首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
从射电运动Ⅳ型爆发的特征和多频射电爆发开始时序的分析可以看出这个伴生的白光耀斑和射电爆发同是由低日冕的加速电子激活,可能通过非热电子沉降能量于色球层,产生了色球层压缩波,又经二步能量传输过程过程中在上光球导致WLF。通过对共生事件的分析,并与已知的二类WLF的观测特征作了比较,提出该WLF可能属于二类的混合型,并提出了WLF可能存在射电辐射的必要条件。  相似文献   

2.
1994年1月5日日面上产生的1次1N/M1.0耀斑爆发,射电1.42GHz高时间分辨率观测也同时接收到,在小爆发过程里瘵有53个脉冲信号叠加在连志辐射背景上,是很罕见的现象。在AR7646的黑子前导区域,5日有2处新浮的小黑子对,磁场分别的现象。  相似文献   

3.
通过1991年6月6日共生太阳白光耀斑(WLF)的射电运动IV型发及其伴随现象(包括耀斑后环、爆发衰减相的射电脉动、多波段电辐身和太阳物质抛射等)瓣分析,定笥地探讨了WLF的起源、加热机制和发射地点的问题,假设了WLF和射电运动IV型射电爆发可能有共同起源的低日晚电子加速区,讨论了WLF的能量传输可能是通过二步加速过程,即来自低日冕的非热降能量于色球层,产生色球层的压缩波或向下的辐身场进而使上光球  相似文献   

4.
5.
谢瑞祥  汪敏 《天文学报》1999,40(4):419-427
通过1991年6月6日一个复杂的太阳活动事件(包括宽带射电运动Ⅳ型爆发、脉冲相伴生的白光耀斑、耀斑后环及其伴生的射电多重短周期(约1-4劝现象等)的分析,探讨了白光耀斑产生的射电辐射特征,根据太阳白光耀斑和射电运动Ⅳ型爆发产生的物理过程,着重讨论了射电运动Ⅳ型爆发、耀斑后环和短周期脉动现象,并认为它们可能是白光耀斑的对应物。  相似文献   

6.
从射电运动Ⅳ型爆发的特征和多频射电爆发开始时序的分析可以看出这个伴生的白光耀斑( W L F) 和射电爆发同是由低日冕的加速电子激活,可能通过非热电子沉降能量于色球层, 产生了色球层压缩波, 又经二步能量传输过程在上光球层导致 W L F。通过对共生事件的分析, 并与已知的二类 W L F的观测特征作了比较, 提出该 W L F 可能属于二类的混合型, 并提出 W L F 可能存在射电辐射的必要条件  相似文献   

7.
通过1991年6月6日共生太阳白光耀斑(WLF)的射电运动IV型爆发及其伴随现象(包括耀斑后环、爆发衰减相的射电脉动、多波段射电辐射和太阳物质抛射等)观测资料的分析,定性地探讨了WLF的起源、加热机制和发射地点的问题.假设了WLF和射电运动IV型射电爆发可能有共同起源的低日冕电子加速区,讨论了WLF的能量传输可能是通过二步加速过程,即来自低日冕的非热电子沉降能量于色球层,产生色球层的压缩波或向下的辐射场进而使上光球层温度增加导致WLF此外,提出WLF可能会伴有耀斑后环和射电精细结构的对应物.  相似文献   

8.
通过1991 年6 月6 日一个复杂的太阳活动事件( 包括宽带射电运动Ⅳ型爆发、脉冲相伴生的白光耀斑、耀斑后环及其伴生的射电多重短周期( 约1 - 4 秒) 脉动现象等) 的分析,探讨了白光耀斑产生的射电辐射特征,根据太阳白光耀斑和射电运动Ⅳ型爆发产生的物理过程,着重讨论了射电运动Ⅳ型爆发、耀斑后环和短周期脉动现象,并认为它们可能是白光耀斑的对应物  相似文献   

9.
太阳射电爆发的起因:耀斑或/和日冕物质抛射   总被引:2,自引:0,他引:2  
本文分析了近二十年来的地面和空间太阳有关观测资料,得出太阳射电爆发的起因为耀斑和/ 或日冕物质抛射(CME) 而不仅仅是耀斑,这将有利于更深刻地了解太阳射电爆发和共生高能现象的物理过程  相似文献   

10.
一个新型分米波太阳微耀斑现象的观测分析   总被引:1,自引:0,他引:1  
本介绍一组短分米波(1.42GHz)太阳微耀斑的射电和光学辐射特征,它们包含3个叠加在连续辐射背景上的射电快速精细结构(FFS),即准周期快速脉冲链(称微耀斑)它们的形态相似,强度大约在150-200sfu范围内,其寿命(半功率宽)大多为15-50ms,有18个分离的双峰结构,该事件产生的7646活动区中出现两处新浮现的几个小黑子,呈现复杂极性,可能存在多重交叉小磁流环多次重联的复杂状况,本定  相似文献   

11.
We investigate the relative timing between hard X-ray (HXR) peaks and structures in metric and decimetric radio emissions of solar flares using data from the RHESSI and Phoenix-2 instruments. The radio events under consideration are predominantly classified as type III bursts, decimetric pulsations and patches. The RHESSI data are demodulated using special techniques appropriate for a Phoenix-2 temporal resolution of 0.1 s. The absolute timing accuracy of the two instruments is found to be about 170 ms, and much better on the average. It is found that type III radio groups often coincide with enhanced HXR emission, but only a relatively small fraction (∼20%) of the groups show close correlation on time scales < 1 s. If structures correlate, the HXRs precede the type III emissions in a majority of cases, and by 0.69 ± 0.19 s on the average. Reversed drift type III bursts are also delayed, but high-frequency and harmonic emission is retarded less. The decimetric pulsations and patches (DCIM) have a larger scatter of delays, but do not have a statistically significant sign or an average different from zero. The time delay does not show a center-to-limb variation excluding simple propagation effects. The delay by scattering near the source region is suggested to be the most efficient process on the average for delaying type III radio emission.  相似文献   

12.
Drifting pulsation structures (DPSs) are considered to be radio signatures of the plasmoids formed during magnetic reconnection in the impulsive phase of solar flares. In the present paper we analyze oscillations and waves in seven examples of drifting pulsation structures, observed by the 800?–?2000 MHz Ond?ejov Radiospectrograph. For their analysis we use a new type of oscillation maps, which give us much more information as regards processes in DPSs than that in previous analyses. Based on these oscillation maps, made from radio spectra by the wavelet technique, we recognized quasi-periodic oscillations with periods ranging from about 1 to 108 s in all studied DPSs. This strongly supports the idea that DPSs are generated during a fragmented magnetic reconnection. Phases of most the oscillations in DPSs, especially for the period around 1 s, are synchronized (“infinite” frequency drift) in the whole frequency range of DPSs. For longer periods in some DPSs we found that the phases of the oscillations drift with the frequency drift in the interval from ?17 to \(+287~\mbox{MHz}\,\mbox{s}^{-1}\). We propose that these drifting phases can be caused (a) by the fast or slow magnetosonic waves generated during the magnetic reconnection and propagating through the plasmoid, (b) by a quasi-periodic structure in the plasma inflowing to the reconnection forming a plasmoid, and (c) by a quasi-periodically varying reconnection rate in the X-point of the reconnection close to the plasmoid.  相似文献   

13.
The radio emission during 201 selected X-ray solar flares was surveyed from 100 MHz to 4 GHz with the Phoenix-2 spectrometer of ETH Zürich. The selection includes all RHESSI flares larger than C5.0 jointly observed from launch until June 30, 2003. Detailed association rates of radio emission during X-ray flares are reported. In the decimeter wavelength range, type III bursts and the genuinely decimetric emissions (pulsations, continua, and narrowband spikes) were found equally frequently. Both occur predominantly in the peak phase of hard X-ray (HXR) emission, but are less in tune with HXRs than the high-frequency continuum exceeding 4 GHz, attributed to gyrosynchrotron radiation. In 10% of the HXR flares, an intense radiation of the above genuine decimetric types followed in the decay phase or later. Classic meter-wave type III bursts are associated in 33% of all HXR flares, but only in 4% are they the exclusive radio emission. Noise storms were the only radio emission in 5% of the HXR flares, some of them with extended duration. Despite the spatial association (same active region), the noise storm variations are found to be only loosely correlated in time with the X-ray flux. In a surprising 17% of the HXR flares, no coherent radio emission was found in the extremely broad band surveyed. The association but loose correlation between HXR and coherent radio emission is interpreted by multiple reconnection sites connected by common field lines.  相似文献   

14.
Yurovsky  Y.  Magun  A. 《Solar physics》1998,180(1-2):409-426
The distribution of pauses between subsequent elements of a periodic process is symmetric, while a random process produces an asymmetric exponential distribution. The third moment of the pause distribution, which is sensitive to the asymmetry, can therefore be used to discriminate between perodic and random processes. With such a method we analyze the observations of 19 series of solar type III radio bursts and find with a confidence of 0.99 that, on average, the bursts are randomly distributed in time. Only one series can be considered to be periodic with a confidence 0.5. The bandwidth of the repetition frequency of most bursts corresponds to the quality of oscillations of Q¯ = 1.0±0.6 that does not indicates a resonance. Therefore, the modulation of particle beams and intensity of type III radio emission should be considered mainly as the result of random processes. Thus, these properties observed in the majority of radio type III bursts do not support the existence of any periodic or resonant oscillations in the solar corona during flares, although some periodic processes in active regions cannot entirely be ruled out.  相似文献   

15.
We analyze the high-frequency drift radio structures observed by the spectrometer at Purple Mountain Observatory (PMO) over the frequency range of 4.5 – 7.5 GHz during the 18 March 2003 solar flare. The drifting structures take place before the soft X-ray maximum, almost at the maximum of hard X-ray flux at 25 – 50 keV. For the first time, the positive drift in this kind of radio structures is detected in such a high frequency range. Their global drifting rate is roughly estimated as 3.6 GHz s−1. They appear in four groups, lasting in total for less than 6 s, and have a broad bandwidth of more than 2 GHz but a smaller ratio of the bandwidth of the drifting structures to mean frequency than that of the lower frequency range. The lifetime of each individual burst in this event can be derived by using the high temporal resolution of the spectrometer at PMO and has an average value of 36.3 ms. Since the negative drifting structures observed in the 0.6 – 4.5 GHz frequency range were interpreted to be a radio signature of a plasmoid ejected upward (moving out of the Sun), the present observation may imply that it is possible for a plasmoid to move downward during a solar flare. However, for a confirmation of this suggestion direct radio imaging observation would be needed.  相似文献   

16.
Shanmugaraju  A.  Moon  Y.-J.  Dryer  M.  Umapathy  S. 《Solar physics》2003,217(2):301-317
We present results from a study of sunspots and faculae on continuum and Caii K images taken at the San Fernando Observatory (SFO) during 1989–1992; a total of approximately 800 images in each bandpass were used. About 18000 red sunspots, 147000 red faculae, and 800000 Caii K faculae were identified based on their contrasts. In addition, we computed the contrasts of pixels on the red images cospatial with Caii K faculae. Sunspot contrasts show a strong dependence on size but no dependence on heliocentric angle. There are continuous but systematic differences among facular regions. We find that the contrast of Caii K faculae is relatively insensitive to heliocentric angle, but is a strong function of facular size, in the sense that larger Caii K faculae are always brighter. The contrast of red faculae is a function of both heliocentric angle and size: the contrast functions show that larger regions contain larger flux tubes, contain deeper flux tubes, and have larger filling factors than small facular regions. Comparisons of cospatial pixels on red and Caii K images show a tight correlation between the average contrast of a region in the continuum and its size and heliocentric angle in the Caii K images. The average contrast of all facular regions is positive everywhere on the disk, even though the largest regions contain flux tubes which appear dark at disk center.  相似文献   

17.
Spectral continua observed during solar flares may contain information about both thermal and non-thermal heating mechanisms. Using two semi-empirical flare models F2 and FLA, we synthesize the thermal continua from optical to mm–radio domains and compare their intensities with quiet-Sun values computed from a recent model C7. In this way, the far-infrared and sub-mm/mm continua are studied for the first time, and we present our results as a benchmark for further modeling and for planning new observations, especially with the ALMA instrument. Finally, we demonstrate how these continua are formed and show a close correspondence between their brightness temperature and the kinetic-temperature structure of the flaring atmosphere.  相似文献   

18.
利用国家天文台(北京和昆明)的射电频谱仪(频段为0.65~7.6 GHz)和相关的NoRH/17GHz射电以及TRACE/171 EUV和Yohkoh/SXT的观测资料,分析了2001/04/10和10/19的2个共生精细时间结构的稀有事件,这2个事件的射电爆发时间轮廓和观测特征相似,通过这2个事件的微波(17GHz)偏振观测资料的比较,发现这2个射电爆发均由包含多重(4极)磁结构的复杂活动区引起,特别指出这2个耀斑最后都导致了耀斑后相的分米波射电爆发(第二次触发耀斑),这可能是后环引起的射电爆发。它们都分别对应于双极磁位形,表明这两次触发耀斑是由相似的耀斑模型产生。2个分米波爆发可能是相似(homologous)耀斑的射电表现,可以推测这两次耀斑的驱动器可能皆是磁流浮现或对消(因为源区有新的单或双极出现或消失),而它们的触发器皆是由双极反向Y型位形(具有一个双极拱的单磁流系统)的磁重联,耀斑后环的演化是导致耀斑后相分米波射电爆发的必要条件。我们认为,这双带耀斑对应的宽带射电爆发辐射机制是回旋同步加速辐射过程,而耀斑后相的窄带分米波爆发的辐射机制是等离子体辐射过程。  相似文献   

19.
傅其骏 《天文学进展》1997,15(3):198-217
太阳大气磁场的研究对于太阳大气物理及太阳活动研究是十分重要的。目前探测光球以外的日够以球,过渡区磁场的几乎唯一办法,是在紧密联系其他频说段取得的信息基础上使用射电观测。根据在微波,米波段有关辐射机制和传播过程,介绍了推导磁场讯息的基本射电方法。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号