首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On July 12, 2008, two convective cells about 155 km apart produced a brief period of intense rainfall triggering large debris flows in the southern Sierra Nevada. The northernmost cell was centered over Oak Creek Canyon, an east-flowing drainage, and its tributaries near Independence, CA, USA. About 5:00 p.m., debris flows passed down the South Fork and North Fork of Oak Creek to merge into a large single feature whose passage affected the historic Mt. Whitney Fish hatchery and blocked California State Highway 395. At about the same time, the southernmost cell was largely centered over Erskine Creek, a main tributary of the west-flowing Kern River. Debris flows issued from several branches to coalesce into a large debris flow that passed along Erskine Creek, through the town of Lake Isabella, CA, USA and into the Kern River. It was observed reaching Lake Isabella about 6:30 p.m. Both debris flows caused significant disruption and damage to local communities.  相似文献   

2.
On Monday, May 12, 2008, a devastating mega-earthquake of magnitude 8.0 struck the Wenchuan area, northwestern Sichuan Province, China. The focal mechanism of the earthquake was successive massive rock fracturing 15 km in depth at Yingxiu. Seismic analysis confirms that the major shock occurred on the Beichuan–Yingxiu Fault and that aftershocks rapidly extended in a straight northeast–southeast direction along the Longmenshan Fault zone. Fatalities approaching a total of 15,000 occurred, with a significant number resulting from four types of seismically triggered geohazards—rock avalanches and landslides, landslide-dammed lakes (“earthquake lakes”), and debris flows. China Geological Survey has identified 4,970 potentially risky sites, 1,701 landslides, 1,844 rock avalanches, 515 debris flows, and 1,093 unstable slopes. Rock avalanches and landslides caused many fatalities directly and disrupted the transportation system, extensively disrupting rescue efforts and thereby causing additional fatalities. Landslide-dammed lakes not only flooded human habitats in upstream areas but also posed threats to potentially inundated downstream areas with large populations. Debris flows become the most remarkable geohazards featured by increasing number, high frequency, and low triggering rainfall. Earthquake-triggered geohazards sequentially induced and transformed to additional hazards. For example, debris flows occurred on rock avalanches and landslides, followed by landslide-dammed lakes, and then by additional debris flows and breakouts of the landslide-dammed lakes and downstream flooding. Earthquake-induced geohazards occurred mainly along the fault zone and decreased sharply with distance from the fault. It can be anticipated that post-earthquake geohazards, particularly for debris flows, will continue for 5–10 years and even for as long as 20 years. An integrated strategy of continuing emergency response and economic reconstruction is required. The lesson from Wenchuan Earthquake is that the resulted geohazards may appear in large number in active fault regions. A plan for geohazard prevention in the earthquake-active mountainous areas is needed in advance.  相似文献   

3.
中巴经济走廊内的中巴公路奥布段泥石流频发且类型复杂,严重影响着安全出行和贸易流通。在对中巴公路奥布段沿线泥石流沟谷纵剖面形态分析的基础上,揭示其形态指数特征和活动程度,并从区域地形、地质和气象等因素方面探讨了泥石流的活动性差异成因及危害性。研究发现:公路沿线泥石流类型主要包括冰川型和降雨型两种,冰川型泥石流为27条,降雨型为26条。冰川型泥石流活动性强烈,形态指数N ≥ 1的沟谷占冰川型沟谷总数的81%,多数沟谷形态呈下凹状;降雨型泥石流活动性相对较弱,形态指数N ≥ 1的沟谷占其总数的50%,沟谷形态多呈上凸状。研究区大落差地形、不同物源供给和充沛水源条件等对泥石流的发育和活动具有重要影响,也是不同类型泥石流活动性差异的控制因素。研究结果可为研究区泥石流预测和防治提供指导,也可为中巴经济走廊区内交通工程选线和泥石流防治提供参考。  相似文献   

4.
汶川震区北川9.24暴雨泥石流特征研究   总被引:32,自引:1,他引:31  
2008年9月24日汶川震区的北川县暴雨导致区域性泥石流发生,这次9.24暴雨泥石流灾害导致了42人死亡,对公路和其他基础设施造成严重损毁。本研究采用地面调查和遥感解译方法分析地震与暴雨共同作用下的泥石流特征,获取的气象数据用于分析泥石流起动的临界雨量条件。本文探讨了研究区泥石流起动和输移过程,并根据野外调查,分析了泥石流形成的降雨、岩石和断层作用,特别是强降雨过程与物源区对泥石流发生的作用。根据应急调查发现北川县境内暴雨诱发的泥石流72处,其分布受岩石类型、发震断层和河流等因素控制。根据对研究区震前和震后泥石流发生的临界雨量和雨强的初步分析,汶川地震后,该区域泥石流起动的前期累积雨量降低了14.8%~22.1%,小时雨强降低25.4 %~31.6%。震区泥石流起动方式主要有二种,一是由于暴雨过程形成的斜坡表层径流导致悬挂于斜坡上的滑坡体表面和前缘松散物质向下输移,进入沟道后转为泥石流过程;二是消防水管效应使沟道水流快速集中,并强烈冲刷沟床中松散固体物质,导致沟床物质起动并形成泥石流过程。调查和分析发现沟内堆积的滑坡坝对泥石流的阻塞明显,溃决后可导致瞬时洪峰流量特别大。研究结果表明了汶川震区已进入一个新的活跃期。因此,应该开展对汶川地震区的泥石流风险评估和监测、早期预警,采取有效的工程措施控制泥石流的发生和危害。  相似文献   

5.
In September 1998 tropical storm “Earl” swept southern Mexico, producing intense rainfall in the states of Oaxaca and Chiapas. Among the most devastated cities was Motozintla, located in the drainage basin of the Allende, La Mina and Xelajú Grande Rivers. The rainfall from the tropical storm totaled 175 mm on September 8 and 130 mm on September 9, duplicating in two days the average monthly precipitation in the region. Numerous landslides occurred in the vicinity of Motozintla, depositing large volumes of material into the Xelajú Grande stream. Much of this sediment was subsequently remobilized, yielding debris flows, hyperconcentrated flows, and sediment-laden flows that inundated most sections of Motozintla city. The flows covered an approximate area of 3.15 km2 with a minimum volume of 4.4 × 106 m3 of sediment. Communication of Motozintla with the rest of the Chiapas State was interrupted for about a month, as was the supply of potable water, food, electricity, and fuel. The geologic record around Motozintla indicates that the Xelajú Grande River has been a pathway for similar large floods during the last 6000 years. The oldest deposit yielded a radiocarbon age of 5320 ± 100 14C years. B.P. At least two historic floods have occurred during the last 100 years, a time period defined by a stratigraphically distinct tephra of 1902. Frequency analysis of the historical record of daily rainfall in the Motozintla area suggests that events like that of September, 1998, have a recurrence interval of about 25 years. After the catastrophic flows of 1998, the mitigation measures by Municipal Authorities were made without regard to geological and environmental factors, or to taking into consideration the flow magnitude and appropriate hazard-mitigation techniques, with the result that Motozintla remains at serious risk for future floods. Unfortunately, prior to the publication of this study, in early October 2005, Motozintla was seriously damaged again by intense rain provoked by Hurricane Stan.  相似文献   

6.
During the three flood seasons following the Wenchuan earthquake in 2008, two catastrophic groups of debris flow events occurred in the earthquake-affected area: the 2008-9-24 debris flow events, which had a serious impact on rebuilding; and the 2010-8-13/14 debris flow events, which destroyed much of the progress made in rebuilding. The Wenjia gully is a typical post-earthquake debris flow gully and at least five debris flows have occurred there. As far as the 2010-8-13 debris flow is concerned, the deposits of the Wenjia gully debris flow reached a volume of 3.1 × 106 m3 in volume and hundreds of newly built houses were buried. This study took the Wenjia gully debris flow as an example and discussed the formation and characteristics of post-earthquake debris flow on the basis of field investigations and a remote sensing interpretation. The conclusions drawn from the investigation and analysis were as follows: (1) Post-earthquake debris flows were a joint result of both the earthquake and heavy rainfall. (2) Gully incision and loose material provision are key processes in the initiation and occurrence of debris flows and a cycle can be presented as the following process: runoff—erosion—collapse—engulfment—debris flow—further erosion—further collapse—further engulfment—debris flow enlargement. (3) The amount of rainfall that triggered debris flows from the Wenjia gully was significantly less than the average daily rainfall, while the intraday rainfall threshold decreased by at least 23.3%. (4) The occurrence mechanism of Wenjia gully debris flow was an erosion type and there was a positive relationship between debris flow magnitude and rainfall, which fitted an exponential model. (5) There were five representative characteristics of Wenjia gully debris flow: the long duration of the occurring process; the long distance of deposition chain conversion during the process of damage; magnification in the scale of debris flow; and the high frequency of debris flow events.  相似文献   

7.
在全球气候变暖的大背景下,冰川消融加剧,冰舌后退,冰川泥石流加剧。扎墨公路是目前通往西藏墨脱的唯一公路,公路必经的嘎龙曲发育藏东南地区典型的海洋性冰川泥石流,针对嘎龙曲冰川泥石流的物源特征,经现场调查得出,嘎龙曲冰川泥石流物源类型有冰碛物物源、崩塌型物源以及沟道堆积型物源三类,总结分析了三种物源类型的分布特征和启动模式。通过建立物源计算模型,定量计算嘎龙曲沟域内可参与泥石流活动的松散固体物源动储量为366.28×104 m3,其中冰碛物物源为主要的动储量物源,物源补给特征在藏东南海洋性冰川发育区域具有一定代表性。嘎龙曲沟域内水动力分布的不均一特性决定了物源启动参与泥石流活动的不均一性,随着全球气候变暖影响下水动力条件的增强,嘎龙曲冰川泥石流对扎墨公路的危害会愈加严重。   相似文献   

8.
In September 2004, rain from the remnants of Hurricanes Frances and Ivan triggered at least 155 landslides in the Blue Ridge Mountains of North Carolina. At least 33 debris flows occurred in Macon County, causing 5 deaths, destroying 16 homes, and damaging infrastructure. We mapped debris flows and debris deposits using a light-detecting and ranging digital elevation model, remote imagery and field studies integrated in a geographic information system. Evidence of past debris flows was found at all recent debris flow sites. Orographic rainfall enhancement along topographic escarpments influenced debris flow frequency at higher elevations. A possible trigger for the Wayah and fatal Peeks Creek debris flows was a spiral rain band within Ivan that moved across the area with short duration rainfall rates of 150–230 mm/h. Intersecting bedrock structures in polydeformed metamorphic rock influence the formation of catchments within structural–geomorphic domains where debris flows originate.  相似文献   

9.
Riedel  Jon L.  Sarrantonio  Sharon M. 《Natural Hazards》2021,106(3):2519-2544

We examine the magnitude, frequency, and precipitation threshold of the extreme flood hazard on 37 low-order streams in the lower Stehekin River Valley on the arid eastern slope of the North Cascades. Key morphometric variables identify the magnitude of the hazard by differentiating debris flood from debris flow systems. Thirty-two debris flow systems are fed by basins?<?6 km2 and deposited debris cones with slopes?>?10°. Five debris flood systems have larger drainage areas and debris fans with slopes 7–10°. The debris flood systems have Melton ruggedness ratios from 0.42–0.64 compared to 0.78–3.80 for debris flow basins. We record stratigraphy at seven sites where soil surfaces buried by successive debris flows limit the age of events spanning 6000 years. Eighteen radiocarbon ages from the soils are the basis for estimates of a 200 to1500-year range in recurrence interval for larger debris flows and a 450?±?50-year average. Smaller events occur approximately every 100 years. Fifteen debris flows occurred in nine drainage systems in the last 15 years, including multiple flows on three streams. Summer storms in 2010 and 2013 with peak rainfall intensities of 7–9 mm/h sustained for 8–11 h triggered all but one flow; the fall 2015 event on Canyon Creek occurred after 170 mm of rain in 78 h. A direct link between fires and debris flows is unclear because several recent debris flows occurred in basins that did not burn or burned at low intensity, and basins that burned at high intensity did not carry debris flows. All but one of the recent flows and fires occurred on the valley’s southwest-facing wall. We conclude that fires and debris flows are linked by aspect at the landscape scale, where the sunny valley wall has flashy runoff due to sparse vegetation from frequent fires.

  相似文献   

10.
Subao River lies along the Beichuan–Yingxiu fault in Beichuan County, which has been heavily impacted by the Wenchuan earthquake on 12 May 2008 and has become sources of many geo-hazards. On 24 September 2008, a rainstorm triggered a large debris flow in the catchment, causing several deaths and significant damages. A case study on changes of the debris flow was conducted in the river. The peak discharges were calculated in the Guanmenzi, Huangnidi, and Daanshan gullies. Results indicated that the peak discharges corresponded to various return periods in different gullies: 200 years in Daanshan, 100 years in Huangnidi, and 50 years in Guanmenzi. However, the triggering precipitation in these three gullies was only of a 20-year return period. The debris flows had undergone significant changes. Analysis indicated that the changes should be ascribed to the flow characteristics, initiation conditions, and the channel blockage impacted by the rapid accumulation of loose material. Channel blockage was the principal factor increasing the scale of the debris flow. The values on the blocking coefficient were presented based on density, height, and other characteristics of dams. Finally, all of the peak debris flow discharges of the Subao River Valley for a 20-year return period were calculated using the recommended blocking coefficient values.  相似文献   

11.
Every year, and in many countries worldwide, wildfires cause significant damage and economic losses due to both the direct effects of the fires and the subsequent accelerated runoff, erosion, and debris flow. Wildfires can have profound effects on the hydrologic response of watersheds by changing the infiltration characteristics and erodibility of the soil, which leads to decreased rainfall infiltration, significantly increased overland flow and runoff in channels, and movement of soil. Debris-flow activity is among the most destructive consequences of these changes, often causing extensive damage to human infrastructure. Data from the Mediterranean area and Western United States of America help identify the primary processes that result in debris flows in recently burned areas. Two primary processes for the initiation of fire-related debris flows have been so far identified: (1) runoff-dominated erosion by surface overland flow; and (2) infiltration-triggered failure and mobilization of a discrete landslide mass. The first process is frequently documented immediately post-fire and leads to the generation of debris flows through progressive bulking of storm runoff with sediment eroded from the hillslopes and channels. As sediment is incorporated into water, runoff can convert to debris flow. The conversion to debris flow may be observed at a position within a drainage network that appears to be controlled by threshold values of upslope contributing area and its gradient. At these locations, sufficient eroded material has been incorporated, relative to the volume of contributing surface runoff, to generate debris flows. Debris flows have also been generated from burned basins in response to increased runoff by water cascading over a steep, bedrock cliff, and incorporating material from readily erodible colluvium or channel bed. Post-fire debris flows have also been generated by infiltration-triggered landslide failures which then mobilize into debris flows. However, only 12% of documented cases exhibited this process. When they do occur, the landslide failures range in thickness from a few tens of centimeters to more than 6 m, and generally involve the soil and colluvium-mantled hillslopes. Surficial landslide failures in burned areas most frequently occur in response to prolonged periods of storm rainfall, or prolonged rainfall in combination with rapid snowmelt or rain-on-snow events.  相似文献   

12.
Large-volume debris flow events are defined when the volume of solid materials exceeds 1 million m3. Traditional engineering measures, such as check dams, diversion channels, and flumes, are effective for normal debris flow control but are not sufficient to control large-volume debris flows. Experiments were conducted with an artificial step-pool system on the new Wenjiagou Gully to mitigate large-volume debris flows. The old Wenjiagou Gully was buried by 81.6 million m3 of loose solid material created by a landslide that was triggered by the Wenchuan earthquake on May 12, 2008. The new gully was formed during the scouring process caused by debris flows in 2008. Large-volume debris flows were initiated by rainstorm flood with high kinetic energy. The artificial step-pool system was constructed with huge and big boulders on the new Wenjiagou Gully in 2009. The step-pool system dissipated flow energy in steps and hydraulic jumps. Analysis proved that the step-pool system dissipated two-third of the kinetic energy of flow; thus, the critical discharge for triggering debris flow increased threefold. Due to the step-pool system maximized the flow resistance and protected the bed sediment and banks from erosion, the rainstorm floods in 2009 did not trigger debris flows. In 2010, the step-pool system was replaced with 20 check dams. Huge boulders were broken into small pieces of diameter less than 0.5 m and were used as building materials for the 20 dams. Without the protection of the step-pool system, a rainstorm flood scoured the base of the dams and caused failures for all of the 20 check dams in August 2010. The flow incised the gully bed by 50 m. The loose bank materials slid into the flow mixed with water and formed a large-volume debris flow with a volume of 4.5 million m3. Many houses were buried by the debris flow, and 12 people were killed. Comparison of the two strategies proved that energy dissipation structures are necessary for controlling large-volume debris flows. Check dams, if they are stable, may reduce the potential of bank failures and control debris flows. The step-pool system dissipates flow energy and control gully bed incision and bank failure. A combination of check dams and step-pool systems may be the most effective for mitigating debris flows.  相似文献   

13.
Bin Yu 《Natural Hazards》2011,58(1):391-406
The accurate prediction of debris flows occurrence that will allow the reduction or prevention of economic losses and human casualties is presently the most difficult aspect of debris flows studies but also the aspect that receives most attention. Most prediction methods are based on rainfall as the basic parameter, with the moment of occurrence as only result, and without a prediction of debris flow travel time and size. This paper takes Jiangjia Gully in Dongchuan of Yunnan Province as an example, and considers, on the basis of the fulfillment of the essential condition: the abundant availability of loose materials, the conditions for the formation of debris flows. Based on the mechanism of the initiation of debris flows in channels and the volume of rainfall in the basin, this paper also gives a systematic analysis on the travel time and size of the debris flow and suggests that the hydrological condition for forming debris flow is the unit discharge of the flood ≥0.35 m3/s.m. It uses the 10-min rainfall intensity to calculate both the run-off of the rainfall and the unit discharge caused by the run-off, thus predicting the occurrence of debris flows. The velocity and the travel time of a debris flow can also be determined using the unit discharge of the run-off. The total volume of debris flows can be calculated using the 10-min intensity of rainfall and the total volume of the run-off, together with the volume concentration of the sediment in a debris flow.  相似文献   

14.
Kuskonook Creek, an example of a debris flow analysis   总被引:1,自引:0,他引:1  
Two debris flows occurred on Kuskonook Creek in British Columbia, Canada, in August and September 2004. The initiation factors included a major forest fire in the catchment in 2003, in association with relatively small rainfall events and the accumulation of sediment in the creek channels since the last large debris flow event. Previous regional studies and morphometric comparisons with other similar catchments indicate that Kuskonook Creek has characteristics predisposed to debris flows, even without the affects of a forest fire. Based on the investigations and analyses, a magnitude/frequency relationship for future debris events on Kuskonook Creek was developed, and this information was used to carry out a partial risk assessment. It is suggested that for design purposes, a 1/50-year return period and the corresponding debris flow magnitude of 15,000 m3 would provide conservative protection to the users of the provincial highway at the mouth of the creek.  相似文献   

15.
 In 1988, wildfire burned over 50% of the Jones Creek watershed near Yellowstone Park, Wyoming. Crow Creek, an adjacent watershed, was unburned. Water quality data collected from 1989–1993 may show the fire's effect on weathering and nutrient transport. Jones Creek had 25–75% larger concentrations of dissolved solids than Crow Creek during the sampling period. Both streams revealed molar ratios consistent with the stoichiometry of andesine and pyroxene hydrolysis in the trachyandesites that underlie the basins. During 1989, nitrate transported from the unburned Crow Creek basin peaked at 2 mmol ha–1 s–1. This was twice as much as Jones Creek, possibly indicating a source from ash fallout. By 1992 these rates diminished to 0.1 mmol ha–1 s–1 in Crow Creek and increased to 1.8 mmol ha–1 s–1 in Jones Creek, suggesting later nitrate mobilization in the burned watershed. Phosphorus transported from Jones Creek basin averaged 0.011 mmol ha–1 s–1 during summer 1989, but fell to 0.004 mg ha–1 s–1 in subsequent years. Received: 28 May 1997 · Accepted: 18 November 1997  相似文献   

16.
On June 30, 2001, a debris flow occurred in the Acquabona Creek, a small catchment of the Eastern Dolomites, Italy. This debris flow originated shortly after an intense rainstorm, characterised by a peak intensity of 8.6 mm per 10 min; it transported a total volume of 30,000 m3, consisting of poorly sorted gravely sand with boulders up to 3 m in diameter. The sediment erosion yield rate reached as high as 20 m3/m. In order to verify the accuracy of the field measurements, the total volume of debris deposits have was calculated using three different topographic measurement techniques: 3D laser scanning, terrestrial stereo-photogrammetry survey and total topographic station survey. Data collected so far show that no debris flow has occurred at Acquabona with a rainfall intensity lower than 4.6 mm per 10 min. Channel cross section measurements indicate that debris flow velocity ranges from 2.0 to 7.2 m/s along the lower flow channel and peak discharge ranges between 22 and 300 m3/s. Field estimates of the rheological properties indicate a yield strength ranging from 2,088 to 5,313 Pa and Bingham viscosity between 70 and 337 Pa · s. It is not still possible to identify a rainfall intensity and amount threshold for debris flow triggering, but the data so far collected emphasise that debris flows do not occur with a rainfall intensity lower than 4.6 mm per 10 min.  相似文献   

17.
 Intensive application of surface water in command areas of irrigation projects is creating water logging problems, and the increase of groundwater usage in agriculture, industry and domestic purposes (through indiscriminate sinking of wells) is causing continuous depletion of water levels, drying up of wells and quality problems. Thus the protect aquifers to yield water continuously at economical cost, the management of water resources is essential. Integrated geological, hydrological (surface and groundwater) and geochemical aspects have been studied for the development and management of water resources in drought-prone Cuddapah district. The main lithological units are crystallines, quartzites, shales and limestones. About 91 000 ha of land in the Cuddapah district is irrigated by canal water. A registered ayacut of about 47 000 ha is irrigated by 1368 minor irrigation tanks. A total of 503 spring channels are identified in the entire district originating from the rivers/streams, which has the capacity of irrigating about 8700 ha. The average seasonal rise in groundwater level is 7.32 m in quartzites, 5.35 m in crystallines, 3.82 m in shales, 2.50 m in limestones and 2.11 m in alluvium. Large quantities of groundwater are available in the mining areas which can be utilised and managed properly by the irrigation department/cultivators for the irrigation practices. Groundwater assessment studies revealed that 584 million m3 of groundwater is available for future irrigation in the district. From the chemical analysis, the quality of groundwater in various rock units is within the permissible limits for irrigation and domestic purposes, but at a few places the specific conductance, chloride and fluoride contents are high. This may be due to untreated effluents, improper drainage system and/or the application of fertilisers. Received: 10 June 1998 · Accepted: 15 November 1998  相似文献   

18.
小流域内松散碎屑物质的稳定性及储量可以作为泥石流沟判别的依据。本文以康定县子耳沟为例,通过对滑塌面积率、不良地质体长度比、流域内暴发泥石流的碎屑物量最低标准三个指数的计算,判定子耳沟流域内松散碎屑物质物源丰富且不稳定,泥石流暴发可能性大。这种方法的应用,可以指导泥石流的预报预警和防灾减灾工作,判别山区小流域暴发泥石流的易发程度及规模。  相似文献   

19.
西藏某水电站厂区后山发育了5条泥石流沟,2005年7月22日暴发了近百年来最大的泥石流,泥石流的规模和影响范围将直接影响到该厂房的枢纽布置、施工及运行安全。厂房区泥石流沟的泥石流固体物质来源丰富,形成区内沟道坡度陡峭,因此只要有足够的降雨就可以形成泥石流。以设计泥石流流量计算的泥石流的总径流量确定的泥石流危险范围与调查的厂区各条泥石流沟2005年的实际泛滥区很相近,并以此可以得到不同设计频率的泥石流危险区。电厂厂房区的设施在施工期和运行期间受到泥石流活动的一定影响,必须采取合理的泥石流工程防护措施,避免泥石流对厂房区设施的危害,保障电站的施工和运行,满足电厂厂区的建设需要。  相似文献   

20.
The 2008 Wenchuan earthquake induced a large number of landslides, and a vast amount of loose landslide materials deposited on steep hill slopes or in channels. Such loose materials can become sources of deadly debris flows once triggered by storms. On 13 August 2010, a storm swept Yingxiu and its vicinity, triggering a catastrophic debris flow with a volume of 1.17?million?m3 in Xiaojiagou Ravine. The debris flow buried 1,100?m of road, blocked a river and formed a debris flow barrier lake. A detailed field study was conducted to understand the initiation mechanisms and runout characteristics of this debris flow. Two types of debris flows are identified, namely hill-slope debris flow and channelized debris flow. The hill-slope debris flow was triggered in the forms of firehose effect, rilling and landsliding, whereas the channelized debris flow was triggered in the form of channel-bed failure. This debris flow was a water?Crock flow since most particles were gravel, cobble or larger rocks and the fraction of silt and clay was less than 2%. Grain contact friction, pore-pressure effects and inertial grain collision were the three most important physical interactions within the debris flow. Such interactions yielded a smaller runout distance (593?m) compared with those of mud?Crock flows of similar size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号