首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed representation of variations of the total solar flux I has been obtained by analyzing the regular measurements of this flux by the Nimbus-7 and other spacecrafts. In particular, quasi-biennial variations (QBVs) of the monthly average value 〈I〉 and standard deviation sI within a month interval have been revealed. It is remarkable that the QBVs of sI almost coincide in shape with the QBVs of many solar activity and ionospheric indices, and the QBVs of 〈I〉 are almost in antiphase with the variations of sI. The manifestation of the QBVs of 〈I〉 in some processes on the Earth has been already revealed. A relation between the QBVs of 〈I〉 for solar radiation (according to the Nimbus-7 and ACRIM-2 data) and the QBVs of the zonal stratospheric wind near the equator, as well as the QBVs of the Earth’s rotation velocity, has been found. Many of the considered QBV-processes on the Earth are seemingly attributed to the variations of the total solar flux.  相似文献   

2.
The results of the long-term recording of thermal neutron flux near the Earth’s surface with the use of an unshielded scintillation thermal-neutron detector are presented. The data obtained indicate the presence of periodic variations in the thermal neutron flux with the lunar diurnal and the lunar monthly periods. A hypothesis about the existence in the Earth’s crust of radon-neutron tidal variations in the concentration of thermal neutrons, correlated with the Moon’s phases and which have the gravitational origin, is formulated and confirmed experimentally. A simple mathematical model is proposed, which satisfactorily describes the observed variations. The case of the anomalous behavior of thermal neutrons is presented, which correlates with the high local seismic activity.  相似文献   

3.
The correlation between frequency variations in the Earth’s rotation and geomagnetic jerks is analyzed on the interval from 1900 to 2008. It is found that jerks precede changes in the rate of the Earth’s rotation frequency in the interval of periods ranging from 5 to 8 years. A mechanism of jerks generation is suggested in which the jerks are considered as the result of the excitation of magnetorotational instability in the Earth’s core with the subsequent generation of torsional oscillations causing a change in the Earth’s rotation frequency.  相似文献   

4.
The nonlinear perturbation of a dipole field by a system of transverse currents, which arises due to the radial pressure distribution when the pressure is almost independent of the radial distance, is analyzed. This distribution of pressure was observed in the experiment. The radial dependences of the magnetic field depression, transverse current density, and volumes of magnetic flux tubes have been obtained at different values of the plasma parameter via nonlinear simulation. It is shown that a dependence of the volume of magnetic flux tube on the radial distance can change and a region of the negative gradient of volume can appear at some plasma-parameter values.  相似文献   

5.
The paper investigates the possibilities of the prediction of the time series of the flux of relativistic electrons in the Earth’s outer radiation belt by parameters of the solar wind and the interplanetary magnetic field measured at the libration point and by the values of the geomagnetic indices. Different adaptive methods are used (namely, artificial neural networks, group method of data handling, and projection to latent structures). The comparison of quality indicators of predictions with a horizon of 1–12 h between each other and with the trivial model prediction has shown that the best result is obtained for the average value of the responses of three neural networks that have been trained with different sets of initial weights. The prediction result of the group method of data handling is close to the result of neural networks, and the projection to latent structures is much worse. It is shown that an increase in the prediction horizon from 1 to 12 h reduces its quality but not dramatically, which makes it possible to use these methods for medium-term prediction.  相似文献   

6.
For more than a decade, the global network of GPS stations whose measurements are part of the International GPS Service (IGS) have been recording cyclic variations in the radius vector of the geodetic ellipsoid with a period of one year and amplitude of ~10 mm. The analysis of the figure of the Earth carried out by us shows that the observed variations in the vertical component of the Earth’s surface displacements can induce small changes in the flattening of the Earth’s figure which are, in turn, caused by the instability of the Earth’s rotation. The variations in the angular velocity and flattening of the Earth change the kinetic energy of the Earth’s rotation. The additional energy is ~1021 J. The emerging variations in the flattening of the Earth’s ellipsoid lead to changes in the surface area of the Earth’s figure, cause the development of deformations in rocks, accumulation of damage, activation of seismotectonic processes, and preparation of earthquakes. It is shown that earthquakes can be caused by the instability of the Earth’s rotation which induces pulsations in the shape of the Earth and leads to the development of alternating-sign deformations in the Earth’s solid shell.  相似文献   

7.
The equilibrium ratios of the major solar component of the tide S2 and of the component K2, which have very close frequencies, seldom follow a linear trend when one extrapolates from that of the lunar component M2. This is due to the different damping of the resultant of S2 and K2 during their six-month interference cycle, compared to that of the other components: it gives to K2 a value larger than expected, while the reverse hold for S2. It is unlikely that radiational effects are the cause of such behaviour as is currently believed.  相似文献   

8.
This article studies long-period variations in the Earth’s upper atmosphere density over several solar activity cycles, using long-term data on the evolution of motion of three artificial satellites (Intercosmos-19, Meteor-1-2, and Cosmos-1154) in orbits at heights of 400–1000 km. The time interval when the satellites were in the orbits covered three solar activity cycles (partly the 21st, completely the 22nd, and partly the 23rd). It is found that the variations in the average density of the upper atmosphere at heights of 400–600 km in the 1980–2000 period were governed by the changes in the solar activity level.  相似文献   

9.
The spatial-temporal variations in localization of the sources of earthquakes with H ≥ 14 km are reviewed for the Garm region. The uneven distribution of such earthquakes is related to the block structure: their amount is higher in the weakened zones rather than in blocks. Three weakened zones are characterized by higher activity of deepened seismicity, which varies in time and increases before the earthquakes with K ≥ 12.5. The temporal variations in distribution of earthquake sources with depth allow a suggestion of the relation of the velocity of the Earth’s rotation and activity of deepened seismicity.  相似文献   

10.
Ogurtsov  M. G.  Jungner  H.  Lindholm  M.  Helama  S.  Dergachev  V. A. 《Geomagnetism and Aeronomy》2009,49(7):1056-1062
Paleoclimatological reconstructions of temperature of the Earth’s Northern Hemisphere for the last thousand years have been studied using the up-to-date methods of statistical analysis. It has bee indicated that the quasisecular (a period of 60–130 years) cyclicity, which is observed in the climate of the Earth’s Northern Hemisphere, has a bimodal structure, i.e., being composed of the 60–85 and 85–130 year periodicities. The possible relation of the quasisecular climatic rhythm to the corresponding Gleissberg solar cycle has been studied using the solar activity reconstructions performed with the help of the solar paleoastrophysics methods.  相似文献   

11.
The results of long-term sounding of the lithosphere by seismic waves from the deep-focus Hindu Kush earthquakes are presented. The travel time series of the first longitudinal wave on a fixed base are constructed for six seismic observation stations (SS) located on the Russian Platform (the Obninsk SS), on the Siberian Platform (the Eltsovka SS), on the Cis-Ural Trough (the Arti SS), in the Central-Ural Megazone (the Sverdlovsk SS), in the Transbaikalia (the Bodaibo SS), and in the Northern Tien Shan (the Przhevalsk SS). The time series duration in years for these stations ranged from 1964–1970 to 2007. The travel time series of seismic waves for the stations indicated are characterized by multi-slope negative linear trends caused by changes in the stress-strain state of rocks. From the comparison of the trend slopes at different stations it follows that the changes in the stress conditions within the lithosphere are relatively weak in the aseismic regions of the Russian and Siberian Platforms and in the Ural Megazone, whereas in the seismically active regions of Tien Shan, Transbaikalia and the Cis-Ural Trough they are more pronounced. The correlation has been observed between the time series trends of the average annual travel times of seismic waves and the time series of the Earth’s rotation speed. The strongest correlation between the series can be seen for the stations, located on the platforms with weak manifestations of both seismicity and active geodynamic processes. Within the long-term periods of deceleration and acceleration of the Earth’s rotation, travel times of seismic waves are decreased and increased, respectively.  相似文献   

12.
We have quantitatively investigated the radiation belt’s dynamic variations of 1.5-6.0 MeV electrons during 54 CME (coronal mass ejection)-driven storms from 1993 to 2003 and 26 CIR (corotating interaction region)-driven recurrent storms in 1995 by utilizing case and statistical studies based on the data from the SAMPEX satellite. It is found that the boundaries determined by fitting an exponential to the flux as a function of L shell obtained in this study agree with the observed outer and inner boundaries of the outer radiation belt. Furthermore, we have constructed the Radiation Belt Content (RBC) index by integrating the number density of electrons between those inner and outer boundaries. According to the ratio of the maximum RBC index during the recovery phase to the pre-storm average RBC index, we conclude that CME-driven storms produce more relativistic electrons than CIR-driven storms in the entire outer radiation belt, although the relativistic electron fluxes during CIR-related storms are much higher than those during CME-related storms at geosynchronous orbit. The physical radiation belt model STEERB is based on the three-dimensional Fokker-Planck equation and includes the physical processes of local wave-particle interactions, radial diffusion, and adiabatic transport. Due to the limitation of numerical schemes, formal radiation belt models do not include the cross diffusion term of local wave-particle interactions. The numerical experiments of STEERB have shown that the energetic electron fluxes can be overestimated by a factor of 5 or even several orders (depending on the pitch angle) if the cross diffusion term is ignored. This implies that the cross diffusion term is indispensable for the evaluation of radiation belt electron fluxes. Formal radiation belt models often adopt dipole magnetic field; the time varying Hilmer-Voigt geomagnetic field was adopted by the STEERB model, which self-consistently included the adiabatic transport process. The test simulations clearly indicate that the adiabatic process can significantly affect the evolution of radiation belt electrons. The interactions between interplanetary shocks and magnetosphere can excite ULF waves in the inner magnetosphere; the excited polodial mode ULF wave can cause the fast acceleration of "killer electrons". The acceleration mechanism of energetic electrons by poloidal and toroidal mode ULF wave is different at different L shells. The acceleration of energetic electrons by the toroidal mode ULF waves becomes important in the region with a larger L shell (the outer magnetosphere); in smaller L shell regions (the inner magnetosphere), the poloidal mode ULF becomes responsible for the acceleration of energetic electrons.  相似文献   

13.
The modeling results are presented on the annual dynamics of seismicity in the northeastern segment of the Amur plate, which are obtained from statistical studies of the number of earthquakes with magnitudes 2 ≤ М ≤ 6 in different phases of variations in the Earth’s rotation rate. We have calculated a degree of relationship between the observed seismicity variations and phases of decrease and increase in the Earth’s rotation rate for the magnitude ranges between 2 ≤ М < 4 and 4 ≤ М < 5 using rank correlation methods. It has been established that epicenters of earthquakes with magnitudes 5 ≤ М ≤ 6 are spatially grouped into a sequence of homogeneous equally spaced, 3.5°–4°, on average, east-westerly oriented clusters.  相似文献   

14.
New observations of energetic helium ion fluxes in the Earth’s radiation belts have been obtained with the CAMMICE/HIT instrument on the ISTP/GGS POLAR spacecraft during the extended geomagnetically low activity period April through October 1996. POLAR executes a high inclination trajectory that crosses over both polar cap regions and passes over the geomagnetic equator in the heart of the radiation belts. The latter attribute makes possible direct observations of nearly the full equatorial helium ion pitch angle distributions in the heart of the Earth’s radiation belt region. Additionally, the spacecraft often re-encounters the same geomagnetic flux tube at a substantially off-equatorial location within a few tens of minutes prior to or after the equatorial crossing. This makes both the equatorial pitch angle distribution and an expanded view of the local off-equatorial pitch angle distribution observable. The orbit of POLAR also permitted observations to be made in conjugate magnetic local time sectors over the course of the same day, and this afforded direct comparison of observations on diametrically opposite locations in the Earth’s radiation belt region at closely spaced times. Results from four helium ion data channels covering ion kinetic energies from 520 to 8200 KeV show that the distributions display trapped particle characteristics with angular flux peaks for equatorially mirroring particles as one might reasonably expect. However, the helium ion pitch angle distributions generally flattened out for equatorial pitch angles below about 45°. Significant and systematic helium ion anisotropy difference at conjugate magnetic local time were also observed, and we report quiet time azimuthal variations of the anisotropy index.  相似文献   

15.
The series of observations conducted at the Baksan and Protvino deformation stations in the Northern Caucasus and the Central Russian Plain, respectively, and the length-of-day (LOD) data describing the variable rate of the Earth’s rotation are used to study the relation between the deformation processes in the lithosphere and the global geodynamics of the Earth over short time intervals. The methods applied are based on high-resolution spectral analysis, analysis of the coherence of the studied processes, and correlation analysis. A significant (95%) correlation is revealed between the local deformation fields at two remote observation stations, which proves the existence of a global component in the Earth’s deformation field that manifests itself at characteristic time intervals of up to 3–4 weeks. At the same level of significance, the correlation between the local deformation fields and variations in the rate of the Earth’s rotation has also been identified. It is shown that the found correlations in the tidal low-frequency range are caused by the direct impact of the long-period tidal loading (M f and M tm waves) on the lithosphere and the length-of-the-day (LOD). The global mechanisms giving rise to the correlation of these processes in the nontidal range require further study.  相似文献   

16.
Extraterrestrial forcing of natural environmental processes by gravitational interaction between the Sun, the Moon, and the Earth is considered. Based on the instrumental data, the main periodical components and cycles are identified in the time variations of some geophysical fields at the boundary between the Earth’s crust and the atmosphere. Correlation analysis shows that the lunar-solar tides are the key factor responsible for diurnal and quasi-biweekly variations in the ground electric field, radon emanation, water level in wells, and microseismic vibrations. The tidal influence on the various-scale movements of the blocks of the Earth’s crust is analyzed. In the context of the vertical, lateral, and rotational motion of crustal blocks, which is very important for the platforms, a new, precession-like type of displacements is revealed. These movements develop as a result of the nonsynchronous tidal responses of the block and the adjacent interblock gaps or tectonic structures whose strength and strain properties are different in different directions.  相似文献   

17.
This work is devoted to the study of the generation of the equatorial noise—electromagnetic emission below the LHR frequency observed near the equatorial plane of the magnetosphere at distances of ~4RE. According to accepted views, the generation of the equatorial noise is related to the instability of ring current protons. In this work, a logarithmic distribution of energetic protons over the magnetic moment with an empty loss cone is proposed, and arguments for the formation of such a distribution are presented. The main result of the work is the calculation and analysis of the instability growth rate of waves forming the equatorial noise. The growth rate obtained in this work significantly differs from that encountered in the literature.  相似文献   

18.
Holocene records documenting variations in direction and intensity of the geomagnetic field during the last about seven and a half millennia are presented for Northwest Africa. High resolution paleomagnetic analyses of two marine sediment sequences recovered from around 900 meter water depth on the upper continental slope off Cape Ghir (30°51′N, 10°16′W) were supplemented by magnetic measurements characterizing composition, concentration, grain size and coercivity of the magnetic mineral assemblage. Age control for the high sedimentation rate deposits (∼60 cm/kyr) was established by AMS radiocarbon dates. The natural remanent magnetization (NRM) is very predominantly carried by a fine grained, mostly single domain (titano-)magnetite fraction allowing the reliable definition of stable NRM inclinations and declinations from alternating field demagnetization and principal component analysis. Predictions of the Korte and Constable (2005) geomagnetic field model CALS7K.2 for the study area are in fair agreement with the Holocene directional records for the most parts, yet noticeable differences exist in some intervals. The magnetic mineral inventory of the sediments reveals various climate controlled variations, specifically in concentration and grain size. A very strong impact had the mid-Holocene environmental change from humid to arid conditions on the African continent which also clearly affects relative paleointensity (RPI) estimates based on different remanence normalizers. To overcome this problem the pseudo-Thellier RPI technique has been applied. The results represent the first Holocene record of Earth’s magnetic field intensity variations in the NW Africa region. It displays long term trends similar to those of model predictions, but also conspicuous millennium scale differences.  相似文献   

19.
Using calculations of the magnetic field in the solar atmosphere in the potential approximation, it is shown that, (1) as distance R from the Sun’s center grows, the area of the positive magnetic field (S +field) in 10-deg latitude zones tends to 100% (0%) in the neighborhood of the solar minimum. At the distance R = 2.5R (R is the solar radius), these values of the positive field are observed during ≈(12–55) Carrington rotations (CRs) for solar minima between neighboring cycles; (2) polar magnetic field reversals can occur repeatedly. Note that a polar reversal at large heights ends by 6–16 Carrington rotations earlier than on the Sun’s surface. On the Sun’s surface, a field polar reversal begins earlier at lower latitudes than at high ones; (3) for each longitude at different Rs and separately for each solar hemisphere the radial component of the field was averaged on synoptic maps in the 0°–40° latitude range. It is established that the T R rotation periods of the boundaries between the sectors (areas of longitudes with the same sign of the averaged field) can be shorter than, longer than, and equal to Carrington solar rotation period T CR. It turned out that boundaries with T R < T CR are observed at all heights, while boundaries with T R > T CR are observed at relatively small heights.  相似文献   

20.
Comparative analysis of coseismic and postseismic variations of the Earth’s gravity field is carried for the regions of three giant earthquakes (Andaman-Sumatra, December 26, 2004, magnitude M w = 9.1; Maule-Chile, February 27, 2010, M w = 8.8, and Tohoku-Oki, March 11, 2011, M w = 9.0) with the use of GRACE satellite data. Within the resolution of GRACE models, the coseismic changes of gravity caused by these seismic events manifest themselves by large negative anomalies located in the rear of the subduction zone. The real data are compared with the synthetic anomalies calculated from the rupture surface models based on different kinds of ground measurements. It is shown that the difference between the gravity anomalies corresponding to different rupture surface models exceeds the uncertainties of the GRACE data. There-fore, the coseismic gravity anomalies are at least suitable for rejecting part of the models that are equivalent in the ground data. Within the first few months after the Andaman-Sumatra earthquake, a positive gravity anomaly started to grow above the deep trench. This anomaly rapidly captured the area of the back-arc basin and largely compensated the negative coseismic anomaly. The processes of viscoelastic stress relaxation do not fully allow for these rapid changes of gravity. According to the calculations, even with a sufficiently low viscosity of the upper mantle, relaxation only covers about a half of the observed change of the field. In order to explain the remaining temporal variations, we suggested the process of downdip propagation of the coseismic rupture surface. The feasibility of such a process was supported by numerical simulations. The sum of the gravity anomalies caused by this process and the anomaly generated by the processes of viscoelastic relaxation accounts well for the observed changes of the gravity field in the region of the earthquake. The similar postseismic changes of gravity were also detected for the region of the Tohoku-Oki earthquake. Just as in the case discussed above, this earthquake was also followed by a rapid growth of a positive postseismic anomaly, which partially counterbalanced the negative coseismic anomaly. The time variations of the gravity field in the region of the Maule-Chile earthquake differ from the pattern of changes observed in the island arcs described above. The postseismic gravity variations are in this case concentrated in a narrower band above the deep trench and shelf, and they do not spread over the continental territory, where the negative coseismic anomaly is located. These discrepancies reflect the difference in the geodynamical settings of the studied earthquakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号