首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quadrangle-grid velocity–stress finite difference method, based on a first-order hyperbolic system that is equivalent to Biot's equations, is developed for the simulation of wave propagation in 2-D heterogeneous porous media. In this method the velocity components of the solid material and of the pore fluid relative to that of the solid, and the stress components of three solid stresses and one fluid pressure are defined at different nodes for a staggered non-rectangular grid. The scheme uses non-orthogonal grids, allowing surface topography and curved interfaces to be easily modelled in the numerical simulation of seismic responses of poroelastic reservoirs. The free-surface conditions of complex geometry are achieved by using integral equilibrium equations on the surface, and the source implementations are simple. The algorithm is an extension of the quadrangle-grid finite difference method used for elastic wave equations.  相似文献   

2.
Summary. Numerical modelling is one of the most efficient methods for an investigation of the relationship between structural features and peculiarities of observed wavefields. It is practically the only method for 2-D and 3-D inhomogeneous media.
An algorithm based on ray theory has been developed for calculations of travel times and amplitudes of seismic waves in 3-D inhomogeneous media with curved interfaces. It was applied for numerical modelling of kinematic and dynamic characteristics of seismic waves propagating in laterally inhomogeneous media.
Travel-time and amplitude patterns were studied in the 2-D and 3-D models of a geosyncline, in which velocity distribution was given by an analytical function of the coordinates. For a more complicated model representing a subducting high-velocity lithospheric plate in a transition zone between oceanic and continental upper mantle, the velocity distribution was given by discrete values on a 2-D non-rectangular grid. It was shown that when a source was placed above the lithospheric plate, a shadow zone appeared along a strike of the structure, i.e. in the direction which is perpendicular to a strong lateral velocity gradient. Travel-time residuals were calculated along the seismological profile for a 3-D velocity distribution in the upper mantle beneath Central Asia, obtained as a result of inversion of travel times by the Backus-Gilbert method. They were found to be in a good agreement with the observed data.  相似文献   

3.
We propose approximate equations for P -wave ray theory Green's function for smooth inhomogeneous weakly anisotropic media. Equations are based on perturbation theory, in which deviations of anisotropy from isotropy are considered to be the first-order quantities. For evaluation of the approximate Green's function, earlier derived first-order ray tracing equations and in this paper derived first-order dynamic ray tracing equations are used.
The first-order ray theory P -wave Green's function for inhomogeneous, weakly anisotropic media of arbitrary symmetry depends, at most, on 15 weak-anisotropy parameters. For anisotropic media of higher-symmetry than monoclinic, all equations involved differ only slightly from the corresponding equations for isotropic media. For vanishing anisotropy, the equations reduce to equations for computation of standard ray theory Green's function for isotropic media. These properties make the proposed approximate Green's function an easy and natural substitute of traditional Green's function for isotropic media.
Numerical tests for configuration and models used in seismic prospecting indicate negligible dependence of accuracy of the approximate Green's function on inhomogeneity of the medium. Accuracy depends more strongly on strength of anisotropy in general and on angular variation of phase velocity due to anisotropy in particular. For example, for anisotropy of about 8 per cent, considered in the examples presented, the relative errors of the geometrical spreading are usually under 1 per cent; for anisotropy of about 20 per cent, however, they may locally reach as much as 20 per cent.  相似文献   

4.
Summary. Asymptotic ray theory is applied to surface waves in a medium where the lateral variations of structure are very smooth. Using ray-centred coordinates, parabolic equations are obtained for lateral variations while vertical structural variations at a given point are specified by eigenfunctions of normal mode theory as for the laterally homogeneous case. Final results on wavefields close to a ray can be expressed by formulations similar to those for elastic body waves in 2-D laterally heterogeneous media, except that the vertical dependence is described by eigenfunctions of 'local' Love or Rayleigh waves. The transport equation is written in terms of geometrical-ray spreading, group velocity and an energy integral. For the horizontal components there are both principal and additional components to describe the curvature of rays along the surface, as in the case of elastic body waves. The vertical component is decoupled from the horizontal components. With complex parameters the solutions for the dynamic ray tracing system correspond to Gaussian beams: the amplitude distribution is bell-shaped along the direction perpendicular to the ray and the solution is regular everywhere, even at caustics. Most of the characteristics of Gaussian beams for 2-D elastic body waves are also applicable to the surface wave case. At each frequency the solution may be regarded as a set of eigenfunctions propagating over a 2-D surface according to the phase velocity mapping.  相似文献   

5.
Summary. An algorithm for the computation of travel times, ray amplitudes and ray synthetic seismograms in 3-D laterally inhomogeneous media composed of isotropic and anisotropic layers is described. All 21 independent elastic parameters may vary within the anisotropic layers. Rays and travel times are evaluated by numerical solution of the ray tracing equations. Ray amplitudes are determined by evaluating reflection/ transmission coefficients and the geometrical spreading along individual rays. The geometrical spreading is computed approximately by numerical measurement of the cross-sectional area of the ray tube formed by three neighbouring rays. A similar approximate procedure is used for the determination of the coefficients of the paraxial ray approximation. The ray paraxial approximation makes computation of synthetic seismograms on the surface of the model very efficient. Examples of ray synthetic seismograms computed with a program package based on the described algorithm are presented.  相似文献   

6.
A method for calculating synthetic seismograms in laterally varying media   总被引:2,自引:0,他引:2  
Summary An effective algorithm for computing synthetic seismograms in laterally inhomogeneous media has been developed. The method, based on zero-order asymptotic ray theory, is primarily intended for use in refraction and reflection studies and provides an economical means of seismic modelling.
A given smoothed velocity-depth-distance model is divided into small squares with constant seismic parameters and first-order interfaces are represented by an arbitrary number of dipping linear segments. The computation of ray propagation and amplitudes through such a model does not involve complicated analytic expressions and therefore minimizes computer time.
Amplitudes are determined by geometrical spreading of spherical wave-fronts and energy partitioning at interfaces. Synthetic seismograms calculated for laterally homogeneous models are in good agreement with those obtained by the Reflectivity Method.  相似文献   

7.
Wave propagation in weakly anisotropic inhomogeneous media is studied by the quasi-isotropic approximation of ray theory. The approach is based on the ray-tracing and dynamic ray-tracing differential equations for an isotropic background medium. In addition, it requires the integration of a system of two complex coupled differential equations along the isotropic ray.
The interference of the qS waves is described by traveltime and polarization corrections of interacting isotropic S waves. For qP waves the approach leads to a correction of the traveltime of the P wave in the isotropic background medium.
Seismograms and particle-motion diagrams obtained from numerical computations are presented for models with different strengths of anisotropy.
The equivalence of the quasi-isotropic approximation and the quasi-shear-wave coupling theory is demonstrated. The quasi-isotropic approximation allows for a consideration of the limit from weak anisotropy to isotropy, especially in the case of qS waves, where the usual ray theory for anisotropic media fails.  相似文献   

8.
Geometric ray theory is an extremely efficient tool for modelling wave propagation through heterogeneous media. Its use is, however, only justified when the inhomogeneity satisfies certain smoothness criteria. These criteria are often not satisfied, for example in wave propagation through turbulent media. In this paper, the effect of velocity perturbations on the phase and amplitude of transient wavefields is investigated for the situation that the velocity perturbation is not necessarily smooth enough to justify the use of ray theory. It is shown that the phase and amplitude perturbations of transient arrivals can to first order be written as weighted averages of the velocity perturbation over the first Fresnel zone. The resulting averaging integrals are derived for a homogeneous reference medium as well as for inhomogeneous reference media where the equations of dynamic ray tracing need to be invoked. The use of the averaging integrals is illustrated with a numerical example. This example also shows that the derived averaging integrals form a useful starting point for further approximations. The fact that the delay time due to the velocity perturbation can be expressed as a weighted average over the first Fresnel zone explains the success of tomographic inversions schemes that are based on ray theory in situations where ray theory is strictly not justified; in that situation one merely collapses the true sensitivity function over the first Fresnel zone to a line integral along a geometric ray.  相似文献   

9.
Summary. The first non-trivial inverse problem for media with non-horizontal reflectors z = h ( x, y ) was set up for a model of the type: V = V ( z ), 0 ≤ z ≤ h ( x, y ), and the possibility of reconstructing the functions h ( x, y ) and V ( z ) at z ↦ (min h , max h ) was shown. In the alternative case, when h = constant and V = V ( x ) there is a unique solution. Only particular cases were considered for media with h = constant, v = V ( x, z ). In the second half of the 1970s, the conditional correctness of a number of inverse problems was proved and the important concept of a sufficient data system was proposed.
Over the last 20 yr much attention has been paid to layered homogeneous media with curved interfaces, which are reflectors and refractors at the same time. The task of continuing the eikonals second derivatives played a very important role in this problem. Using the connection between the second derivatives of the CDP travel-time curve and the eikonal from a phantom source at the base of the normal ray (V. Chernyak, S. Gritsenko, T. krey) there were obtained formulae of the Dix type.
Recently methods based on linearization using a small parameter were proposed for media with slightly curved interfaces. A number of iterative algorithms for optimization and inversion have been developed, which exploit advances in the solution of direct kinematical problems. The development of the theory of inverse problems and the statistical theory of interpretation has led to the creation of a general concept of multistep algorithms and their classification.  相似文献   

10.
I present a 2-D numerical-modelling algorithm based on a first-order velocity-stress hyperbolic system and a non-rectangular-grid finite-difference operator. In this method the velocity and stress are defined at different nodes for a staggered grid. The scheme uses non-orthogonal grids, thereby surface topography and curved interfaces can be easily modelled in the seismic-wave-propagation stimulation. The free-surface conditions of complex geometry are achieved by using integral equilibrium equations on the surface, and the stability of the free-surface conditions is improved by introducing local filter modification. The method incorporates desirable qualities of the finite-element method and the staggered-grid finite-difference scheme, which is of high accuracy and low computational cost.  相似文献   

11.
A tomographic inversion technique that inverts traveltimes to obtain a model of the subsurface in terms of velocities and interfaces is presented. It uses a combination of refraction, wide-angle reflection and normal-incidence data, it simultaneously inverts for velocities and interface depths, and it is able to quantify the errors and trade-offs in the final model. The technique uses an iterative linearized approach to the non-linear traveltime inversion problem. The subsurface is represented as a set of layers separated by interfaces, across which the velocity may be discontinuous. Within each layer the velocity varies in two dimensions and has a continuous first derivative. Rays are traced in this medium using a technique based on ray perturbation theory, and two-point ray tracing is avoided by interpolating the traveltimes to the receivers from a roughly equidistant fan of rays. The calculated traveltimes are inverted by simultaneously minimizing the misfit between the data and calculated traveltimes, and the roughness of the model. This 'smoothing regularization' stabilizes the solution of the inverse problem. In practice, the first iterations are performed with a high level of smoothing. As the inversion proceeds, the level of smoothing is gradually reduced until the traveltime residual is at the estimated level of noise in the data. At this point, a minimum-feature solution is obtained, which should contain only those features discernible over the noise.
The technique is tested on a synthetic data set, demonstrating its accuracy and stability and also illustrating the desirability of including a large number of different ray types in an inversion.  相似文献   

12.
Summary. Previous theoretical studies on the transfer function of crustal plane surface layers have been primarily based on applying recursion formulae to the solutions of wave equations. In this way the detailed physical insight of the transfer function is often obscure and it is very difficult to express the transfer function in an explicit form. To show that this situation can be improved by an alternative approach, we demonstrate in this paper with models of one and two surface layers that the explicit transfer function can be derived by summing multiple-reflected rays between interfaces. Since the derived transfer function is related explicitly to some physical parameters, such as wave travel times between interfaces, reflection and transmission coefficients at the interfaces, and attenuation and dispersion of waves in each layer of the model, it is more flexible than the traditional recursion form when applied to different models. This suggests that the ray theory can play an important role in problems of layered media.  相似文献   

13.
Ray tracing has recently been expressed for anisotropy specified in a local Cartesian coordinate system, which may vary continuously in a model specified by elastic parameters. It takes advantage of the fact that anisotropy is often of a simpler nature locally (and is thus specified by a smaller number of elastic parameters) and that the orientation of its symmetry elements may vary. Here we extend this approach by replacing the local Cartesian coordinate system with a curvilinear coordinate system of global extent and by applying the new approach to ray tracing and inhomogeneous dynamic ray tracing. The curvilinear coordinate system is orthogonal and is constructed so that the coordinate axes are consistent with the considered anisotropy of the medium. Our formulation allows for computation of ray attributes (e.g. ray velocity vector and paraxial ray attributes) in the curvilinear coordinate system, while rays are computed in global Cartesian coordinates. Compared to the classic formulation in terms of 21 elastic moduli in global Cartesian coordinates, the main advantages are improved efficiency, lower computer-memory requirements, and conservation of anisotropic symmetry throughout the model.  相似文献   

14.
The parameter that defines the ray tracing equations in the direct geometrical approach is the product of the radius of curvature of the wave front by the velocity on the wave front ( RV ). To show this, we derive motion equations for the centre and the radius of curvature of an expanding wave front. The continuity of RV along rays implies Snell's Law. For constant velocities the equation for the radius of curvature reduces to the original Huygens' Principle. The variable RV can be computed during ray tracing and used to determine the local radius of curvature, which in turn can be used in geometrical spreading, amplitude corrections and structure interpretation.  相似文献   

15.
Rays propagating through strongly laterally varying media exhibit chaotic behaviour. This means that initially close rays diverge exponentially, rather than according to a power law. This chaotic behaviour is especially pronounced if the medium contains laterally varying interfaces. By studying simple 2-D and 3-D versions of models with laterally varying interfaces, the importance of chaotic ray behaviour is determined. A model of the Moho below Germany produces sharp variations with epicentral distance of the number of arrivals. In addition, the number of caustics grows dramatically: up to 1200 caustics are present between a distance of 0 and 800 km. Using the theory of Hamiltonian systems, a more in-depth study of the chaotic character of the ray equations is obtained. It is found that for realistic heterogeneous models most of the relevant rays will exhibit chaotic behaviour. The degree of chaos is quantified in terms of predictability horizons. Beyond the predictability horizons ray tracing cannot be carried out accurately. For the models under consideration, the length from the source to the predictability horizon has an order of magnitude of 1000 km. The chaotic behaviour of the rays makes it necessary to use extensions of asymptotic ray theory, such as Maslov theory, to compute seismic waveforms. It is shown that pseudo-caustics, an important obstacle in computing Maslov synthetics, are a generic feature of the 2-D laterally varying models that are studied. Eventually, the use of asymptotic methods is restricted because of the inaccuracy in the computation of the ray paths.  相似文献   

16.
Summary. An approximate analytical solution for flow in a mantle plume of constant radius, viscosity, and density contrast is obtained in cylindrical coordinates. the differential equations for vertical velocity of the mantle surrounding the plume and for topography are homologous to the equation for flexure of an elastic plate. Although the model is too simple to be fully applicable to the Earth, one can conclude that the vertical velocity in the mantle changes significantly away from plumes, that the viscosity of the plume is important for controlling flow rate, and that the long-wavelength geoid anomalies are sensitive to the viscosity of the surrounding mantle. the first induced upwelling away from a plume is quite weak and unlikely to control the spacing of plumes.  相似文献   

17.
Summary. Adopting a multiple scale method, the non-linear evolution of fully developed dunes of non-cohesive sand is studied using Kennedy's model. It is shown that both the two- and three-dimensional problems are, in general, governed by three coupled second-order partial differential equations. However, for boundary conditions appropriate to localized solutions these equations reduce to one for the two-dimensional problem and to two for the three-dimensional problem. It is also found that the uniform Stokes 'wave' is a solution of the general problem, and the stability of this solution (on the long time-scale of the non-linear theory) is analysed for various values of the parameters of the problem. The significance of the soliton solution of the single equation for the two-dimensional problem is discussed and the relevance of the localized solutions of the two coupled equations to the formation and interaction of fully developed dunes is indicated. The results are in broad agreement with the cumulative effects of dune movement over long periods.  相似文献   

18.
Summary. A technique based on ray asymptotics has been developed to propagate complex spectra of elastic normal mode surface waves in a waveguide with material and geometrical properties varying smoothly in the lateral directions. In the technique, the original problem defined in the unstretched coordinates has been transformed into an eiconal equation as well as into a certain number of transport equations defined in stretched coordinates.
The solution of the eiconal equation is equal to the solution of the eigenproblem of the eiconal operator A0. Due to the self-adjointness of A0, in each of the relevant local inner product spaces, LIPS, the solution of the eigenproblem, A0ψ= v ψ results in the set { v t} of real local eigenvalues and in the orthonormal system {ψt} of local eigenvectors.
As the Hamiltonian function of an initial value problem, each eigenvalues gives birth to a bicharacteristic curve as well as to the related ray. The introduction of the rays induces connections between the vertical cross-sections of the waveguide.
Finally, for each asymptotic order j , the LIPS-valued transport equations are reduced to a set of matricial propagation equations in the local spectral amplitude vectors, LSAVs. Consequently, a knowledge of the initial conditions at a vertical cross-section makes it possible to propagate the LSAVs along the rays of the relevant modes. However, to complete the propagation one needs, in addition to the initial values, information about certain additional quantities, non-diagonal terms of order j , diagonal terms of orders lower than j and the auxiliary boundary terms of orders from 1 to j . The treatment has been completed by the propagation of the modal phases along the relevant rays.  相似文献   

19.
Summary. Several approaches to computing body wave seismograms in 2–D and 3–D laterally inhomogeneous layered structures are suggested. They are based on the Gaussian beam method, which has been recently applied to the evaluation of time-harmonic high-frequency wavefields in inhomogeneous media. Three variants are discussed in some detail: the spectral method, the convolutory method and the wave-packet method. The most promising seems to be the wave-packet approach. In this approach, the wavefield, generated by a source, is expanded into a system of wave packets, which propagate along rays from the source in all directions. The wave packets change their properties due to diffusion, spreading, reflections/transmissions, etc. The resulting seismogram at any point of the medium is then obtained as a superposition of those packets which propagate close to the point. The final expressions in all the three methods are regular even in regions, in which the ray method fails, e.g. in the vicinity of caustics, in the critical region, at boundaries between shadow and illuminated regions, etc. Moreover, they are not as sensitive to the minor details of the medium as the ray method and, what is more, they remove the time-consuming two-point ray tracing from computations. Numerical examples of synthetic seismograms computed by the wave-packet approach are presented.  相似文献   

20.
Summary. The Backus-Gilbert method has been extended to the estimation of the seismic wave velocity distribution in 2-D or 3-D inhomogeneous media from a finite set of travel-time data. The method may be applied to the inversion of body wave as well as surface wave data. The problem of determining a local average of the unknown velocity corrections may be reduced to a choice of a suitable δ-ness criterion for the averaging kernel. For 2-D and 3-D inhomogeneous media the simplest criterion is to minimize a sum of 'spreads' over all the coordinates. The use of this criterion requires the solution (the averaged velocity corrections) to be represented as a sum of functions, each of which depends only on one coordinate. This is a basic restriction of the method. In practice it is possible to achieve good agreement between the solution and a real velocity distribution by a reasonable choice of the coordinate system.
Numerical tests demonstrate the efficiency of the method. Some examples of the application of the method to the inversion of real seismological data for body and surface waves are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号