首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为研究低熟气形成过程中大分子结构的变化情况,对吐哈盆地侏罗系八道湾组的煤与碳质泥岩干酪根在不同升温速率下进行了热解实验,借助于红外光谱分析,研究了不同热模拟温度下干酪根结构的特征与变化。结果表明,随热演化的进行,煤与碳质泥岩干酪根的芳香结构不断缩合,含氧官能团不断脱落,碳质泥岩干酪根中的脂肪族类有所降低。吐哈盆地低熟气主要来源于煤与碳质泥岩干酪根中的含氧官能团--羧基与甲氧基,以及碳质泥岩干酪根上的脂肪族。从干酪根结构上揭示了低熟气主要来源于Ⅲ型有机质的原因。  相似文献   

2.
选取了红外光谱中2750~3000cm-1C-H振动峰面积作为反映干酪根中脂肪链含量的特征参数,并以完全饱和脂肪链的微晶石蜡为基准,建立了对干酪根中脂肪链含量进行测定的实验方法,同时讨论了实验条件、无机矿物、干酪根样品加入量等因素的影响。并通过对东营地区不同类型干酪根的低熟烃源岩样品进行的高压热模拟实验,研究了干酪根中脂肪链的百分含量与成熟度、沥青转化率及干酪根原素组成之间的关系。结果表明干酪根中脂肪链含量不仅与干酪根的类型有关,而且随成熟作用增加明显降低,其与热模拟生油量的关系和烃源岩的产烃率曲线相似,在脂肪链含量由15%降至5%时出现一个生油高峰。所以,脂肪链百分含量这一参数有可能成为烃源岩的判别及评价的一个新的重要指标。  相似文献   

3.
A model is proposed for a fragment of the chemical structures of the geopolymers based on elemental analysis and the study of the composition of the pyrolysis products of kerogen from the Upper Jurassic and Devonian formations in the East European Platform. The Sorg/C ratio in kerogen from oil shales from J3v2 is 0.4 or higher, and this kerogen belongs to type II-S, while kerogen from the Domanik rocks does not contain S and belongs to type II. The composition of the pyrolysis products of the Upper Jurassic kerogen testifies to the presence of polysulfur-bound structures in this geopolymer, whose thermolysis results in disulfuric cyclic compounds. No structures of this type are contained in Domanik kerogen. Oxygen-bearing groups in J3v2 kerogen are thought to be partly concentrated on simple-ether bonds, whereas D3dm kerogen is likely dominated by compound-ether and carboxyl structures. Nitrogen-bearing structures in kerogen from Upper Jurassic and Domanik formations are of different genesis: while nitrogen-bearing structures in Jurassic kerogen are mostly aminoacids, Domanik kerogen contains chitin derivatives.  相似文献   

4.
Structural studies of a sulphur-rich kerogen and macromolecular oil fractions from the Monterey Formation were performed by selective sequential chemical degradation. The method provides low-molecular weight compounds as former building blocks of the network which allow detailed analyses on a molecular level. The degradation sequence is based on three subsequently performed reactions—a selective cleavage of sulphur bonds in the first step carried out with Ni(0)cene/LiAlD4, an ether and ester bond cleavage (BCl3), and an oxidation of aromatic entities by ruthenium tetroxide as a final step. Each step of this sequence afforded a considerable amount of low-molecular weight material which was separated chromatographically and studied by GC and GC/MS, while the high-molecular weight or insoluble fractions were subjected to the next reaction step.The chemical degradation products—hydrocarbons and carboxylic acids—are discussed in terms of incorporation into the macromolecular structure, distribution of heteroatomic bridges and the genetic relationships between the different macromolecular crude oil fractions and kerogen.Labelling experiments with deuterium provided evidence for a simultaneous linkage by oxygen and sulphur functionalities or by aromatic units and sulphur bonds of cross-linking macromolecular network constituents.The determination of sulphur positions in the macromolecule suggests early diagenetic sulphur incorporation into the biological precursor compounds and subsequent formation of a cross-linked network.  相似文献   

5.
Kerogen plays an important role in shale gas adsorption, desorption and diffusion. Therefore, it is necessary to characterize the molecular structure of kerogen. In this study, four kerogen samples were isolated from the organic-rich shale of the Longmaxi Formation. Raman spectroscopy was used to determine the maturity of these kerogen samples. High-resolution transmission electron microscopy (HRTEM), 13C nuclear magnetic resonance (13C NMR) , X-ray diffraction (XRD) and Fourier transform infrared (FT-IR) spectroscopy were conducted to characterize the molecular structure of the shale samples. The results demonstrate that VReqv of these kerogen samples vary from 2.3% to 2.8%, suggesting that all the kerogen samples are in the dry gas window. The macromolecular carbon skeleton of the Longmaxi Formation kerogen is mainly aromatic (fa’=0.56). In addition, the aromatic structural units are mainly composed of naphthalene (23%), anthracene (23%) and phenanthrene (29%). However, the aliphatic structure of the kerogen macromolecules is relatively low (fal*+falH=0.08), which is presumed to be distributed in the form of methyl and short aliphatic chains at the edge of the aromatic units. The oxygen-containing functional groups in the macromolecules are mainly present in the form of carbonyl groups (fac=0.23) and hydroxyl groups or ether groups (falO=0.13). The crystallite structural parameters of kerogen, including the stacking height (Lc=22.84 ?), average lateral size (La=29.29 ?) and interlayer spacing (d002=3.43 ?), are close to the aromatic structural parameters of anthracite or overmature kerogen. High-resolution transmission electron microscopy reveals that the aromatic structure is well oriented, and more than 65% of the diffractive aromatic layers are concentrated in the main direction. Due to the continuous deep burial, the longer aliphatic chains and oxygen-containing functional groups in the kerogen are substantially depleted. However, the ductility and stacking degree of the aromatic structure increases during thermal evolution. This study provides quantitative information on the molecular structure of kerogen samples based on multiple research methods, which may contribute to an improved understanding of the organic pores in black shale.  相似文献   

6.
A preliminary attempt to fractionate amorphous kerogens from terrigenous bulk kerogen by a benzene-water two phase partition method under acidic condition was made. Microscopic observation revealed that amorphous kerogens and structured kerogens were fractionated effectively by this method. Characteristics of the amorphous and structured kerogens fractionated by this method were examined by some chemical analyses and compared with those of the bulk kerogen and humic acid isolated from the same rock sample (Haizume Formation, Pleistocene, Japan). The elemental and infrared (IR) analyses showed that the amorphous kerogen fraction had the highest atomicHC ratio and the lowest atomic NC ratio and was the richest in aliphatic structures and carbonyl and carboxyl functional groups. Quantities of fatty acids from the saponification products of each geopolymer were in agreement with the results of elemental and IR analyses. Distribution of the fatty acids was suggestive that more animal lipids participate in the formation of amorphous kerogens because of the abundance of relatively lower molecular weight fatty acids (such as C16 and C18 acids) in saponification products of amorphous kerogens. On the other hand, although the amorphous kerogen fraction tends to be rich in aliphatic structures compared with bulk kerogen of the same rock samples, van Krevelen plots of elemental compositions of kerogens from the core samples (Nishiyama Oil Field, Tertiary, Japan) reveal that the amorphous kerogen fraction is not necessarily characterized by markedly high atomic HC ratio. This was attributed to the oxic environment of deposition and the abundance of biodegraded terrestrial amorphous organic matter in the amorphous kerogen fraction used in this work.  相似文献   

7.
Products of thermal cracking of kerogen of Lower-Middle Cambrian oil shale are studied by modern instrumental analytical methods (FTIR, gas chromatography, mass spectrometry, etc.). The analyses demonstrate that the geopolymer kerogen matrix inherited fragments of lipids synthesized by living organisms, including aliphatic fat acids, both free or bounded into glycerol esters, i.e., animal or vegetable fats. It is shown that vegetable pigments (carotenes and xanthophylls) play a crucial role in the formation of monocyclic structures (including molecular alkylbenzene, alkylphenol, and phenylalkane fragments) in kerogen. Since the studied kerogen is rich in esters, it is worth performing alkaline hydrolysis of its macromolecules (ester saponification) before their thermolysis, which inevitably distorts the initial structure of molecular skeletons.  相似文献   

8.
Compound-specific stable carbon isotope (δ ) measurements on the aliphatic hydrocarbons released from an immature Tertiary oil shale (Göynük, Turkey) via hydropyrolysis, following solvent extraction and a milder hydrogenation treatment, have further highlighted that significant compositional differences may exist between the principal aliphatic constituents of the solvent extractable (bitumen) phase and the insoluble macromolecular network (kerogen) comprising the bulk of sedimentary organic matter. Whilst inputs from diverse sources; including algae, bacteria and terrestrial higher plants, were implied from analysis of solvent-extractable alkanes, the much larger quantities of kerogen-bound n-alkyl constituents released by hydropyrolysis had a uniform isotopic signature which could be assigned to (freshwater) algae. Remarkably, the aliphatics bound to the kerogen by relatively weak covalent bonds, liberated via catalytic hydrogenation, appeared to comprise mainly allochthonous higher plant-derived n-alkanes. These results provide further compelling evidence that the molecular constituents of bitumen and, indeed, of low-yield kerogen degradation products, are not necessarily reliable indicators of kerogen biogenicity, particularly for immature Type I source rocks. The isotopic uniformity of aliphatic n-hydrocarbons released by the high-conversion hydropyrolysis step for the ultralaminae-rich Göynük oil shale, lends further support to the theory that selective preservation of highly resistant aliphatic biomacromolecules is an important mechanism in kerogen formation, at least for alginite.  相似文献   

9.
Ruthenium tetroxide oxidation was used to examine the macromolecular insoluble organic matter (IOM) from the Orgueil and Murchison meteorites and especially to characterize the aliphatic linkages. Already applied to various terrestrial samples, ruthenium tetroxide is a selective oxidant which destroys aromatic units, converting them into CO2, and yields aliphatic and aromatic acids. In our experiment on chondritic IOM, it produces mainly short aliphatic diacids and polycarboxylic aromatic acids. Some short hydroxyacids are also detected.Aliphatic diacids are interpreted as aliphatic bridges between aromatic units in the chemical structure, and polycarboxylic aromatic acids are the result of the fusion of polyaromatic units. The product distribution shows that aliphatic links are short with numerous substitutions. No indigenous monocarboxylic acid was detected, showing that free aliphatic chains must be very short (less than three carbon atoms). The hydroxyacids are related to the occurrence of ester and ether functional groups within the aliphatic bridges between the aromatic units. This technique thus allows us to characterize in detail the aliphatic linkages of the IOMs, and the derived conclusions are in agreement with spectroscopic, pyrolytic, and degradative results previously reported.Compared to terrestrial samples, the aliphatic part of chondritic IOM is shorter and highly substituted. Aromatic units are smaller and more cross-linked than in coals, as already proposed from NMR data. Orgueil and Murchison IOM exhibit some tiny differences, especially in the length of aliphatic chains.  相似文献   

10.
为了构建内蒙古扎鲁特地区无烟煤的分子结构模型,采用工业分析、元素分析、核磁共振碳谱、高分辨率透射电镜和X射线光电子能谱等测试方法对该地区无烟煤的分子结构进行研究。结果表明无烟煤分子结构中以芳香碳为主,脂肪碳以短烷基侧链和环烷烃为主。煤分子结构中氧原子主要以酚羟基和醚氧基的形式存在,氮原子主要以吡咯型氮和吡啶型氮的形式存在,硫原子主要的赋存形态是硫醇硫酚。结合由核磁共振碳谱测得的煤结构参数和由高分辨率透射电镜测得的芳香环尺寸和含量,构建了无烟煤大分子平均结构模型。对构建的模型进行了结构优化与能量分析,发现煤分子结构的芳香片层趋于平行排列,非键结势能中的范德华力是保持煤结构稳定的主要因素。本研究为采用分子动力学模拟从分子尺度研究扎鲁特地区无烟煤在石墨化过程中,其芳香碳层的拼叠过程及其反应路径提供了模型基础。   相似文献   

11.
Diagenetic alteration is critical for the preservation of fossil cuticles of plant and animal origin and to the formation of kerogen. The process takes place over millions of years, but the stage at which it is initiated is not known. Laboratory decay experiments were carried out on shrimps, scorpions and cockroaches to monitor changes in the chitin–protein of the arthropod cuticle and associated lipids. The cockroach and scorpion exoskeleton remained largely unaltered morphologically, but the shrimp experienced rapid decomposition within a month, which progressed through the 44 week duration of the experiment as revealed using electron microscopy. Mass spectrometry and 13C NMR (nuclear magnetic resonance) spectroscopy revealed the association of an n-alkyl component with labile lipids, such as fatty acids with up to 24 carbon atoms, which were incorporated into the decaying macromolecule. The scorpion and cockroach cuticle did not reveal the incorporation of additional lipids, indicating that decay is important in initiating in situ lipid association. This experiment provides evidence that lipids can become associated with carbohydrate and proteinaceous macromolecules during the very early stages of decay, representing the first stage in the transformation process that contributes to the aliphatic rich composition ubiquitous in organic fossils and kerogen.  相似文献   

12.
高磁场固态碳13核磁共振法研究干酪根的热降解成烃机理   总被引:3,自引:0,他引:3  
用高磁场(75.46MHZ)固态碳13核磁共振(NMR)波谱仪研究了抚顺油页岩在热降解模拟试验中干酪根的化学结构变化.为了消除旋转边带的干扰,在应用交叉极化与魔角自旋(CP/MAS)技术的同时,采用了Dixon TOSS技术,从而得到高分辨的波谱图。据此测定了热降解过程中干酪根各种碳结构组成的变化,计算了芳碳率、亚甲基基团平均碳原子数、环缩合指数等一系列干酪根的结构参数,并与干酪根的相对产油潜力相关联.发现干酪根的产油潜力直接与亚甲基基团的含量有关,而芳碳以及与芳碳相连的甲基碳则贡献甚微.文中还对干酪根的热降解成烃机理作了探讨。  相似文献   

13.
A South Australian Tertiary brown coal is fractionated into humic acid and kerogen fractions. These related samples are then subjected to a number of different analytical techniques including infrared and13C-Nuclear Magnetic Resonance spectroscopies and pertrifluoroacetic acid oxidation. Structural conclusions are drawn from an integrated consideration of the data. Brown coal aliphatic structure is concentrated in the kerogen and the solvent soluble polar acid fractions. The humic acids are the most aromatic and contain a high degree of hydrogen bonding. Only very minor amounts of long polymethylene chain structures are observed in the humic acids, in complete contrast to the kerogen fraction. Different organic detrital origins are proposed for the coal fractions.  相似文献   

14.
A polymeric acid fraction has been isolated from Black Trona Water, a fossil water from the Green River Formation of Wyoming, by means of exhaustive dialysis. The polymeric acid is apparently of large molecular weight (>20,000) and constitutes 40–45% of the organic material in Black Trona Water from the DOE/LETC Black Water 1-A well. The fraction was investigated by means of 13C-NMR, FTIR, and fluorescence spectroscopy. Most of the carbon content is aliphatic (63%), with some aliphatic chains greater than 4 carbons in length. A substantial aromatic fraction exists consisting of condensed structures having 4–6 rings. The chemical nature of the polymeric acid fraction is compared to that of kerogen from the same formation.  相似文献   

15.
Studied samples include eight Gondwanan species of the Dicroidium flora: seed ferns (3), conifer (1), cycad-related (1), unknown affinity gymnosperms (2), and one undetermined axis from two Middle to Upper Triassic localities (Cacheuta, Mendoza, central western Argentina). Based on differing preservation states and sample treatments, four sample forms are established: (1) compressions, (2) cuticles, (3) cuticle-free coalified layers, and (4) associated coal samples. The purpose of the study is firstly to analyze the sample forms using Fourier transform infrared (FTIR) spectrometry, contributing to filling an existing gap of chemical information for Gondwanan pant fossil remains. Secondly, semi-quantitative chemical parameters, calculated by area integration of infrared spectra, are treated using principal component analysis to infer statistical groupings as a function of chemical structures (functional groups). From the initial two-component solution, based on the 8 × 41 data matrix, a subset matrix (4 × 29) could be isolated which also yielded a two-component solution (in each case, cumulative explained variance is at least 89%). Results include the distinction between the coaly forms (1) compressions and (3) cuticle-free coalified layers mainly based on the carbonyl contents and branching and length of the hydrocarbon side chains. The highly aliphatic nature of cuticles, which is indicative of biomacromolecules (cutin), is noted. Similarities in functional groups are recorded with types of kerogen and coal macerals. The result enables us to postulate that the functional groups characterizing the different modes of preservation of our fossil remains are likely related to the propensity to generate oil and gas/condensate from the kerogen. Our data have the potential for future studies with implications for chemotaxonomy, molecular taphonomy, and paleoclimatology.  相似文献   

16.
The kerogen of a sample of Estonian Kukersite (Ordovician) was examined by spectroscopic (solid state 13C NMR, FTIR) and pyrolytic (“off-line”, flash) methods. This revealed an important contribution of long, linear alkyl chains in Kukersite kerogen. The hydrocarbons formed upon pyrolysis are dominated by n-alkanes and n-alk-1-enes and probably reflect a major contribution of selectivity preserved, highly aliphatic, resistant biomacromolecules from the outer cell walls of Gloeocapsomorpha prisca. This is consistent with the abundant presence of this fossilized organism in Kukersite kerogen. In addition high amounts of phenolic compounds were identified in the pyrolysates. Series of non-methylated, mono-, di- and trimethylated 3-n-alkylphenols, 5-n-alkyl-1,3-benzenediols and n-alkylhydroxybenzofurans were identified. All series of phenolic compounds contain long (up to C19), linear alkyl side-chains. Kukersite kerogen is, therefore, an aliphatic type II/I kerogen, despite the abundance of free phenolic moieties. This study shows that phenol-derived moieties are not necessarily associated with higher plant-derived organic matter.The flash pyrolysate of Kukersite kerogen was also compared with that of the kerogen of the Guttenberg Oil Rock (Ordovician) which is also composed of accumulations of fossilized G. prisca. Similarities in the distributions of hydrocarbons and sulphur compounds were noted, especially for the C1–C6 alkylbenzene and alkylthiophene distributions. However, no phenolic compounds were detected in the flash pyrolysate of the Guttenberg kerogen. Possible explanations for the observed similarities and differences are discussed.  相似文献   

17.
A 33 step alkaline permanganate degradation of the kerogen from Moroccan Timahdit oil shale (M-Zone) was carried out. A very high total yield of oxidation products was obtained (95.4% based on original kerogen). Detailed GC-MS analyses of ether-soluble acids, acids isolated from aqueous solutions and soluble products of further controlled permanganate dedradation of precipitated, ether-insoluble acids, served as a basis for the quantitative estimation of the participation of various types of products and for comparison with other kerogens. The most interesting finding was the observed uniquely high yield of aromatic oxidation products from an intermediate type I–II kerogen. Taking into account the almost equally dominant aliphatic (50.2%) and aromatic (43.2%) nature of the acidic oxidation products, the existence of an aliphatic cross-linked nucleus mixed with cross-linked aromatic units in the Timahdit shale kerogen is postulated. Uniform distribution of oxidation products throughout the degradation suggested a similar reactivity of the various kerogen constituents towards alkaline permanganate.  相似文献   

18.
Previous studies of the Green River kerogen only provide apparently contradictory conclusions about the size of the straight-chain aliphatic structures as well as the manner in which these structures form part of the kerogen matrix.The present investigation is an attempt to resolve this contradiction. A mild stepwise oxidation procedure was followed so that extensive degradation of kerogen-derived intermediates could be prevented. Products isolated from each oxidation step were analyzed by conventional GLC techniques, GC-MS, and proton-NMR measurements in order to ascertain the significance of the straight-chain aliphatic structures present in the Green River kerogen.The following results were obtained: (a) Green River kerogen contains a substantial portion (ca 2–4 carbons out of every 10) of straight-chain aliphatic structures which are longer than C4, (b) the kerogen matrix forms a three-dimensional network of non-straight-chain clusters interconnected by long polymethylene cross-links, (c) the ‘core’, in comparison with the ‘periphery’ of the kerogen matrix, contains a greater proportion of straight-chain and branched aliphatic structures which are attached to the kerogen matrix at one terminus, (d) some of the straight-chain structures may exist as physically entrapped components in the kerogen matrix.  相似文献   

19.
The insoluble organic matter, or kerogen, in a Recent bottom mud (<1000yr old) from Mono Lake, California, has been analyzed by vacuum pyrolysis-GC-MS and compared with the kerogen from several Precambrian rocks, including the Belingwe and Transvaal stromatolites. The Mono Lake kerogen consists mainly of cyclic and acyclic aliphatic components with lesser amounts of aromatics present. It is less aromatic and more susceptible to thermal degradation than the Precambrian kerogens, and its products show a much greater diversity especially among the unsaturated aliphatics and the heteroatomic components. The presence of these compounds, most notably 2,5-dimethylfuran, in the Mono Lake kerogen indicates a relatively rapid formation and incorporation into a young kerogen and suggests that their presence in the Precambrian kerogens, such as the Belingwe stromatolite, may be consistent with an ancient biological origin.In simulated diagenesis experiments the Recent mud was heated at 150°C for 3 months or 225°C for 8 months. The former was insufficient to affect the kerogen pyrolysis products. The latter, however, caused a large decrease in the heteroatomic components and a slight increase in the abundance of n-alkanes relative to that of the cyclic and branched alkanes. This suggests that the presence of some of these components in Precambrian rocks should be consistent with a high degree of preservation of these rocks, as appears to be the case for the Belingwe and Transvaal stromatolites.  相似文献   

20.
《Applied Geochemistry》1988,3(5):441-453
Green River shale (Type I kerogen), Yaamba shale (Type II kerogen) and Sarufutsu coal (Type III kerogen) were heated to various temperatures using Rock-Eval. The amount of hydrocarbons generated and weight loss by pyrolysis were measured to obtain a better understanding of petroleum generation. After the pyrolysis experiments, elemental analysis (C, H), vitrinite reflectance (%Ro) measurement, maceral observation, infrared spectroscopy (IR) and13C-NMR spectroscopy were carried out on the coal samples. Changes in H/C atomic ratio, IR and NMR spectra indicate that experiments by Rock-Eval resemble those of the natural evolution of kerogen. However, the petrographic changes of the coal show more similarity to coal liquefaction and coking than to natural coalification. Changes in the amount of generated hydrocarbons with increasing maturation show that Type II kerogen produces more hydrocarbons than does Type I when Ro does not exceed 1.1%. Petroleum generation curves for the three samples were concordant with trends in natural systems, and a conceptual model of petroleum generation curve classified into three types is proposed, namely (1) curve of total amount enerated, (2) curve of generation rate, and (3) curve of fluid composition. Changes of IR and NMR spectra after pyrolysis imply that generated hydrocarbons are derived from aliphatic C structures of kerogen macromolecules. Moreover, the difference in genetic potential between Type I and Type III reflects different amounts of aliphatic structures. Type I is assumed to have a simple assemblage (mainly polymethylene carbons), and Type III is assumed to have a more complex variety of structures that are responsible for the difference in generation rates between the two kerogen Types. A quantitative analysis of C species of various bond structure by13C-NMR confirms that petroleum generation is the process of bond cleavage of kerogen macromolecules; lower-energy bonds decrease at an earlier stage of reaction, while aromatic carbons with higher bond energies survive to form graphitic structure at postmature stages. Emphasis is placed on the idea that the most important and direct factor in petroleum generation is a change in the molecular structure of kerogen with increasing maturation. NMR and other methods providing information about molecular structures of kerogen will become strong tools for evaluating source rocks and sedimentary basins in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号