首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first eruptive activity at Kīlauea Volcano’s summit in 25 years began in March 2008 with the opening of a 35-m-wide vent in Halema‘uma‘u crater. The new activity has produced prominent very-long-period (VLP) signals corresponding with two new behaviors: episodic tremor bursts and small explosive events, both of which represent degassing events from the top of the lava column. Previous work has shown that VLP seismicity has long been present at Kīlauea’s summit, and is sourced approximately 1 km below Halema‘uma‘u. By integrating video observations, infrasound and seismic data, we show that the onset of the large VLP signals occurs within several seconds of the onset of the degassing events. This timing indicates that the VLP is caused by forces—sourced at or very near the lava free surface due to degassing—transmitted down the magma column and coupling to the surrounding rock at 1 km depth.  相似文献   

2.
Effusion rate is a primary measurement used to judge the expected advance rate, length, and hazard potential of lava flows. At basaltic volcanoes, the rapid draining of lava stored in rootless shields and perched ponds can produce lava flows with much higher local effusion rates and advance velocities than would be expected based on the effusion rate at the vent. For several months in 2007–2008, lava stored in a series of perched ponds and rootless shields on Kīlauea Volcano, Hawai'i, was released episodically to produce fast-moving 'a'ā lava flows. Several of these lava flows approached Royal Gardens subdivision and threatened the safety of remaining residents. Using time-lapse image measurements, we show that the initial time-averaged discharge rate for one collapse-triggered lava flow was approximately eight times greater than the effusion rate at the vent. Though short-lived, the collapse-triggered 'a'ā lava flows had average advance rates approximately 45 times greater than that of the pāhoehoe flow field from which they were sourced. The high advance rates of the collapse-triggered lava flows demonstrates that recognition of lava accumulating in ponds and shields, which may be stored in a cryptic manner, is vital for accurately assessing short-term hazards at basaltic volcanoes.  相似文献   

3.
During the 2018 eruption of Kīlauea Volcano, Hawai'i, scientists relied heavily on a conceptual model of explosive eruptions triggered when lava-lake levels drop below the water table. Numerical modeling of multiphase groundwater flow and heat transport revealed that, contrary to expectations, liquid water inflow to the drained magma conduit would likely be delayed by months to years, owing to the inability of liquid water to transit a zone of very hot rock. The summit of Kīlauea subsequently experienced an ∼2-month period of consistent repeated collapses, and the crater now extends below the equilibrium position of the water table. Liquid water first emerged into the deepened crater in late July 2019. The timing of first appearance of liquid water (about 14 months postcollapse) and the rate of crater lake filling (currently ∼27 kg/s) were well-predicted by the numerical modeling done in late spring 2018, which forecast liquid inflow after 3 to 24 months at rates of 10 to 100 kg/s. A second-generation groundwater model, reflecting the current crater geometry, forecasts lake filling over the next several years. The successful 2018 to present forecasts with both models are based on unadjusted in situ permeability estimates (1 to 6 × 10−14 m2) and water-table elevations (600 to 800 m) from a nearby research drillhole and geophysical surveys. Important unknowns that affect the reliability of longer-term forecasts include the equilibrium water-table geometry, the rate of evaporation from the hot and growing crater lake (currently ∼29,000 m2 at 70-80 °C), and heterogenous permeability changes caused by the 2018 collapse.  相似文献   

4.
 The tube-fed pāhoehoe lava flows covering much of the northeast flank of Kīlauea Volcano are named the 'Ailā'au flows. Their eruption age, based on published and six new radiocarbon dates, is approximately AD 1445. The flows have distinctive paleomagnetic directions with steep inclinations (40°–50°) and easterly declinations (0°–10°E). The lava was transported ∼40 km from the vent to the coast in long, large-diameter lava tubes; the longest tube (Kazumura Cave) reaches from near the summit to within several kilometers of the coast near Kaloli Point. The estimated volume of the 'Ailā'au flow field is 5.2±0.8 km3, and the eruption that formed it probably lasted for approximately 50 years. Summit overflows from Kīlauea may have been nearly continuous between approximately AD 1290 and 1470, during which time a series of shields formed at and around the summit. The 'Ailā'au shield was either the youngest or the next to youngest in this series of shields. Site-mean paleomagnetic directions for lava flows underlying the 'Ailā'au flows form only six groups. These older pāhoehoe flows range in age from 2750 to <18,000 BP, and the region was inundated by lava flows only three times in the past 5000 years. The known intervals between eruptive events average ∼1600 years and range from ∼1250 years to >2200 years. Lava flows from most of these summit eruptions also reached the coast, but none appears as extensive as the 'Ailā'au flow field. The chemistry of the melts erupted during each of these summit overflow events is remarkably similar, averaging approximately 6.3 wt.% MgO near the coast and 6.8 wt.% MgO near the summit. The present-day caldera probably formed more recently than the eruption that formed the 'Ailā'au flows (estimated termination ca. AD 1470). The earliest explosive eruptions that formed the Keanakāko'i Ash, which is stratigraphically above the 'Ailā'au flows, cannot be older than this age. Received: 10 October 1998 / Accepted: 12 May 1999  相似文献   

5.
Culturally significant oral tradition involving Pele, the Hawaiian volcano deity, and her youngest sister Hi'iaka may involve the two largest volcanic events to have taken place in Hawai'i since human settlement: the roughly 60-year-long ‘Ailā’au eruption during the 15th century and the following development of Kīlauea's caldera. In 1823, Rev. William Ellis and three others became the first Europeans to visit Kīlauea's summit and were told stories about Kīlauea's activity that are consistent with the Pele–Hi'iaka account and extend the oral tradition through the 18th century. Recent geologic studies confirm the essence of the oral traditions and illustrate the potential value of examining other Hawaiian chants and stories for more information about past volcanic activity in Hawai‘i.  相似文献   

6.
 Glassy bubble-wall fragments, morphologically similar to littoral limu o Pele, have been found in volcanic sands erupted on Lō'ihi Seamount and along the submarine east rift zone of Kīlauea Volcano. The limu o Pele fragments are undegassed with respect to H2O and S and formed by mild steam explosions. Angular glass sand fragments apparently form at similar, and greater, depths by cooling-contraction granulation. The limu o Pele fragments from Lō'ihi Seamount are dominantly tholeiitic basalt containing 6.25–7.25% MgO. None of the limu o Pele samples from Lō'ihi Seamount contains less than 5.57% MgO, suggesting that higher viscosity magmas do not form lava bubbles. The dissolved CO2 and H2O contents of 7 of the limu o Pele fragments indicate eruption at 1200±300 m depth (120±30 bar). These pressures exceed that generally thought to limit steam explosions. We conclude that hydrovolcanic eruptions are possible, with appropriate pre-mixing conditions, at pressures as great as 120 bar. Received: 22 December 1998 / Accepted: 16 July 1999  相似文献   

7.
Shatter rings are circular to elliptical volcanic features, typically tens of meters in diameter, which form over active lava tubes. They are typified by an upraised rim of blocky rubble and a central depression. Prior to this study, shatter rings had not been observed forming, and, thus, were interpreted in many ways. This paper describes the process of formation for shatter rings observed at Kīlauea Volcano during November 2005–July 2006. During this period, tilt data, time-lapse images, and field observations showed that episodic tilt changes at the nearby Pu‘u ‘Ō‘ō cone, the shallow magmatic source reservoir, were directly related to fluctuations in the level of lava in the active lava tube, with periods of deflation at Pu‘u ‘Ō‘ō correlating with increases in the level of the lava stream surface. Increases in lava level are interpreted as increases in lava flux, and were coincident with lava breakouts from shatter rings constructed over the lava tube. The repetitive behavior of the lava flux changes, inferred from the nearly continuous tilt oscillations, suggests that shatter rings form from the repeated rise and fall of a portion of a lava tube roof. The locations of shatter rings along the active lava tube suggest that they form where there is an abrupt decrease in flow velocity through the tube, e.g., large increase in tube width, abrupt decrease in tube slope, and (or) sudden change in tube direction. To conserve volume, this necessitates an abrupt increase in lava stream depth and causes over-pressurization of the tube. More than a hundred shatter rings have been identified on volcanoes on Hawai‘i and Maui, and dozens have been reported from basaltic lava fields in Iceland, Australia, Italy, Samoa, and the mainland United States. A quick study of other basaltic lava fields worldwide, using freely available satellite imagery, suggests that they might be even more common than previously thought. If so, this confirms that episodic fluctuation in lava effusion rate is a relatively common process at basaltic volcanoes, and that the presence of shatter rings in prehistoric lava flow fields can be used as evidence that such fluctuations have occurred.  相似文献   

8.
Small (1–3 mm), hollow spherules of hexahydrite have been collected falling out of the magmatic gas plume downwind of Kīlauea’s summit vent. The spherules were observed on eight separate occasions during 2009–2010 when a lake of actively spattering lava was present ~150–200 m below the rim of the vent. The shells of the spherules have a fine bubbly foam structure less than 0.1 mm thick, composed almost entirely of hexahydrite [MgSO4·6H2O] Small microspherules of lava (<5 μm across) along with mineral and rock fragments from the magmatic plume adhered to the outside of the hexahydrite spherules. Phase relationships and the particulate matter in the magmatic plume indicate that the spherules originated as a bubbly solution injected into and mixed with the magmatic plume. The most likely mechanism for production of hexahydrite spherules is boiling of MgSO4-saturated meteoric water in the walls of the conduit above the surface of the lava lake. Solfataric sulfates may thus be recycled and reinjected into the plume, creating particulates of sulfate minerals that can be distributed far from their original source.  相似文献   

9.
In late 2007, a perched lava channel, built up to 45 m above the preexisting surface, developed during the ongoing eruption near Pu‘u ‘Ō‘ō cone on Kīlauea Volcano’s east rift zone. The lava channel was segmented into four pools extending over a total of 1.4 km. From late October to mid-December, a cyclic behavior, consisting of steady lava level rise terminated by vigorous spattering and an abrupt drop in lava level, was commonly observed in pool 1. We use geologic observations, video, time-lapse camera images, and seismicity to characterize and understand this cyclic behavior. Spattering episodes occurred at intervals of 40–100 min during peak activity and involved small (5–10-m-high) fountains limited to the margins of the pool. Most spattering episodes had fountains which migrated downchannel. Each spattering episode was associated with a rapid lava level drop of about 1 m, which was concurrent with a conspicuous cigar-shaped tremor burst with peak frequencies of 4–5 Hz. We interpret this cyclic behavior to be gas pistoning, and this is the first documented instance of gas pistoning in lava well away from the deeper conduit. Our observations and data indicate that the gas pistoning was driven by gas accumulation beneath the visco-elastic component of the surface crust, contrary to other studies which attribute similar behavior to the periodic rise of gas slugs. The gas piston events typically had a gas mass of about 2,500 kg (similar to the explosions at Stromboli), with gas accumulation and release rates of about 1.1 and 5.7 kg s−1, respectively. The time-averaged gas output rate of the gas pistoning events accounted for about 1–2% of the total gas output rate of the east rift zone eruption.  相似文献   

10.
Gas pistoning is a type of eruptive behavior described first at K??lauea volcano and characterized by the (commonly) cyclic rise and fall of the lava surface within a volcanic vent or lava lake. Though recognized for decades, its cause continues to be debated, and determining why and when it occurs has important implications for understanding vesiculation and outgassing processes at basaltic volcanoes. Here, we describe gas piston activity that occurred at the Pu??u ???????? cone, in K??lauea??s east rift zone, during June 2006. Direct, detailed measurements of lava level, made from time-lapse camera images captured at close range, show that the gas pistons during the study period lasted from 2 to 60?min, had volumes ranging from 14 to 104?m3, displayed a slowing rise rate of the lava surface, and had an average gas release duration of 49?s. Our data are inconsistent with gas pistoning models that invoke gas slug rise or a dynamic pressure balance but are compatible with models which appeal to gas accumulation and loss near the top of the lava column, possibly through the generation and collapse of a foam layer.  相似文献   

11.
The emission rate of carbon dioxide escaping from the summit of Kīlauea Volcano, Hawai?i, proved highly variable, averaging 4900 ± 2000 metric tons per day (t/d) in June–July 2003 during a period of summit inflation. These results were obtained by combining over 90 measurements of COSPEC-derived SO2 emission rates with synchronous CO2/SO2 ratios of the volcanic gas plume along the summit COSPEC traverse. The results are lower than the CO2 emission rate of 8500 ± 300 t/d measured by the same method in 1995–1999 during a period of long-term summit deflation [Gerlach, T.M., McGee, K.A., Elias, T., Sutton, A.J. and Doukas, M.P., 2002. Carbon dioxide emission rate of Kīlauea Volcano: Implications for primary magma and the summit reservoir. Journal of Geophysical Research-Solid Earth, 107(B9): art. no.-2189.]. Analysis of the data indicates that the emission rates of the present study likely reflect changes in the magma supply rate and residence time in the summit reservoir. It is also likely that emission rates during the inflation period were heavily influenced by SO2 pulses emitted adjacent to the COSPEC traverse, which biased CO2/SO2 ratios towards low values that may be unrepresentative of the global summit gas plume. We conclude that the SO2 pulses are consequences of summit re-inflation under way since 2003 and that CO2 emission rates remain comparable to, but more variable than, those measured prior to re-inflation.  相似文献   

12.
Adaptation of the technology of water turbidity simulation by satellite image data for the delta of the Selenga R., the largest Baikal tributary is given. The results of processing a series of 82 Landsat images are used to assess the seasonal variability of suspended sediment balance in the Selenga delta in period from 1989 up to the present time. It is shown that, at higher water discharges (>1500 m3/s), suspended material will accumulate in the delta (on the average 15% of the total sediment transport at the delta head), governed by material precipitation within inundated floodplain area and lakes in the lower part of the delta. At lower water discharges (<1500 m3/s), a longitudinal increase in suspended sediment transport may take place, caused by setups from Baikal side and channel erosion in the branches.  相似文献   

13.
The diurnal variations in the electric conductivity, electric-field strength, and meteorological parameters in the near-Earth’s atmosphere during the solar events in October 21–31, 2003, have been studied. It has been indicated that the conductivity and electric-field strength strongly depend on the air temperature and humidity. It has been found that the conductivity increased for 2 days before the geomagnetic storm on October 29–30 as a result of the effect of solar cosmic rays and decreased during a Forbush decrease in galactic cosmic rays, which was accompanied by a corresponding increase in the electric-field strength. It has been found that the air temperature and humidity anomalously increased in the process of solar activity, which resulted in the formation of different clouds, including thunderclouds accompanied by thunderstorm processes and showers. Simultaneous disturbances of the regular meteorological processes, solar flare series, and emission intensification in the near ultraviolet band, and visible and infrared spectral regions make it possible to consider these processes as a source of additional energy inflow into the lower atmosphere.  相似文献   

14.
Introduction As we well know, the hazard of earthquake is very wide especially in cities. The conventionalmethods to investigate the damage are difficult to meet the requirements in applications. In recentyears, with the rapid development of remote sensing, especially the successful launch and applica-tion of high-resolution commercial remote sensing satellite, it has become possible to recognize andextract damage information by using remote sensing. The researchers at home and abroad hav…  相似文献   

15.
The study of variations in the electron flux in the outer Earth radiation belt (ERB) and their correlations with solar processes is one of the important problems in the experiment with the Electron-M-Peska instrument onboard the CORONAS-Photon solar observatory. Data on relativistic and subrelativistic electron fluxes obtained by the Electron-M-Peska in 2009 have been used to study the outer ERB dynamics at the solar minimum. Increases in outer ERB relativistic electron fluxes, observed at an height of 550 km after weak magnetic disturbances induced by high-velocity solar wind arriving to the Earth, have been analyzed. The geomagnetic disturbances induced by the high-velocity solar wind and that resulted in electron flux variations were insignificant: there were no considerable storms and substorms during that period; however, several polar ground-based stations observed an increase in wave activity. An assumption has been made that the wave activity caused the variations in relativistic electron fluxes.  相似文献   

16.
《Journal of Geodynamics》2003,35(1-2):83-96
The last strong earthquake swarm in the region Vogtland/NW-Bohemia occurred between August and November 2000 with about 10000 micro-earthquakes at magnitudes up to 3.7. On the territory of Germany the seismic activity was monitored both by means of permanent and mobile stations. Mobile stations were installed by the Seismological Central Observatory at Erlangen (SZGRF) in co-operation with the “Geo-Forschungs-Zentrum”-(GFZ)-Potsdam and the University of Potsdam. The objects of this paper are: (1) the presentation of seismic stations on the German side of the earthquake region during the swarm 2000, (2) the comparison of the frequency–time and magnitude–time distribution of the recent swarm 2000 with previous swarms in the 20th century.  相似文献   

17.
Critical to understanding explosive eruptions is establishing how accurately representative pyroclasts are of processes during magma vesiculation and fragmentation. Here, we present data on densities, and vesicle size and number characteristics, for representative pyroclasts from six silicic eruptions of contrasting size and style from Raoul volcano (Kermadec arc). We use these data to evaluate histories of bubble nucleation, coalescence, and growth in explosive eruptions and to provide comparisons with pumiceous dome carapace material. Density/vesicularity distributions show a scarcity of pyroclasts with ~65–75 % vesicularity; however, pyroclasts closest to this vesicularity range have the highest bubble number density (BND) values regardless of eruptive intensity or style. Clasts with vesicularities greater than this 65–75 % “pivotal” vesicularity range have decreasing BNDs with increasing vesicularities, interpreted to reflect continuing bubble growth and coalescence. Clasts with vesicularities less than the pivotal range have BNDs that decrease with decreasing vesicularity and preserve textures indicative of processes such as stalling and open system degassing prior to vesiculation in a microlite-rich magma, or vesiculation during slow ascent of degassing magma. Bubble size distributions (BSDs) and BNDs show variations consistent with 65–75 % representing the vesicularity at which vesiculating magma is most likely to undergo fragmentation, consistent with the closest packing of spheres. We consider that the observed vesicularity range may reflect the development of permeability in the magma through shearing as it flows through the conduit. These processes can act in concert with multiple nucleation events, generating a situation of heterogeneous bubble populations that permit some regions of the magma to expand and bubbles to coalesce with other regions in which permeable networks are formed. Fragmentation preserves the range in vesicularity seen as well as any post-fragmentation/pre-quenching expansion which may have occurred. We demonstrate that differing density pyroclasts from a single eruption interval can have widely varying BND values corresponding to the degree of bubble maturation that has occurred. The modal density clasts (the usual targets for vesicularity studies) have likely undergone some degree of bubble maturation and are therefore may not be representative of the magma at the onset of fragmentation.  相似文献   

18.
A positive magnetic anomaly marks the seaward edge of the magnetic quiet zone along the southern margin of Australia eastward between 114° and 131°E and along the conjugate Antarctic margin between 105° and 132°E. This anomaly was originally interpreted as the oldest seafloor-spreading anomaly—A22, revised by Cande and Mutter to A34—in the Southeast Indian Ocean, but is better modelled as the edge effect at the continent-ocean boundary (COB) constrained by seismic data. Continental crust abuts the oceanic sequence of normal and reversed spreading blocks, truncated within the Cretaceous normal interval at an extrapolated age of 96 Ma, rounded to 95 ± 5 Ma to take into account the uncertainty of the initial spreading rate and of the location of the COB. The occurrence of the anomaly on both margins defines this as the age of breakup. Farther east between 131° and 139°E on the Australian margin, the COB anomaly is modelled as due to the same kind of effect but with successively younger ages of truncation to 49 Ma, interpreted as indicating the most recent ridge-crest jumping to the Australian COB. The magnetic data from the conjugate sector of Antarctica, albeit scanty, are consistent with this interpretation.The 95 ± 5 Ma age of breakup coincides with that of the breakup unconformity in southern Australia, expressed by a short mid-Cretaceous lacuna in the Otway Basin between faulted Early Cretaceous rift-valley sediments of the Otway Group and the overlying Late Cretaceous Sherbrook Group, and by an unconformity of similar age in the Great Australian Bight Basin.  相似文献   

19.
Wind and temperature profiles measured routinely by rockets at Ryori (Japan) since 1970 are analysed to quantify interannual changes that occur in the upper stratosphere. The analysis involved using a least square fitting of the data with a multiparametric adaptative model composed of a linear combination of some functions that represent the main expected climate forcing responses of the stratosphere. These functions are seasonal cycles, solar activity changes, stratospheric optical depth induced by volcanic aerosols, equatorial wind oscillations and a possible linear trend. Step functions are also included in the analyses to take into account instrumental changes. Results reveal a small change for wind data series above 45 km when new corrections were introduced to take into account instrumental changes. However, no significant change of the mean is noted for temperature even after sondes were improved. While wind series reveal no significant trends, a significant cooling of 2.0 to 2.5 K/decade is observed in the mid upper stratosphere using this analysis method. This cooling is more than double the cooling predicted by models by a factor of more than two. In winter, it may be noted that the amplitude of the atmospheric response is enhanced. This is probably caused by the larger ozone depletion and/or by some dynamical feedback effects. In winter, cooling tends to be smaller around 40–45 km (in fact a warming trend is observed in December) as already observed in other data sets and simulated by models. Although the winter response to volcanic aerosols is in good agreement with numerical simulations, the solar signature is of the opposite sign to that expected. This is not understood, but it has already been observed with other data sets.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号