首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The velocity field has been mapped for 42 min in an area 80 by 85 containing a unipolar sunspot. Apparent shifts of Fe i 5233 were measured photoelectrically using a rectangular scanning aperture 1.6 × 4.0. The sunspot did not exert a marked influence on the generally random pattern of oscillations at a period of 300 s. Discrete periods of oscillation both longer and shorter than 300 s were excited within the enhanced magnetic field boundaries of this spot. Umbral oscillations at periods near 180 s were detected in agreement with independent observations of the same spot during the previous solar rotation.NRC Postdoctoral Fellow, 1969–71.  相似文献   

2.
The potential models of the unipolar sunspot magnetic field are calculated on the basis of magnetographic measurements of the magnetic field made in the three spectral lines of different intensities, H, Cai 6103 and Fei 4808. The computed distributions of the magnetic field vector are compared with actual distributions observed at these three levels. It is shown that the electric current density in the spot reaches values up to 105 CGSE in the volume contained between formation depths of two pairs of lines, Fei 4808-Cai 6103 and Fei 4808 - H. Therefore, the magnetic field of the spot deviates strongly from a potential configuration. To the contrary, at higher levels, in the semi-infinite volume restricted at the bottom by the hydrogen H-line, the field appears to be quite close to a potential one.  相似文献   

3.
Hongqi Zhang 《Solar physics》1994,154(2):207-214
A set of H chromospheric magnetograms at various wavelengths near the line center, chromospheric Dopplergrams, and photospheric vector magnetograms of a unipolar sunspot region near the solar limb were obtained with the vector video magnetograph at the Huairou Solar Observing Station. The superpenumbral chromospheric magnetic field is almost parallel to the surface at the outside of the sunspot penumbra, where the magnetic lines of force are mainly concentrated in the superpenumbral filaments. In the gaps between the filaments the chromospheric horizontal field is weak.  相似文献   

4.
From enlargements of patrol photographs of the disk passage of the sunspot of July 20 – August 2, 1966, intensity profiles across the spot are obtained at several positions near the disk-center and at each limb. It is found that these profiles show asymmetric features near each limb (increasingly sharp limb-side penumbra and poorly resolved disk-side penumbra) which are similar to those reported in Paper III of this series. It is suggested that these profile asymmetries are the essential feature of the center-limb variations in the appearance of a sunspot which have become known as the Wilson effect.Conventionally the Wilson effect is described as the extreme foreshortening and eventual disappearance of the disk-side penumbra and, recently, Suzuki has referred to this as the occultation of the penumbra by the photosphere. We find no evidence at all for the disappearance of the disk-side penumbra at the limb in this spot. Defining half-height points on the profile curves as the umbral and penumbral boundaries, we find that, near the west limb where the spot is stable and regular, the limb-side penumbra increases by about 10% at the expense of the umbra. This result qualitatively supports the results reported in Paper III although it is smaller in magnitude.Other observations of sunspots which appear to exhibit the conventional Wilson effect are discussed and it is concluded that in no case yet published is the resolution and seeing of sufficient quality to demonstrate unambiguously the disappearance of the disk-side penumbra.  相似文献   

5.
Typical intensity profiles across a sunspot at several heliocentric angles are selected from recent observations of the Wilson Effect. In addition, the profile of the mean intensity at the surface of the spot is inferred from these observed profiles.With these data, the transfer equation is solved for the two-dimensional source function distribution within the sunspot for several models of the opacity distribution. For an opacity model in which unit optical depth in the umbra occurs at least 700 km below unit optical depth in the mean photosphere, it is possible to reproduce qualitatively all the features of the observed profiles.Although no assumption is made about the extent of the umbra below the surface, these solutions clearly show that, at a depth of 700 km below unit optical depth in the photosphere, the diameter of the umbral region, which is 10800 km at the surface, has increased to about 12000 km. Thus the shape of the umbral region below the surface is part of an inverted cone of semi-vertical angle approximately 45°. The run of gas pressure and density in the umbra is computed for the model and compared with the corresponding photospheric values.Of the National Bureau of Standards and University of Colorado.  相似文献   

6.
White-light photographs of a fairly regular sunspot have been obtained for all but one day of its passage across the disk. From microphotometer tracings across these photographs, intensity profiles across the spot have been obtained at several heliocentric angles, θ. Apparent sunspot, umbral and penumbral widths, have been obtained from these profiles, and an examination of these reveals that the well-known Wilson effect (Wilson, 1774) is a rather complex phenomenon comprising four main features:
  1. The intensity profiles become increasingly asymmetric at large θ. The penumbra remote from the limb is poorly defined while the penumbral intensity plateau nearer the limb is well defined and sometimes enhanced by an intensity maximum near the umbra-penumbra boundary.
  2. A gradual decrease in the apparent width of the disk-side penumbra may occur but this effect is barely significant compared with the rms errors of the observations.
  3. The apparent width of the limb-side penumbra is independent of θ for θ < 60° but at larger heliocentric angles it increases sharply and by a significant amount.
  4. The apparent umbral diameter also shows no θ-dependence for θ < 60° but beyond this it decreases in an almost complementary manner.
A general model for the structure of a sunspot is put forward which readily explains these results in a qualitative manner but it is emphasised that an adequate analysis of sunspot structure based on these observations requires solutions of the three-dimensional equation of radiative transfer.  相似文献   

7.
P. R. Wilson 《Solar physics》1974,35(1):111-121
This paper considers the recent criticism by Mullan (1973) of sunspot models and the cooling mechanism which I have proposed in Papers I, II and III of this series. The discussion of the cooling produced by an idealized flow cycle has been extended to include vertical temperature gradients which are consistent with a convectively unstable atmosphere. This leads to an expression for Mullan's parameter f (the ratio in which estimates of the energy flux based on an idealized Carnot cycle should be reduced) which is appropriate to this situation. It is shown that, for a cycle similar to that of Paper III, f = 0.82, while for one which has a vertical extent of order 5 Mm, f= 0.4. Hence the energy flux which, in principle, can be transported away from a sunspot by such a cycle is conservatively estimated to be 1.1 × 1029 erg s?1 compared with a typical sunspot energy deficit of 2.2 × 1029 erg s?1. Other criticisms relating to the magnetic field amplification and the ‘cool one’ model are discussed. It is concluded that the essential features of these models remain valid and that the modifications suggested by Mullan's criticism greatly increase their applicability to the sunspot problem.  相似文献   

8.
P. R. Wilson 《Solar physics》1972,27(2):354-362
A mechanism is proposed to explain the cooling of a sunspot in terms of the detailed interactions between the magnetic field and the convective motions. The mechanism provides that an axially symmetric concentration of magnetic field deforms the normal supergranule cell pattern below the sunspot into a radial outflow of plasma over a region of diameter 60 Mm.The flow occurs at depths where the magnetic and kinetic energy densities are approximately equal ( 5 Mm) and is described in terms of a Carnot refrigeration cycle. Application of the hydromagnetic equations to a very simple model shows that, because the magnetic field concentration causes the outflow, the field will itself decay in a time short compared with the lifetime of a spot. However, a slightly more sophisticated model does suggest conditions under which this decay is considerably reduced.Observations of the outward drift of magnetic knots around sunspots and of supergranule-type surface motions extending radially outwards from the penumbra of a spot to the nearest faculae are discussed in relation to the mechanism.  相似文献   

9.
A new model for the structure of a sunspot is put forward. The features of the model are (i) the deep inhibition of convection by magnetic fields, (ii) the formation of a cool cone above the region of inhibition of convective transfer by the energy diverted around this region, and (iii) the development of the penumbra by the interaction of strong magnetic field with thermal forces in a region where the opacity prevents the transport of energy by radiation alone. A clear distinction is made between a pore, which results from the inhibition of deep convection across an area considerably greater than that of the pore, and isolated penumbral filaments, which result from strong local fields in the surface regions.It is shown that this new model provides a simple account of the birth and development of a sunspot, and this is contrasted with the difficulties faced by alternative models.On leave from the University of Sydney.  相似文献   

10.
P. R. Wilson 《Solar physics》1973,32(2):435-439
The coordinates of the cooling cycle described in Paper I are re-defined in order to provide an account in which the part played by the cycle in cooling the sunspot is separated from the role of the supergranule cells in transporting energy away from it.More recent observations of velocity fields and magnetic outflow near sunspots are discussed. A model suggested by Harvey and Harvey to explain the observed magnetic flux transported across the moat region is refined and extended using the cooling cycle model.  相似文献   

11.
12.
Observations of longitudinal and transversal fields and of radial velocities in the magnetic ‘knots’ close to a sunspot were made with the help of Sayan Observatory magnetograph with spatial resolution 1″.2 x 1″.8. The analysis led to following conclusions:
  1. The magnetic field in the knots is mainly vertical. The mean inclination of the magnetic-field vector to the vertical direction is equal to 26°.
  2. The phenomenon of darkening is connected with essentially vertical fields and brightening in the faculae with the horizontal fields on the sun.
  3. An inverse relation between the value of darkening and the inclination of the field vector to the vertical direction and a direct relation on the longitudinal magnetic-field strength exist for the magnetic knots.
  4. The magnetic knots in the active region are located in the Hα flocculi near the line where the radial velocity is changing sign in the photosphere.
  相似文献   

13.
A series of microwave observations of a sunspot in the active region NOAA 4741 was made with the Owens Valley Solar Array for the purpose of investigating the center-to-limb variation of both the spectral and spatial brightness distribution. In this investigation, several properties of the sunspot microwave radiation are found. First, sunspot microwave emission appears in two typical profiles depending on the heliocentric position of the spot: either the ring structure near disk center or single-peak structure near the limb. Second, the brightness temperature at high, optically thin frequencies (>6 GHz) increases slightly as the spot approaches the limb, which we interpret as being due to the increase of the gyroresonance opacity of the field lines near the spot center as they gain greater viewing angles. Third, the center-to-limb variation of the gyroresonance spectrum seems to be mostly characterized by a change of effective harmonic, which accompanies a discontinuous change of the degree of polarization. Fourth, a change of spectrum from gyroresonance to free-free emission is found in the passage of the spot over the solar limb, which gives a determination of the height of the gyroresonance layer to confirm its location low in the corona of the active region.  相似文献   

14.
15.
16.
A correlation analysis shows that the sunspot numbers at the peaks of the last eight solar cycles are well-correlated with the sunspot numbers in heliolatitudes 20°–40° (specially in the southern hemisphere) occurring in the solar minimum years immediately preceding the solar maximum years.On leave from Physical Research Laboratory, Ahmedabad, India.  相似文献   

17.
From the gyroresonance brightness temperature spectrum of a sunspot, one can determine the magnetic field strength by using the property that microwave brightness is limited above a frequency given by an integer-multiple of the gyrofrequency. In this paper, we use this idea to find the radial distribution of magnetic field at the coronal base of a sunspot in the active region, NOAA 4741. The gyroresonance brightness temperature spectra of this sunspot are obtained from multi-frequency interferometric observations made at the Owens Valley Radio Observatory at 24 frequencies in the range of 4.0–12.4 GHz with spatial resolution 2.2″–6.8″. The main results of present study are summarized as follows: first, by comparison of the coronal magnetic flux deduced from our microwave observation with the photospheric magnetic flux measured by KPNO magnetograms, we show that theo-mode emission must arise predominantly from the second harmonic of the gyrofrequency, while thex-mode arises from the third harmonic. Second, the radial distribution of magnetic fieldsB(r) at the coronal base of this spot (say, 2000–4000 km above the photosphere) can be adequately fitted by $$B(r) = 1420(1 \pm 0.080)\exp \left[ { - \left( {\frac{r}{{11.05''(1 \pm 0.014)}}} \right)^2 } \right]G,$$ wherer is the radial distance from the spot center at coronal base. Third, it is found that coronal magnetic fields originate mostly from the photospheric umbral region. Fourth, although the derived vertical variation of magnetic fields can be approximated roughly by a dipole model with dipole moment 1.6 × 1030 erg G?1 buried at 11000 km below the photosphere, the radial field distribution at coronal heights is found to be more confined than predicted by the dipole model.  相似文献   

18.
M. Waldmeier 《Solar physics》1980,66(2):273-274
The development and the motion of a sunspot are described that has crossed the Sun's equator.  相似文献   

19.
Photoelectric Vilnius photometry of the B-type stars HD 29 647 and HDE 283 809 in the direction of the Taurus molecular cloud indicates their brightness and energy distribution to be constant within 1–2%. The interstellar extinction law is determined for the star HDE 283 809 from the photometry data in the Vilnius andUBVRJHKL systems, which yield the ratioR=A V/EB-V=3.5 and grain sizes exceeding the average by approximately 10%. The interstellar extinction law for the two stars is found to be the same in the infrared, however, it is very different in the near ultraviolet. The new spectra of HDE 283 809 confirm the earlier classification and indicate an absence of emission in the hydrogen lines. The interstellar band at 443 nm is observed but its intensity is a half of what is expected forE B-V=1.61. The observed peculiarities of the energy distribution in the spectrum of HDE 283 809 apparently originate in interstellar or circumstellar dust, not in the star itself.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

20.
We present a cylindrically symmetric model for a sunspot atmosphere using the similarity principle of Schlüter and Temesvary for the magnetic field configuration. The equations of magnetostatic equilibrium are used, augmented by a radial Evershed flow. The LTE radiative transfer equations for the Stokes vector were solved under a variety of conditions for a ray emerging from a typical penumbral point. The contribution from isolated lines to the broadband circular polarization in sunspot penumbrae is evaluated using a more realistic model sunspot atmosphere than has hitherto been considered. Results indicate that the inclusion of a velocity field along B is unable to give a net circular polarization of sufficient magnitude, although the variation with the angle between the line-of-sight and B is in qualitative agreement with observations. The corresponding results for the net linear polarization are satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号