81℃, 跃层往下不断减小; 重构盐度RMSE基本随深度增大而减小, 误差峰值位于25m附近, 约为0.25‰。此外, Argo浮标跟踪分析和区域水团统计结果也表明模型能够较好地刻画海洋三维温盐场的内部结构特征。  相似文献   

15.
We utilize a variety of available observations with a semivariogram technique to quantify the oceanic variability around the Hawaiian Islands. The Hawaiian Islands have a significant impact on the North Pacific circulation, and quantifying the characteristics of the variability is important for understanding the eddy energy, as well as required for statistical techniques to work with the data, such as optimal interpolation, data assimilation, etc. Both satellite sea surface height and temperature data are used to determine horizontal scales of variability, while Argo profiles, ship-borne profiles, and autonomous Seagliders provide estimates of the vertical scales. In the lee of the islands, satellite data reveal an increase in horizontal variability attributed to enhanced eddy activity that persists for over 1000 km westward; however, only within 400 km of the immediate lee the horizontal length scales are greatly reduced. Further west, length scales increase significantly indicating a change in the generation mechanism for eddy variability and where eddies merge and coalesce. The meridional length scale gradient is found to be larger than previous results and more representative of the gradient of the first baroclinic mode of the internal Rossby radius. Vertical length scales are shown to increase in the lee, with vertical temperature variability doubled from the windward side.  相似文献   

16.
17.
海洋三维温盐流数值模拟研究的有关进展和问题   总被引:1,自引:0,他引:1  
就海洋三维温盐流数值模拟使用的海洋模式和数据同化方法、在中尺度数值预报和再分析中的应用,以及所需支撑条件三方面,简述了国内外研究有关进展和问题。表述了开展大范围分辨中尺度乃至次中尺度涡的高分辨率海洋三维温盐流数值模拟正在研究的有关问题,扼要说明提供相匹配的高性能计算机模拟平台的必要性。初步探讨制约该研究快速发展的有关问题。  相似文献   

18.
The option for surface forcing correction, recently developed in the 4D-variational (4DVAR) data assimilation systems of the Regional Ocean Model System (ROMS), is presented. Assimilation of remotely-sensed (satellite sea surface height anomaly and sea surface temperature) and in situ (from mechanical and expendable bathythermographs, Argo floats and CTD profiles) oceanic observations has been applied in a realistic, high resolution configuration of the California Current System (CCS) to sequentially correct model initial conditions and surface forcing, using the Incremental Strong constraint version of ROMS-4DVAR (ROMS-IS4DVAR). Results from both twin and real data experiments are presented where it is demonstrated that ROMS-IS4DVAR always reduces the difference between the model and the observations that are assimilated. However, without corrections to the surface forcing, the assimilation of surface data can degrade the temperature structure at depth. When using surface forcing adjustment in ROMS-IS4DVAR the system does not degrade the temperature structure at depth, because differences between the model and surface observations can be reduced through corrections to surface forcing rather than to temperature at depth. However, corrections to surface forcing can generate abnormal spatial and temporal variability in the structure of the wind stress or surface heat flux fields if not properly constrained. This behavior can be partially controlled via the choice of decorrelation length scales that are assumed for the forcing errors. Abnormal forcing corrections may also arise due to the effects of model error which are not accounted for in IS4DVAR. In particular, data assimilation tends to weaken the alongshore wind stress in an attempt to reduce the rate of coastal upwelling, which seems to be too strong due to other sources of error. However, corrections to wind stress and surface heat flux improve systematically the ocean state analyses. Trends in the correction of surface heat fluxes indicate that, given the ocean model used and its potential limitations, the heat flux data from the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) used to impose surface conditions in the model are generally too low except in spring-summer, in the upwelling region, where they are too high. Comparisons with independent data provide confidence in the resulting forecast ocean circulation on timescales ~14 days, with less than 1.5 °C, 0.3 psu, and 9 cm RMS error in temperature, salinity and sea surface height anomaly, respectively, compared to observations.  相似文献   

19.
Based on the optimal interpolation objective analysis of the Argo data, improvements are made to the em- pirical formula of a background error covariance matrix widely used in data assimilation and objective anal- ysis systems. Specifically, an estimation of correlation scales that can improve effectively the accuracy of Ar- go objective analysis has been developed. This method can automatically adapt to the gradient change of a variable and is referred to as "gradient-dependent correlation scale method". Its effect on the Argo objective analysis is verified theoretically with Gaussian pulse and spectrum analysis. The results of one-dimensional simulation experiment show that the gradient-dependent correlation scales can improve the adaptability of the objective analysis system, making it possible for the analysis scheme to fully absorb the shortwave information of observation in areas with larger oceanographic gradients. The new scheme is applied to the Argo data obiective analysis system in the Pacific Ocean. The results are obviously improved.  相似文献   

20.
Spectral characteristics of the quasi-biennial oscillations (QBO) of the zonal velocity in the equatorial stratosphere are investigated in this work on the basis of data from the NCEP/NCAR and ERA40 reanalyses and numerical experiments with the atmospheric general circulation (GCM) model developed at the Institute of Numerical Mathematics, Russian Academy of Sciences (INM RAS). The problem of synchronizing QBO and semiannual oscillations (SAO) of the zonal velocity in the mesosphere is considered. It is shown that the process of synchronization to multiples of SAO periods is identifiable in the transition region between QBO and SAO. For all heights where QBO exist, their synchronization with SAO is expressed in the calculation of the period in terms of differences between the westerly maxima. The INM RAS GCM model is shown to satisfactorily reproduce the main spectral characteristics of QBO and SAO, as well as specific features of the variability of the QBO period obtained from reanalysis data. The possibility of synchronization with SAO or the annual cycle in the upper layers is shown on the basis of an investigation of QBO models with a small number of parameters, both for the absorption mechanism of planetary waves by the mean flow and for the breaking of short gravity waves. The QBO formation from different wave types, together with SAO and the annual cycle, can be considered a unified system of oscillations in the circulation of the equatorial upper atmosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号