首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Frank Rske 《Ocean Modelling》2006,11(3-4):235-297
A global dataset based on the ECMWF Re-Analyses (ERA) is presented that can be used as surface boundary conditions for ocean models with sea-ice components. The definition of these conditions is based on bulk formulae. To study the mean ocean circulation, a mean annual cycle on a daily basis was constructed from ERA for all relevant parameters including wind stress. Continental runoff is considered by using information about the catchment areas of the rivers and about the main drainage basins. The bulk formulae were extended by using sea ice concentration.To estimate meridional heat transports (MHT) and to avoid any drift in ocean model simulations, the heat and fresh water budgets have been closed by applying an inverse procedure to fine-tune the fluxes towards observed transports. To improve the MHTs on the Southern Hemisphere the winds and the short wave radiation at southern higher latitudes should be corrected. Furthermore, tests were performed concerning short wave radiation which was increased in the tropics and decreased in the subsidence zones.The heat and fresh water fluxes are assessed by using a scheme of Macdonald and Wunsch based on hydrographic sections. The net heat fluxes of ERA and of the forcing dataset are consistent with the heat flux divergences and convergences estimated by this scheme except for parts of the South Atlantic and the Indian Ocean sector of the Southern Ocean where none of these datasets is consistent with these estimates. In the subtropical South Indian Ocean the forcing dataset is consistent with these estimates while ERA are not. The flux components of ERA and the forcing dataset were compared to several observational datasets (SRB, SOC, HOAPS, GPCP, and CMAP). For each component, at least one of these datasets (especially HOAPS) supports the effects of the inverse procedure and the bulk formulae almost globally with some regional exceptions: short wave radiation in the tropical oceans and the subtropical North Atlantic, latent heat flux at higher latitudes, and precipitation in the northern North Atlantic.Comparisons to the NCAR/NCEP Re-Analyses (NRA) (versions 1 and 2) and the ECHAM model in place of ERA lead to similar results. In the North Atlantic the net heat fluxes of the model based datasets approach the hydrographic estimate with increasing resolution. Applied to any ocean/sea-ice model and compared to ERA, the forcing dataset would induce only a relative small net sea-surface buoyancy loss.A comparison of the forcing dataset to measurements made using one buoy deployed in the western Pacific warm pool and five buoys deployed in the subduction region of the Northeast Atlantic shows that at the site of the first buoy the net heat fluxes of the forcing dataset are in poorer agreement than those of ERA. At the sites of two subduction buoys both datasets show the same level of agreement within the error bars specified. At the sites of the three remaining subduction buoys the forcing dataset shows a marginal improvement on ERA.  相似文献   

2.
Regional models actively forced with data from larger scale models at their open boundaries often contain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individually well specified in the forcing data, and one may require a more active boundary forcing while the other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward these data in the boundary equation, then this may be difficult. The method of fractional steps is used to introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relaxation) boundary forcing. The dual method is compared to the single relaxation method for an idealized test case where a tidal signal is superimposed on a steady state low frequency solution, and a real application where the low frequency boundary forcing component is derived from a global circulation model for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.  相似文献   

3.
4.
We develop, calibrate and test a dataset intended to drive global ocean hindcasts simulations of the last five decades. This dataset provides surface meteorological variables needed to estimate air-sea fluxes and is built from 6-hourly surface atmospheric state variables of ERA40. We first compare the raw fields of ERA40 to the CORE.v1 dataset of Large and Yeager (2004), used here as a reference, and discuss our choice to use daily radiative fluxes and monthly precipitation products extracted from satellite data rather than their ERA40 counterparts. Both datasets lead to excessively high global imbalances of heat and freshwater fluxes when tested with a prescribed climatological sea surface temperature. After identifying unrealistic time discontinuities (induced by changes in the nature of assimilated observations) and obvious global and regional biases in ERA40 fields (by comparison to high quality observations), we propose a set of corrections. Tropical surface air humidity is decreased from 1979 onward, representation of Arctic surface air temperature is improved using recent observations and the wind is globally increased. These corrections lead to a significant decrease of the excessive positive global imbalance of heat. Radiation and precipitation fields are then submitted to a small adjustment (in zonal mean) that yields a near-zero global imbalance of heat and freshwater. A set of 47-year-long simulations is carried out with the coarse-resolution (2° × 2°) version of the NEMO OGCM to assess the sensitivity of the model to the proposed corrections. Model results show that each of the proposed correction contributes to improve the representation of central features of the global ocean circulation.  相似文献   

5.
Estimation of eddy heat transport in the global ocean from Argo data   总被引:4,自引:2,他引:4  
The Argo data are used to calculate eddy(turbulence)heat transport(EHT)in the global ocean and analyze its horizontal distribution and vertical structure.We calculate the EHT by averaging all the v′,T′profiles within each 2×2 bin.The velocity and temperature anomalies are obtained by removing their climatological values from the Argo"instantaneous"values respectively.Through the Student’s t-test and an error evaluation,we obtained a total of 87%Argo bins with significant depth-integrated EHTs(D-EHTs).The results reveal a positive-and-negative alternating D-EHT pattern along the western boundary currents(WBC)and Antarctic Circumpolar Current(ACC).The zonally-integrated D-EHT(ZI-EHT)of the global ocean reaches 0.12 PW in the northern WBC band and–0.38 PW in the ACC band respectively.The strong ZI-EHT across the ACC in the global ocean is mainly caused by the southern Indian Ocean.The ZI-EHT in the above two bands accounts for a large portion of the total oceanic heat transport,which may play an important role in regulating the climate.The analysis of vertical structures of the EHT along the 35 N and45 S section reveals that the oscillating EHT pattern can reach deep in the northern WBC regions and the Agulhas Return Current(ARC)region.It also shows that the strong EHT could reach 600 m in the WBC regions and 1 000 m in the ARC region,with the maximum mainly located between 100 and 400 m depth.The results would provide useful information for improving the parameterization scheme in models.  相似文献   

6.
As soon as altimetric data from Topex/Poseidon satellite were available, several ocean tide models were able to be constructed by different teams in response to the scientific community request. Here we present a complement to a first comparison study made with ten tidal models ( and , 1996). We use five more models of which some are updated versions computed using longer time series of altimetric data. The loading tide effects predicted by these models are compared to a data base of 228 gravimetric stations provided by the International Center for Earth Tides ( , 1994). Global statistical tests provide us with the relative performances of the models. Merging the five new models with the ten previous models allows us to make more general conclusions. CSR3.0 ( , 1994) remains the best of the fifteen models for the M2 constituent (standard deviation of 0.425 μgal). For the O1 constituent, Schwiderski ( , 1980) with a standard deviation of 0.298 μgal, gives the best results. When considering only regional subsets of gravimetric data, no ocean tide model systematically performs better than any other.  相似文献   

7.
In this study, to meet the need for accurate tidal prediction, the accuracy of global ocean tide models was assessed in the South China Sea(0°–26°N, 99°–121°E). Seven tide models, namely, DTU10, EOT11 a, FES2014, GOT4.8,HAMTIDE12, OSU12 and TPXO8, were considered. The accuracy of eight major tidal constituents(i.e., Q1, O1, P1,K1, N2, M2, S2 and K2) were assessed for the shallow water and coastal areas based ...  相似文献   

8.
The western boundary layer (WBL) plays a fundamental role in basin-scale wind-driven ocean circulations. In idealized ocean models with flat bottom topography, this layer is required not only to balance the interior Sverdrup transport to close the gyre circulation, but also to dissipate the vorticity imposed by the wind-stress curl. The width of the WBL in Munk-type models is estimated to be δM(AH/β)1/3, where AH and β are horizontal eddy viscosity and the meridional derivative of the Coriolis parameter respectively. For commonly used values of AH, the boundary-layer width δM ranges from 30 to less than 200 km in the mid-latitude ocean. This scale is often poorly resolved in large-scale climate models.This paper intends to demonstrate some consequences when the western boundary layer is not adequately resolved. It is found that coarse resolution models reach equilibrium states by distorting some important dynamics in order to dissipate wind-imposed vorticity. In three-dimensional models, for instance, very strong spurious upwelling and downwelling can occur along the WBL. In models of two-dimensional flow, however, spurious recirculations may develop near the boundary. These false features can be removed when the boundary layer is better resolved. We propose a method in which a spatially varying AH is used to broaden the WBL without affecting mixing in the interior. The method improves the model results considerably.  相似文献   

9.
静止轨道海洋水色成像仪(Geostationary Ocean Color Imager, GOCI)提供了时间分辨率达小时级的海洋水色数据,使得对海洋环境的逐时变化监测成为可能。然而受到海洋上空云、雾和霾的影响,数据出现连续高缺失率甚至完全缺失的情况,使得数据使用价值大大降低。在经验正交函数重构法(Data INterpolating Empirical Orthogonal Functions, DINEOF)的基础上,突出时间要素在重构中的地位,运用异常像元检测、拉普拉斯平滑滤波和时间模态2次分解插值,提出了适用于静止海洋水色卫星数据的重构方法——DINEOF-G。利用此方法对杭州湾2017年的GOCI总悬浮物质量浓度数据进行重构,结果表明该方法相比经典方法在重构精度上提高了8%,数据重构率提高了36%,且重构结果较好地反映了杭州湾总悬浮物质量浓度的季节变化规律和空间分布特征。  相似文献   

10.
11.
海洋环流模式中卫星遥感资料同化的应用进展   总被引:1,自引:0,他引:1  
物理海洋研究长久以来一直受到观测资料不足的制约,然而这一状况随着现代观测技术的迅猛发展得到了很大的改善。卫星遥感技术的发展提供了覆盖全球的、连续、实时的卫星观测数据,这是其他任何资料都无法比拟的。这些数据大部分难以直接运用来改善气候预测或数值模拟分析,然而资料同化技术的出现和发展改善了这一情况。  相似文献   

12.
The manifestations of mesoscale and submesoscale eddy elements in surface currents of the Baltic Sea in satellite images differing in physical nature and spatial resolution are considered. The investigation is based on the Envisat ASAR and ERS-2 SAR high-resolution radiolocation images (RLIs) obtained in 2008–2009 for different sites of the Baltic Sea water area and the use of the Envisat MERIS and Landsat ETM+ radiometric images of the visible spectrum. Possible mechanisms of the appearance of eddy structures in RLIs of the Baltic Sea water area are considered. Joint analysis of the mentioned data revealed specific features of the appearance of eddy structures in satellite images, taking into account the variability of optical characteristics of Baltic Sea surface waters during the summer blooming of cyanobacteria and the spring blooming of diatomic algae.  相似文献   

13.
为了提高温度剖面的预报精度,提出了一种基于遥感数据的温度剖面预报方法.文中使用27个实测温度剖面和遥感SST、SSHA数据实现了对温度剖面的预报,并用该点的ARGO数据进行了检验.实验结果表明,将遥感数据同化到温度剖面的预报中是可行的,并能有效的提高温度剖面的预报精度.  相似文献   

14.
The variability of the geostrophic eddy kinetic energy (EKE) in the Sea of Japan derived from weekly altimetric sea level anomalies spanning from 1992 through 2009 is studied. Nonorthogonal modes of variability are revealed accounting for more than 60% of the total variance. They capture the seasonal variation of the mesoscale energetics in the entire Sea of Japan with the EKE growing in the warm season up to the maximum in October through November and diminishing in the cold season down to the minimum in March through April. In the northern Sea of Japan (northward of the Subarctic Front), where the mean EKE is several times less than in the southern sea, areas of considerable variability are detected. Quasi-biennial EKE oscillations are revealed but not the trends covering the whole record.  相似文献   

15.
Linear structural relations express the linear relationship between random variables when each of the variables under consideration is subjected to inherent variability and measurement error. The linear structural method is more general than the classical regression, which is often used incorrectly in calibration of altimeter data or validation of wave model results. In this work the linear structural method is elaborated and applied for the adjustment of TOPEX/Poseidon (T/P) data by means of in situ measured wave data in the Aegean Sea. In addition, a comparison of the buoy and T/P data with the WAM wave model predictions is performed revealing an underestimation trend of the model.  相似文献   

16.
The local equilibrium between the wind and wind waves, which is defined by a range of the coefficient of the 3/2-power law between the non-dimensional significant wave height and period, is statistically investigated by using wind and wave data obtained at four ocean data buoy stations in the seas near Japan. The friction velocity is calculated from the wind speed measured at one height together with the significant wave period by using formulas of the wave dependent drag coefficient proposed by Tobaet al. (1990). The data for small waves or for weak winds indicate that the waves do not satisfy the criterion for the local equilibrium, because they may be affected by changing winds or remotely generated swells. In the seas near Japan, the data which satisfy the local equilibrium are about 6% through a year. Otherwise swells are dominant in most situations. Changing winds also cause deviations from the local equilibrium. The degree of satisfaction of the local equilibrium can be classified by ranges of the significant wave height. As the significant wave height exceeds 4 m, the local equilibrium is more frequently satisfied.  相似文献   

17.
The option for surface forcing correction, recently developed in the 4D-variational (4DVAR) data assimilation systems of the Regional Ocean Model System (ROMS), is presented. Assimilation of remotely-sensed (satellite sea surface height anomaly and sea surface temperature) and in situ (from mechanical and expendable bathythermographs, Argo floats and CTD profiles) oceanic observations has been applied in a realistic, high resolution configuration of the California Current System (CCS) to sequentially correct model initial conditions and surface forcing, using the Incremental Strong constraint version of ROMS-4DVAR (ROMS-IS4DVAR). Results from both twin and real data experiments are presented where it is demonstrated that ROMS-IS4DVAR always reduces the difference between the model and the observations that are assimilated. However, without corrections to the surface forcing, the assimilation of surface data can degrade the temperature structure at depth. When using surface forcing adjustment in ROMS-IS4DVAR the system does not degrade the temperature structure at depth, because differences between the model and surface observations can be reduced through corrections to surface forcing rather than to temperature at depth. However, corrections to surface forcing can generate abnormal spatial and temporal variability in the structure of the wind stress or surface heat flux fields if not properly constrained. This behavior can be partially controlled via the choice of decorrelation length scales that are assumed for the forcing errors. Abnormal forcing corrections may also arise due to the effects of model error which are not accounted for in IS4DVAR. In particular, data assimilation tends to weaken the alongshore wind stress in an attempt to reduce the rate of coastal upwelling, which seems to be too strong due to other sources of error. However, corrections to wind stress and surface heat flux improve systematically the ocean state analyses. Trends in the correction of surface heat fluxes indicate that, given the ocean model used and its potential limitations, the heat flux data from the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) used to impose surface conditions in the model are generally too low except in spring-summer, in the upwelling region, where they are too high. Comparisons with independent data provide confidence in the resulting forecast ocean circulation on timescales ~14 days, with less than 1.5 °C, 0.3 psu, and 9 cm RMS error in temperature, salinity and sea surface height anomaly, respectively, compared to observations.  相似文献   

18.
Algorithms for obtaining operative information on the fluxes of the total solar radiation and radiation balance at the ocean surface are developed and realized on the basis of satellite observations within the spectral ranges 0·725–1·1 and 10·3–11·3 m at arbitrary scanning angles. For the 10-day and monthly values, the reconstruction errors remain at the level of the accuracy of the shipboard measurements. The atlas of charts of the above parameters (grid 0·5°×0·5°) is compiled using data obtained by the RVAkademik Vernadsky in the Atlantic Ocean during 1986–1989.Translated by Mikhail M. Trufanov.  相似文献   

19.
Atmospheric CO_2 is one of key parameters to estimate air-sea CO_2 flux. The Orbiting Carbon Observatory-2(OCO-2) satellite has observed the column-averaged dry-air mole fractions of global atmospheric carbon dioxide(XCO_2)since 2014. In this study, the OCO-2 XCO_2 products were compared between in-situ data from the Total Carbon Column Network(TCCON) and Global Monitoring Division(GMD), and modeling data from CarbonTracker2019 over global ocean and land. Results showed that the OCO-2 XCO_2 data are consistent with the TCCON and GMD in situ XCO_2 data, with mean absolute biases of 0.25×10-6 and 0.67×10-6, respectively. Moreover, the OCO-2 XCO_2 data are also consistent with the CarbonTracker2019 modeling XCO_2 data, with mean absolute biases of 0.78×10-6 over ocean and 1.02×10-6 over land. The results indicated the high accuracy of the OCO-2 XCO_2 product over global ocean which could be applied to estimate the air-sea CO_2 flux.  相似文献   

20.
卫星高度计资料揭示的冬季南海吕宋冷涡的双涡结构   总被引:1,自引:0,他引:1  
吕宋冷涡是南海海洋环流系中最重要的涡旋之一。利用卫星高度计资料时空较高分辨率的优势,发现冬季吕宋冷涡有可能是由2个气旋式涡旋所组成的,一个气旋式涡旋位于吕宋岛的西侧(LCE1),另一个位于吕宋岛的西北(LCE2)。利用相关分析、功率谱分析等,估计了局地风应力和黑潮在形成吕宋冷涡过程中各自的贡献。研究结果表明,LCE1只存在于冬季,与吕宋岛西侧局地的风应力旋度有关;LCE2位于进入吕宋海峡的黑潮的西侧,全年存在,可能是由黑潮所诱生的气旋式涡旋,其变化主要周期为季节内振荡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号