首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The El Sibai area of the Central Eastern Desert (CED) of Egypt consists of an ophiolitic association of arc metavolcanics, ophiolitic rocks, mélange, metasediments and minor mafic intrusions; and a gneissic association of amphibolite, gneissic diorite, tonalite, granodiorite and granite. Previous studies of the El Sibai area have identified the gneissic association as a lower crustal infrastructure in sheared contact with upper crustal ophiolitic association suprastructure, and have presented it as an example of a metamorphic or magmatic core complex. Detailed structural remapping of the El Sibai area reveals that the gneissic association rocks are not infrastructural but form a unit within the ophiolitic association nappes. Furthermore, the El Sibai structure is not domal in shape, and is not antiformal. The main gneissic association rocks are tabular intrusions roughly concordant with the shears dividing the ophiolitic association into nappes, and are syn-kinematic with the nappe stacking event (∼700–650 Ma). The gneissic granite tabular intrusions and their ophiolitic host were later folded about upright NW–SE trending mainly open folds during a NE–SW directed shortening event (∼625–590 Ma). Subsequently, NW–SE regional extension effects became evident including low angle normal ductile shear zones and mylonites. The latest gneissic red granites are syn-kinematic with respect to these shear zones. Probably continuing from the low-angle shearing event were steep normal faults, and sinistral WNW and N–S trending transcurrent faults (∼590–570 Ma). The normal faults mark the southeastern and maybe also the northwestern limits of the El Sibai gneissic association rocks. The El Sibai complex is not a core complex, but exemplifies the overlap of NW–SE folding and NW–SE extensional which is a significant theme of CED regional structure.  相似文献   

2.
Strongly deformed volcaniclastic metasediments and ophiolitic slices hosting the Sukari gold mineralization display evidence of a complex structural evolution involving three main ductile deformational events (D1–D3). D1 produced ENE-trending folds associated with NNW-propagating thrust slices and intrusion of the Sukari granite (689 ± 3 Ma). D2 formed a moderately to steeply dipping, NNW-trending S2 foliation curved to NE and developed arcuate structure constituting the Kurdeman shear zone (≤ 595 Ma) and East Sukari imbricate thrust belt. Major NE-trending F2 folds, NW-dipping high-angle thrusts, shallow and steeply plunging mineral lineation and shear indicators recorded both subhorizontal and subvertical transport direction during D2. D3 (560–540 Ma) formed NNE-trending S3 crenulation cleavage, tight F3 folds, Sukari Thrust and West Sukari imbricate thrust. The system of NW-trending sinistral Kurdeman shear zone (lateral ramps and tear faults) and imbricate thrusts (frontal ramps) forming the actuate structure developed during SE-directed thrusting, whereas the prevailing pattern of NNE-trending dextral Sukari shear zone and imbricate thrusts forming Sukari thrust duplex developed during NE-directed tectonic shearing. Sukari granite intruded in different pluses between 689 and 540 Ma and associated with at least four phases of quartz veins with different geometry and orientation. Structural analysis of the shear fabrics indicates that the geometry of the mineralized quartz veins and alteration patterns are controlled by the regional NNW- and NE-trending conjugate zones of transpression. Gold-bearing quartz veins are located within NNW-oriented sinistral shear zones in Kurdeman gold mine area, within steeply dipping NW- and SE dipping thrusts and NE- and NS-oriented dextral and sinistral shear zones around Sukari mine area, and along E-dipping backthrusts and NW-SE and N-S fractures in Sukari granite. The high grade of gold mineralization in Sukari is mainly controlled by SE-dipping back-thrusts branched from the major NW-dipping Sukari Thrust. The gold mineralization in Sukari gold mine and neighboring areas in the Central Eastern Desert of Egypt is mainly controlled by the conjugate shear zones of the Najd Fault System and related to E-W directed shortening associated with oblique convergence between East and West Gondwana.  相似文献   

3.
New fission track and Ar/Ar geochronological data provide time constraints on the exhumation history of the Himalayan nappes in the Mandi (Beas valley) – Tso Morari transect of the NW Indian Himalaya. Results from this and previous studies suggest that the SW-directed North Himalayan nappes were emplaced by detachment from the underthrusted upper Indian crust by 55 Ma and metamorphosed by ca. 48–40 Ma. The nappe stack was subsequently exhumed to shallow upper crustal depths (<10 km) by 40–30 Ma in the Tso Morari dome (northern section of the transect) and by 30–20 Ma close to frontal thrusts in the Baralacha La region. From the Oligocene to the present, exhumation continued slowly.Metamorphism started in the High Himalayan nappe prior to the Late Oligocene.High temperatures and anatexis of the subducting upper Indian crust engendered the buoyancy-driven ductile detachment and extrusion of the High Himalayan nappe in the zone of continental collision. Late extrusion of the High Himalayan nappe started about 26 Ma ago, accompanied by ductile extensional shearing in the Zanskar shear zone in its roof between 22 and 19 Ma concomitant with thrusting along the basal Main Central Thrust to the south. The northern part of the nappe was then rapidly exhumed to shallow depth (<10 km) between 20 and 6 Ma, while its southern front reached this depth at 10–5 Ma.  相似文献   

4.
The North Atlantic craton of southwestern Greenland hosts several orogenic gold occurrences, although, to date, none is in production. Four gold provinces are distinguished and include Godthåbsfjord, Tasiusarsuaq, Paamiut, and Tartoq. In the Godthåbsfjord gold province, the hypozonal gold occurrences are aligned along the major ca. 2660–2600 Ma Ivinnguit fault. Orogenic gold mineralization correlates temporally with, and is related to, ductile deformation along this first-order structure. The northern part of the Tasiusarsuaq gold province is characterized by small hypozonal gold occurrences that are controlled by 2670–2610 Ma folds and shear zones. Auriferous fluids were focused into the structures in both gold provinces during west-directed accretion of the Kapisilik terrane (2650–2580 Ma) to the already amalgamated terranes of the North Atlantic craton. In the southern part of the Tasiusarsuaq gold province, hypozonal gold mineralization is hosted in back-thrusts (Sermilik prospect) and thrusts (Bjørnesund prospect) that formed at 2740 Ma and 2860–2830 Ma, respectively. The deformation is related to the ca. 2850 Ma accretion of the Sioraq block and the Tasiusarsuaq terrane, and the 2800–2700 Ma accretion of the Tasiusarsuaq terrane and the Færingehavn and Tre Brødre terranes.Mesozonal orogenic gold mineralization is hosted in an accretionary complex in the Paamiut and Tartoq gold provinces. Gold occurrences cluster over a strike extent of approx. 40 km in thrusts and complex strike-slip settings in lateral ramps. The timing of the E-vergent terrane accretion in both areas is unknown, and could either be at ca. 2850 Ma or 2740 Ma. In the eastern part of the Paamiut gold province, quartz veins and associated alteration zones were overprinted by granulite facies metamorphism and show evidence for partial melting. These outermost parts of the accretionary complex were involved in burial-exhumation tectonics during crustal accretion.Mainly three different orogenic stages related to gold mineralization are distinguished in the North Atlantic craton between ca. 2850 Ma and 2610 Ma. These are generally accretionary tectonic episodes, and gold mineralization is hosted either in reactivated fault systems between terranes or accretionary complex structures along the deformed cratonic margin. The larger orogenic gold occurrences formed at ca. 2740–2600 Ma that appears to be a period of orogenic gold mineralization globally, although significant gold resources in the North Atlantic craton have yet to be identified.  相似文献   

5.
The Karamay area, situated in the eastern part of Western Junggar, Southern Altaids, contains an ophiolitic mélange with ultramafic rocks, gabbro, basalt, chert and limestone, which show typical block-in-matrix structures, and coherent turbidites and tuffs. These lithological associations are interpreted as incoherent and coherent series formed in an accretionary complex. On the basis of detailed field mapping and analyses of the asymmetry of imbricate thrusts, duplexes, tilted structures, shear band cleavages, and the NW-verging inclined to overturned folds, we conclude that the overall movement in the accretionary complex was top-to-the-NW. The youngest tuff involved in the deformation contains detrital zircons that have a U–Pb age (LA-MC ICP-MS) of 308 ± 7 Ma. 39Ar–40Ar resistance furnace step-heating of amphibole separates from a diorite dike, which cuts the folded and imbricated rocks in the accretionary prism, yielded a plateau age of 307 ± 2 Ma. Consequently, the age of the deformation in the prism is tightly constrained at 307–308 Ma, implying that the deformation occurred in an extremely short time-span during SE-ward subduction. Combined contemporaneous occurrence of Baogutu adakite, high-Mg, Sr-enriched and Y-poor dioritic dikes, Miaoergou charnockite, and Maliya mafic rocks, we further suggest the accretionary complex was cut by near-trench volcanic rocks and plutons possibly due to interaction with a spreading ridge.  相似文献   

6.
《Gondwana Research》2014,25(1):309-337
The Trans-Altai Zone in southern Mongolia is characterized by thrusting of greenschist-facies Silurian oceanic rocks over Devonian and Lower Carboniferous volcano-sedimentary sequences, by E–W directed folding affecting the early Carboniferous volcanic rocks, and by the development of N–S trending magmatic fabrics in the Devonian–Carboniferous arc plutons. This structural pattern is interpreted as the result of early Carboniferous thick-skinned E–W directed nappe stacking of oceanic crust associated with syn-compressional emplacement of a magmatic arc. The southernmost South Gobi Zone represents a Proterozoic continental domain affected by shallow crustal greenschist-facies detachments of Ordovician and Devonian cover sequences from the Proterozoic substratum, whereas supracrustal Carboniferous volcanic rocks and Permian sediments were folded into N–S upright folds. This structural pattern implies E–W directed thin-skinned tectonics operating from the late Carboniferous to the Permian, as demonstrated by K–Ar ages ranging from ~ 320 Ma to 257 Ma for clay fractions separated from a variety of rock types. Moreover, the geographical distribution of granitoids combined with their geochemistry and SHRIMP U–Pb zircon ages form distinct groups of Carboniferous and Permian age that record typical processes of magma generation and increase in crustal thickness. The field observations combined with clay ages, the geochemical characteristics of the granitoids and their ages imply that the E–W trending zone affected by tectonism migrated southwards, leaving the Trans Altai Zone inactive during the late Carboniferous and Permian, suggesting that the two units were tectonically amalgamated along a major E–W trending strike slip fault zone. This event was related to late Carboniferous subduction that was responsible for the vast volume of granitoid magma emplaced at 300–305 Ma in the South Gobi and at 307–308 Ma in the Trans-Altai Zones. The formation and growth of the crust was initially due only to subduction and accretion processes. During the post-collisional period from 305 to 290 Ma the addition of heat to the crust led to the generation of (per-) alkaline melts. Once amalgamated, these two different crustal domains were affected by N–S compression during the Triassic and early Jurassic (185–173 Ma), resulting in E–W refolding of early thrusts and folds and major shortening of both tectonic zones.  相似文献   

7.
《Gondwana Research》2007,11(3-4):267-276
The boundary between the Archean cratons and the Eastern Ghats Belt in peninsular India represents a rifted Mesoproterozoic continental margin which was overprinted by a Pan-African collisional event associated with the westward thrusting of the Eastern Ghats granulites over the cratonic foreland. The contact zone contains a number of deformed and metamorphosed nepheline syenite complexes of rift-related geochemical affinities. In addition to the nepheline-bearing rocks, metamorphosed quartz-bearing monzosyenitic bodies can also be identified along the suture in the region between the Godavari-Pranhita graben and the Prakasam Igneous Province. One such occurrence at Jojuru near Kondapalle is geochemically comparable to the nepheline syenites and furnishes a weighted mean concordant U–Th–Pb SHRIMP zircon age of 1263 ± 23 Ma (2σ), which provides a lower age bracket for the rift-related magmatic activity. The original igneous mineral assemblage in the monzosyenite was partially replaced by the formation of coronitic garnet during the Pan-African metamorphism of the rocks. PT estimates of garnet corona formation at the interface between clinopyroxene–orthopyroxene–ilmenite clusters and plagioclase indicate mid to upper amphibolite facies condition (5.5–7.0 kbar and 600–700 °C) during the thrust induced deformation and metamorphism associated with the Pan-African collisional tectonics.  相似文献   

8.
Mississippi Valley type (MVT) Pb–Zn deposits can occur in orogenic thrust belts. However, the relationship between MVT ore-forming processes and thrusting is unclear. The 1500-km-long Sanjiang Metallogenic Belt in Tibetan Plateau is an important thrust-controlled MVT ore province with 860 Mt at 0.76–2.3% Pb, 0.3–6.1% Zn. The Zhaofayong MVT ore cluster in the Changdu area is a typical sample. The orebodies in this ore cluster are hosted in limestone, controlled by secondary faults to regional thrusts and forming along these faults. Two Pb–Zn mineralization stages in this cluster are recognized. Stage I is characterized by coarse and euhedral galena + sphalerite + calcite + fluorite + barite and Stage II by fine grained sphalerite + galena + pyrite + calcite. Sm–Nd isotopic dating of calcite forming in Stage I yields isochron ages of 41.1–38.1 Ma, suggesting the mineralization formed during extension following the first regional compression in the Changdu area. The connection between Stage I mineralization and the regional thrusting in the Changdu area can extend to the whole Sanjiang belt. Two stages of regional Pb–Zn mineralization are recognized between 65 Ma and 30 Ma and between 30 Ma and 16 Ma in the belt. The two Pb–Zn mineralization stages are consistent with those regional episodic thrusting activities and both of them immediately occurred after the episodic thrusting. An interpretation of the regional Pb–Zn mineralization is that regional compression forced the movement of hydrothermal fluids along regional thrust-nappe detachment faults and subsequent post-thrust extension caused the migration of hydrothermal fluids to the ore forming locations. The two mineralization stages in the Sanjiang Belt indicate complex processes related to India–Eurasia collision and the gradually younger mineralization ages from southeast to northwest indicate the collision follows the same direction.  相似文献   

9.
Almora Nappe in Uttarakhand, India, is a Lesser Himalayan representative of the Himalayan Metamorphic Belt that was tectonically transported over the Main Central Thrust (MCT) from Higher Himalaya. The Basal Shear zone of Almora Nappe shows complicated structural pattern of polyphase deformation and metamorphism. The rocks exposed along the northern and southern margins of this nappe are highly mylonitized while the degree of mylonitization decreases towards the central part where the rocks eventually grade into unmylonitized metamorphics.Mylonitized rocks near the roof of the Basal Shear zone show dynamic metamorphism (M2) reaching upto greenschist facies (~450 °C/4 kbar). In the central part of nappe the unmylonitized schists and gneisses are affected by regional metamorphism (M1) reaching upper amphibolite facies (~4.0–7.9 kbar and ~500–709 °C). Four zones of regional metamorphism progressing from chlorite–biotite to sillimanite–K-feldspar zone demarcated by specific reaction isograds have been identified. These metamorphic zones show a repetition suggesting that the zones are involved in tight F2 – folding which has affected the metamorphics. South of the Almora town, the regionally metamorphosed rocks have been intruded by Almora Granite (560 ± 20 Ma) resulting in contact metamorphism. The contact metamorphic signatures overprint the regional S2 foliation. It is inferred that the dominant regional metamorphism in Almora Nappe is highly likely to be of pre-Himalayan (Precambrian!) age.  相似文献   

10.
《Precambrian Research》2007,152(1-2):1-26
Thermo-chronologic considerations in the Australo-Antarctic domains suggest that the Prydz Bay Pan-African suture of East Antarctica continues westward into India. However, the location of the suture within Eastern India has so far been uncertain because of a lack of adequate thermo-chronological information. In this study, electron microprobe (EPMA) monazite dates and mineral paragenesis of granulite facies metapelites are reported from two areas of the Shillong–Meghalaya gneissic complex (SMGC), a crustal block located in the extreme northeast of the Indian shield close to the Australo-Antarctic block in Neoproterozoic-Cambrian paleomagnetic reconstructions of the Rodinia supercontinent. In the Garo-Goalpara Hills region, a well constrained Mesoproterozoic age of 1596 ± 15 Ma (n = 103) is correlated with a counterclockwise pressure–temperature path with near peak conditions of 7–8 kbar and 850 °C. Rare matrix monazite rims record younger ages (1032–1273 Ma). At Sonapahar region, 50 km ESE of Garo-Goalpara Hills, homogenous monazite grains in granulite facies metapelites yield EPMA dates tightly clustered at 500 ± 14 Ma (n = 36) irrespective of their textural setting in a well-annealed mineral matrix. In a few zoned monazite grains, the cores yield older ages of 1078 ± 31 Ma (n = 10) and 1472 ± 38 Ma (n = 13). The 500 Ma date corresponds with the ca. 880–480 Ma Rb–Sr dates of porphyritic granites that predominantly intruded the east-central part of the SMGC. We propose that the progressively eastward dominance of Cambro-Ordovician ages in the SMGC indicates a Pan-African final amalgamation of the Indian plate with the Australo-Antarctic plate and a northward extension of the Prydz Bay suture through the SMGC, with the western boundary of the suture possibly located between the Garo-Goalpara Hills and Sonapahar areas.  相似文献   

11.
Garnet-bearing micaschists and paragneisses of the Yaounde Group in the Pan-African Central African Orogenic Belt in Cameroon underwent a polyphase structural evolution with the deformation stages D1–D2, D3 and D4. The garnet-bearing assemblages crystallized in course of the deformation stage D1–D2 which led to the formation of the regional main foliation S2. In XCaXMg coordinates one can distinguish several zonation trends in the garnet porphyroblasts. Zonation trends with increasing XMg and variably decreasing XCa signalize a garnet growth during prograde metamorphism. Intermineral microstructures provided criteria for local equilibria and a structurally controlled application of geothermobarometers based on cation exchange and net transfer reactions. The syndeformational PT path sections calculated from cores and rims of garnets in individual samples partly overlap and align along clockwise PT trends. The PT evolution started at ~450 °C/7 kbar, passed high-pressure conditions at 11–12 kbar at variable temperatures (600–700 °C) and involved a marked decompression toward 6–7 kbar at high temperatures (700–750 °C). Th–U–Pb dating of metamorphic monazite by electron microprobe (EMP-CHIME method) in eight samples revealed a single period of crystallization between 613 ± 33 Ma and 586 ± 15 Ma. The EMP-monazite age populations between 613 ± 33 Ma enclosed in garnet and 605 ± 12 Ma in the matrix apparently bracket the high temperature–intermediate pressure stage at the end of the prograde PT path. The younger monazites crystallized still at amphibolite-facies conditions during subsequent retrogression. The Pan-African overall clockwise PT evolution in the Yaounde Group with its syndeformational high pressure stages and marked pressure variations is typical of the parts of orogens which underwent contractional crustal thickening by stacking of nappe units during continental collision and/or during subduction-related accretionary processes.  相似文献   

12.
The coastal Changle-Nan’ao tectonic zone of SE China contains important geological records of the Late Mesozoic orogeny and post-orogenic extension in this part of the Asian continent. The folded and metamorphosed T3–J1 sedimentary rocks are unconformably overlain by Early Cretaceous volcanic rocks or occur as amphibolite facies enclaves in late Jurassic to early Cretaceous gneissic granites. Moreover, all the metamorphic and/or deformed rocks are intruded by Cretaceous fine-grained granitic plutons or dykes. In order to understand the orogenic development, we undertook a comprehensive zircon U–Pb geochronology on a variety of rock types, including paragneiss, migmatitic gneiss, gneissic granite, leucogranite, and fine-grained granitoids. Zircon U–Pb dating on gneissic granites, migmatitic gneisses, and leucogranite dyke yielded a similar age range of 147–135 Ma. Meanwhile, protoliths of some gneissic granites and migmatitic gneisses are found to be late Jurassic magmatic rocks (ca. 165–150 Ma). The little deformed and unmetamorphosed Cretaceous plutons or dykes were dated at 132–117 Ma. These new age data indicate that the orogeny lasted from late Jurassic (ca. 165 Ma) to early Cretaceous (ca. 135 Ma). The tectonic transition from the syn-kinematic magmatism and migmatization (147–136 Ma) to the post-kinematic plutonism (132–117 Ma) occurred at 136–132 Ma.  相似文献   

13.
Field and petrostructural investigations in the Central Mauritanides provide new precisions on the polyorogenic character of the nappe edifice of this belt. The upper structural unit exposed in the Gaouâ area includes anatectic gneisses and high-grade metasediments affected by medium temperature, high-pressure metamorphism and cut by granitoids. They represent a basement unconformably overlain by a monometamorphic cover, the Gaouâ Group, of assumed lower Paleozoic age. Late Paleozoic regional metamorphism of metapelites from this cover is characterized by pyrophyllite–kyanite–chloritoid assemblages equilibrated at T around 420 °C and P = 1 GPa. In the lower structural unit exposed in the south around Boufkerine-Farkâkâ, metapelites of the Gadel Group display slightly retrogressed garnet–kyanite–staurolite–rutile assemblages that equilibrated at T around 600 °C and P ? 1.2 GPa before the intrusion of 639 Ma old plutons . The Gadel Group locally overlies in unconformity polycyclic gneisses. This continental assemblage represents an outboard terrane inserted between two monocyclic greenschist facies terranes: remnants of oceanic lithosphere in the east and arc-derived metasediments and metavolcanics cut by 670 Ma old calc-alkaline plutons in the west. All units have been involved in late Paleozoic nappes emplaced to the east above the West African craton and its late Neoproterozoic to Cambro-ordovician cover. Though an east-directed vergence is locally recorded in the Neoproterozoic units, most early E-W trending stretching and mineral lineations are synchronous with greenschist facies metamorphism developed during the Late Paleozoic and roughly coeval with the Applachian nappe system.  相似文献   

14.
《Precambrian Research》2006,144(1-2):126-139
In the western Churchill Province, Canadian Shield, Neoarchean supracrustal and plutonic rocks, intruded by Paleoproterozoic mafic dykes and granitic rocks, comprise the MacQuoid supracrustal belt and the structurally overlying Cross Bay plutonic complex. They form part of the northwestern Hearne subdomain that occupies an intermediate position between the continental Rae domain to the north and west, and the oceanic central Hearne subdomain to the south and east. New geological mapping and supporting geoscience are compatible with the presence of 2550–2500 Ma, southeast-directed, mid-crustal, thick-skinned thrusting that juxtaposed the plutonic complex over the supracrustal belt. The structural contact between the MacQuoid supracrustal belt and the Cross Bay plutonic complex potentially represents a fundamental boundary between isotopically distinct crustal blocks.The ∼2190 Ma MacQuoid mafic dyke swarm cuts across Neoarchean deformation fabrics, but records ∼1.9 Ga, deep-crustal, regional metamorphism that affected both the supracrustal belt and the plutonic complex. Other Paleoproterozoic deformation events that occurred at ∼1850–1810 Ma are of local extent and appear to be relatively minor manifestations of more important events elsewhere, related to the Trans-Hudson orogen.  相似文献   

15.
The Panrimalai area constitutes part of the granulite-facies rocks of the Madurai block in the Southern Granulite Terrain (SGT), India. Garnet-bearing mafic granulites in Panrimalai occur as small enclaves within charnockite. The common stable assemblage during peak metamorphism contains hornblende, garnet, orthopyroxene, clinopyroxene, quartz and plagioclase. The resorption of garnet in various reaction textures and the development of spectacular orthopyroxene–plagioclase and hornblende–plagioclase symplectites characterize the subsequent stages of metamorphism. Application of multi-equilibrium calculation procedures for mineral core compositions of the early assemblage yields near peak conditions at   900 °C at 9 kbar. These estimates are the highest yet reported in mafic granulites from the Madurai block. The post-peak PT path is constructed for the mafic granulites based on observed microstructural relations and thermobarometric results is characterized by a steep clockwise decompressional PT segment from   9 to  < 4.5 kbar. Constraints from model Nd ages provide evidence for Paleoproterozoic magmatism restricted to the Madurai block in the Southern Granulite Terrain. The early part of the crustal evolution of the Panrimalai granulites could be coeval with the Paleoproterozoic event. Subsequent development of symplectitic assemblages via near-isothermal decompression can be ascribed to a distinctly later tectonic event. Available U–Pb and Sm–Nd mineral dates suggest a widespread Pan-African tectonothermal event in the SGT. Given the general recognition of ultrahigh-temperature (UHT) and isothermal decompression (ITD) in Pan-African age metamorphism in the East-African–Antarctic Orogen (EAAO) , the Panrimalai UHT history is considered to be part of this record.  相似文献   

16.
《Journal of Structural Geology》2002,24(6-7):1195-1214
Penetrative deformation occurred ca. 70 Ma ago throughout the northern Valhalla complex in Valhalla and Passmore domes and in the Gwillim Creek shear zone, exposed at the deepest structural levels in both domes. Intense strain (ST) in the Gwillim Creek shear zone (domain II) was synchronous with and outlasted deformation (D2) throughout the northern complex (domain I). Upper-amphibolite facies peak mineral assemblages define the predominant foliation. Temperature and pressure results, determined from microdomains with established relationships to reaction textures and microstructures, provide constraints on conditions under which deformation occurred. Deformation was synchronous with and outlasted peak metamorphic conditions at all structural levels. Peak conditions of 825°C and 730 MPa and 850°C and 840 MPa were determined for domains I and II, respectively. This was followed by cooling and retrograde garnet breakdown at conditions of 715°C and 490 MPa and 765°C and 730 MPa in domains I and II, respectively. The faster cooling rate per kilometer of exhumation for domain II relative to domain I is consistent with a model of conductive cooling via thrusting of domain II on to a cold footwall. Metamorphism is interpreted to have resulted from crustal thickening and burial to depths of ca. 25 km based on an inferred clockwise PT path and the paucity of Late Cretaceous intrusions. Lack of retrograde metamorphism throughout the complex and the high degree of annealing of microstructures indicates that the rocks remained above greenschist-facies conditions until they were exhumed in the Early Tertiary on the Valkyr–Slocan Lake extensional shear zone system.Previous workers have determined that the peak of metamorphism occurred at 72–67 Ma in a restricted locality in the core of Passmore dome, near Vallican. Our study links this dated metamorphism with the structural evolution and metamorphic history throughout the area, and shows that supracrustal rocks at all structural levels in Valhalla and Passmore domes underwent the same metamorphic and deformation event as those near Vallican. Therefore, we assign a ca. 70 Ma age to the penetrative, high-temperature deformation in northern Valhalla complex and the Gwillim Creek shear zone. This coincides with a major period of shortening in the Rocky Mountains of the Foreland belt. Strain in northern Valhalla complex may represent a local transient shear zone that accommodated crustal thickening in the hinterland during orogen-scale compression, or it may be an exhumed part of the basal detachment of the Rocky Mountains.  相似文献   

17.
The northern Banda Arc, eastern Indonesia, exposes upper mantle/lower crustal complexes comprising lherzolites and granulite facies migmatites of the ‘Kobipoto Complex’. Residual garnet–sillimanite granulites, which contain spinel + quartz inclusions within garnet, experienced ultrahigh-temperature (UHT; > 900 °C) conditions at 16 Ma due to heat supplied by lherzolites exhumed during slab rollback in the Banda Arc. Here, we present U–Pb zircon ages and new whole-rock geochemical analyses that document a protracted history of high-T metamorphism, melting, and acid magmatism of a common sedimentary protolith. Detrital zircons from the Kobipoto Complex migmatites, with ages between 3.4 Ga and 216 Ma, show that their protolith was derived from both West Papua and the Archean of Western Australia, and that metamorphism of these rocks on Seram could not have occurred until the Late Triassic. Zircons within the granulites then experienced three subsequent episodes of growth – at 215–173 Ma, 25–20 Ma, and at c. 16 Ma. The population of zircon rims with ages between 215 and 173 Ma document significant metamorphic (± partial melting) events that we attribute to subduction beneath the Bird's Head peninsula and Sula Spur, which occurred until the Banda and Argo continental blocks were rifted from the NW Australian margin of Gondwana in the Late Jurassic (from c. 160 Ma). Late Oligocene-Early Miocene collision between Australia (the Sula Spur) and SE Asia (northern Sulawesi) was then recorded by crystallisation of several 25–20 Ma zircon rims. Thereafter, a large population of c. 16 Ma zircon rims grew during subsequent and extensive Middle Miocene metamorphism and melting of the Kobipoto complex rocks beneath Seram under high- to ultrahigh-temperature (HT–UHT) conditions. Lherzolites located adjacent to the granulite-facies migmatites in central Seram equilibrated at 1280–1300 °C upon their exhumation to 1 GPa (~ 37 km) depth, whereupon they supplied sufficient heat to have metamorphosed adjacent Kobipoto Complex migmatites under UHT conditions at 16 Ma. Calculations suggesting slight (~ 10 vol%) mantle melting are consistent with observations of minor gabbroic intrusions and scarce harzburgites. Subsequent extension during continued slab rollback exhumed both the lherzolites and adjacent granulite-facies migmatites beneath extensional detachment faults in western Seram at 6.0–5.5 Ma, and on Ambon at 3.5 Ma, as recorded by subsequent zircon growth and 40Ar/39Ar ages in these regions. Ambonites, cordierite- and garnet-bearing dacites sourced predominantly from melts generated in the Kobipoto Complex migmatites, were later erupted on Ambon from 3.0 to 1.9 Ma.  相似文献   

18.
The Amapá Block, southeastern Guiana Shield, represents an Archean block involved in a large Paleoproterozoic belt, with evolution related to the Transamazonian orogenic cycle (2.26 to 1.95 Ga). High spatial resolution dating using an electron-probe microanalyzer (EPMA) was employed to obtain U–Th–Pb chemical ages in monazite of seven rock samples of the Archean basement from that tectonic block, which underwent granulite- and amphibolite-facies metamorphism. Pb–Pb zircon dating was also performed on one sample.Monazite and zircon ages demonstrate that the metamorphic overprinting of the Archean basement occurred during the Transamazonian orogenesis, and two main tectono-thermal events were recorded. The first one is revealed by monazite ages of 2096 ± 6, 2093 ± 8, 2088 ± 8, 2087 ± 3 and 2086 ± 8 Ma, and by the zircon age of 2091 ± 5 Ma, obtained in granulitic rocks. These concordant ages provided a reliable estimate of the time of the granulite-facies metamorphism in the southwest of the Amapá Block and, coupled with petro-structural data, suggest that it was contemporaneous to the development of a thrusting system associated to the collisional stage of the Transamazonian orogenesis, at about 2.10–2.08 Ga.The later event, under amphibolite-facies conditions, is recorded by monazite ages of 2056 ± 7 and 2038 ± 6 Ma, and is consistent with a post-collisional stage, marked by granite emplacement and coeval migmatization of the Archean basement along strike-slip shear zones.  相似文献   

19.
In eastern Thailand the Klaeng fault zone includes a high-grade metamorphic rock assemblage, named Nong Yai Gneiss, which extends about 30 km in a NW–SE direction along the fault zone. The rocks of this brittle-fault strand consist of amphibolite to granulite grade gneissic rocks. Structural analysis indicates that the rocks in this area experienced three distinct episodes of deformation (D1–D3). The first (D1) formed large-scale NW–SE-trending isoclinal folds (F1) that were reworked by small-scale tight to open folds (F2) during the second deformation (D2). D1 and D2 resulted from NE–SW shortening during the Triassic Indosinian orogeny before being cross-cut by leucogranites. D1 and D2 fabrics were then reworked by D3 sinistral shearing, including shear planes (S3) and mineral stretching lineations (L3). LA–MC–ICP–MS U–Pb zircon dating suggested that the leucogranite intrusion and the magmatic crystallization took place at 78.6 ± 0.7 Ma followed by a second crystallization at 67 ± 1 to 72.1 ± 0.6 Ma. Both crystallizations occurred in the Late Cretaceous and, it is suggested, were tectonically influenced by SE Asian region effects of the West Burma and Shan-Thai/Sibumasu collision or development of an Andean-type margin. The sinistral ductile movement of D3 was coeval with the peak metamorphism that occurred in the Eocene during the early phases of the India–Asia collision.  相似文献   

20.
New U–Pb SHRIMP zircon ages combined with geochemical and isotope investigation in the Sierra de Maz and Sierra de Pie de Palo and a xenolith of the Precordillera basement (Ullún), provides insight into the identification of major Grenville-age tectonomagmatic events and their timing in the Western Sierras Pampeanas. The study reveals two contrasting scenarios that evolved separately during the 300 Ma long history: Sierra de Maz, which was always part of a continental crust, and the juvenile oceanic arc and back-arc sector of Sierra de Pie de Palo and Ullún. The oldest rocks are the Andino-type granitic orthogneisses of Sierra de Maz (1330–1260 Ma) and associated subalkaline basic rocks, that were part of an active continental margin developed in a Paleoproterozoic crust. Amphibolite facies metamorphism affected the orthogneisses at ca. 1175 Ma, while granulite facies was attained in neighbouring meta-sediments and basic granulites. Interruption of continental-edge magmatism and high-grade metamorphism is interpreted as related to an arc–continental collision dated by zircon overgrowths at 1170–1230 Ma. The next event consisted of massif-type anorthosites and related meta-jotunites, meta-mangerites (1092 ± 6 Ma) and meta-granites (1086 ± 10 Ma) that define an AMCG complex in Sierra de Maz. The emplacement of these mantle-derived magmas during an extensional episode produced a widespread thermal overprint at ca. 1095 Ma in neighbouring country rocks. In constrast, juvenile oceanic arc and back-arc complexes dominated the Sierra de Pie de Palo–Ullún sector, that was fully developed ca. 1200 Ma (1196 ± 8 Ma metagabbro). A new episode of oceanic arc magmatism at ~1165 Ma was roughly coeval with the amphibolite high-grade metamorphism of Sierra de Maz, indicating that these two sectors underwent independent geodynamic scenarios at this age. Two more episodes of arc subduction are registered in the Pie de Palo–Ullún sector: (i) 1110 ± 10 Ma orthogneisses and basic amphibolites with geochemical fingerprints of emplacement in a more mature crust, and (ii) a 1027 ± 17 Ma TTG juvenile suite, which is the youngest Grenville-age magmatic event registered in the Western Sierras Pampeanas. The geodynamic history in both study areas reveals a complex orogenic evolution, dominated by convergent tectonics and accretion of juvenile oceanic arcs to the continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号