首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Sedimentary Geology》2005,173(1-4):277-314
We summarise facies evidence for four Miocene Basins (Lycian, Aksu, Köprü and Manavgat) within the Isparta Angle. Facies patterns are plotted on six palaegeographic maps restored to their pre-late Miocene setting. These maps are used to help infer the various controls on deposition. Facies trends and structural features suggest that the individual basins were kinematically linked within the overall African–Eurasia convergence zone. The Miocene Basins represent a classic example of how related basins may develop within an evolving orogen subject to variable controls through time. The dominant control was tectonic although autocyclic sedimentary processes (e.g., reef growth), and both relative and eustatic sea-level change played a significant role.From the palaeogeographic reconstructions and the tectonic context of the Isparta Angle, we infer that during the early Miocene, the westerly Lycian basin and the neighbouring Aksu basin experienced flexural subsidence related to southeastward thrusting of the Lycian Nappes. More distal effects of the forebulge may have caused uplift around the Aksu and Köprü basins initiating N–S half-grabens bounded by master faults on the eastern side of each basin. Later, the eastern basins of the Isparta Angle were influenced by regional northward subduction and inferred slab retreat within a remnant of the Southern Neotethys located within the Mediterranean Sea at the intersection of the south Aegean and Cyprus arcs.  相似文献   

2.
In this paper, information derived from X-ray diffraction and heavy and light fractions analyses were discussed with the aim to trace the paleoclimatic changes of central Sudan during the Late Miocene to Pleistocene. Based on lithological and mineralogical characters noted in the Sayal and Umm Ruwaba Formations, four phases of distinct paleoclimatic changes were recognized. The first phase commenced in the Late Miocene during the deposition of the Sayal formation. The area was slightly uplifted and of gentle slope, a feature deduced from the deposition of clayey and fine-grained sandy materials with subordinate gravely component. A hot and humid climate, depicted from the development of kaolinite and iron oxide, is proposed during the deposition of the Sayal formation. The second phase is characterized by development of depressions in which alluvial streams and possibly small lacustrine basins occurred. This is inferred from the presence of sandy and silty materials, a characteristic of the lower and middle parts of the Umm Ruwaba Formation. The climate remained hot and humid during the deposition of the lower part of the Umm Ruwaba Formation in the early Pliocene. A shift to dry conditions with possible periodic humid seasons is, however, thought to be established during the deposition of the middle part of the Umm Ruwaba Formation deduced from the observed increase in salinity and decrease in iron oxide content. During the third phase, throughout the deposition of the upper part of the Umm Ruwaba Formation, the kinetic energy of streams increased as can be inferred from the presence of gravely intercalations. Deposition under arid climate is suggested for the lowermost part due to the increased amount of feldspars and the absence of iron oxide. However, evidence of cool condition is again noted at the topmost part of the formation inferred from the relatively high content of iron oxide in the deposits.  相似文献   

3.
李功宇  周建波  李龙  王红燕 《岩石学报》2020,36(6):1719-1730

佳木斯地块位于中国东北微陆块群的最东缘,其东缘地区晚古生代的岩浆和沉积演变进程为欧亚大陆东缘由被动陆缘向活动陆缘构造环境的转化提供了关键证据。年代学和地球化学研究表明,佳木斯地块东缘中泥盆世黑台组砂岩,形成于被动陆缘的构造环境,黑台组上覆的老秃顶子组流纹岩也形成于被动陆缘的构造环境;晚石炭世珍子山组砂岩,形成于活动陆缘的构造环境;早二叠世的二龙山组安山岩以及相邻地区早二叠世的其它火成岩形成于活动陆缘的构造环境。同时,佳木斯地块东缘泥盆-二叠纪的沉积地层也呈现出由浅海相到陆相地层转化的特征。因此,佳木斯地块东缘由被动陆缘向活动陆缘的转化应该发生在中泥盆世到晚石炭世,而该构造环境的转化也为晚古生代时期蒙古-鄂霍茨克洋向欧亚大陆之下俯冲过程的研究提供了关键信息。

  相似文献   

4.
Widespread Cenozoic sediments in and around the Tibetan Plateau (TP) are thought to have played an important role in explaining the process of the India-Asia collision as well as its interactions with global and regional paleoclimate. However, high-resolution temporal frameworks of sedimentary sequences and controls on geological and climatic events are still absent. To study the abovementioned issues, we investigate the Oligocene-Miocene lacustrine sequences (the Dingqinghu Formation) of the Lunpola Basin, central TP. In this work, cyclostratigraphic analyses are conducted with gamma ray log and pollen data to establish a high resolution temporal framework ranging from ca. 25.4 to 18.0 Ma for the sections. Along these sections, sediment accumulation rates are calculated with orbital signals to monitor clastic input of the lake basin; elemental, palynological, and isotopic data are summarized to depict the paleoclimate and paleoelevation evolution of this drainage system. Integrating all these clues together, we sort out a chronological list of events including lake basin, tectonics, and paleoclimate: regional uplift took place at 23.7 Ma; simultaneously, a distinct lake-basin transition characterized by accelerated sediment accumulation rate is recognized; about 0.2 Ma later at 23.5 Ma, catchment scale drought occurred and maintained to the end of the sections. Our results demonstrate that paleoclimate did not impose decisive influence on the late Oligocene-early Miocene evolution of the lake basin; instead, regional uplift and its associated accelerated exhumation of the source area resulted in the lake-basin transition and paleoclimatic drought. After reviewing the Oligocene-Miocene sedimentary records distributed in and around the TP, we argue that the 23.7 Ma geological event of the Lunpola Basin is probably not a single case but a regional effect of a dramatic tectonic transition of the plateau.  相似文献   

5.
Eclogitic metasediments from the central Qiangtang metamorphic terrane provide new insights into the continental subduction during the eastern and western Qiangtang collision. Petrologic observations show that the metasediments correspond to meta-sandstones of a continental margin. It is characterized by the garnet + omphacite + rutile + phengite + quartz assemblage, and the peak metamorphic temperature and pressure were estimated to be 535 ± 40 °C and ~27 kbar, respectively, by major element partitioning thermobarometry. Subsequent retrogression occurred at ~472 ± 30 °C and ~6–9 kbar. The occurrence of eclogitized central Qiangtang terrane indicates the subduction of the western Qiangtang passive continental margin beneath eastern Qiangtang when eastern and western Qiangtang collided along the Shuanghu suture.  相似文献   

6.
黑龙江东部晚中生代盆地群构造层划分及构造沉积演化   总被引:4,自引:1,他引:4  
黑龙江东部盆地群包括现今残留的三江盆地、勃利盆地、鸡西盆地、虎林盆地和宁安盆地等。根据地层间的不整合关系可将晚中生代盆地群划分为4个构造层, 盆地演化经历了3次不同背景下的伸展阶段和3次构造反转。构造层Ⅰ (绥滨组和东荣组) 发育于SN向断陷槽内; 构造层Ⅱ (滴道组、城子河组和穆棱组) 发育于NE-NNE向的弧后伸展走滑环境; 构造层Ⅲ (东山组) 沉积时期, 本区又发生一次伸展减薄裂解作用; 而构造层Ⅳ (猴石沟组、海浪组、七星河组和雁窝组) 则发育于NW-NNW向挤压环境, 充填一套粗碎屑沉积。黑龙江东部盆地群的形成和演化受蒙古-鄂霍茨克海碰撞闭合的影响和东部古太平洋板块的俯冲作用及若干外来地体的拼贴作用控制, 其中太平洋板块向大陆俯冲引起的局部地幔对流和岩石圈显著减薄的拆沉事件是盆地形成的主要动力学机制。  相似文献   

7.
陆弧和弧前盆地是俯冲体系中具有密切联系的构造单元。中生代以来,华南受多期板块俯冲的控制,发育大规模岩浆岩带及海域广泛分布的弧前盆地。但陆域弧岩浆岩较少,海域又缺乏足够钻井,各时期陆弧的位置存在较大争议,同时,南海北部至东海一带弧前盆地也缺乏系统认识,因此,亟须新的研究思路深化对华南晚中生代俯冲体系和俯冲过程的认识。本文以前人研究为基础,对海域钻遇中生界的典型钻井进行了详细分析,系统开展了海域盆地区域构造和沉积对比,将弧前盆地发育与岛弧变迁相结合综合分析。结果表明早侏罗世—早白垩世陆弧位于南海北部—东海靠近陆域一侧,经历了早侏罗世局限陆弧、中晚侏罗世沿海陆弧带、早白垩世向海沟方向的迁移。在此过程中,华南海域弧前盆地群于中侏罗世正式形成,早白垩世发育盆缘角度不整合,粗碎屑相带向海沟方向迁移,晚白垩南海北部与东海各自进入新的构造体制,结束弧前盆地的发育。华南沿海海域中生代盆地的发育可为陆弧的展布提供重要约束,弧岩浆岩带的迁移控制了弧前盆地的演化。  相似文献   

8.
太古宙陆核的完整性对前寒武纪构造演化研究具有重要意义。华北克拉通东部陆块内太古宙陆核构造上受郯庐断裂影响较大,包括前期断裂带南侧NNE向左行走滑和后期断裂带北侧NE向左行走滑。本文还原了郯庐断裂发育之前华北克拉通东部陆块太古宙陆壳的原始格局。构造恢复后古老地体及地体内岩石片麻理均呈NNW走向。通过对弓长岭地区BIF铁矿进行深入的构造解析工作,发现含矿太古宙表壳岩发育大量暗示水平运动的逆冲推覆构造。结合其年代学特征,本文进一步揭示新太古代末期一定规模的侧向挤压构造(水平运动)可能已经在华北克拉通内出现。  相似文献   

9.
The Marnoso–arenacea basin was a narrow, northwest–southeast trending, foredeep of Middle–Late Miocene age bounded to the southwest by the Apennine thrust front. The basin configuration and evolution were strongly controlled by tectonics.

Geometrical and sedimentological analysis of Serravallian turbidites deposited within the Marnoso–arenacea foredeep, combined with palaeocurrent data (turbidite flow provenance, reflection and deflection), identify topographic irregularities in a basin plain setting in the form of confined troughs (the more internal Mandrioli sub-basin and the external S. Sofia sub-basin) separated by an intrabasinal structural high. This basin configuration was generated by the propagation of a blind thrust striking northwest to southeast, parallel to the main trend of the Apennines thrust belt.

Ongoing thrust-induced sea bed deformation, marked by the emplacement of large submarine landslides, drove the evolution of the two sub-basins. In an early stage, the growth and lateral propagation of a fault-related anticline promoted the development of open foredeep sub-basins that were replaced progressively by wedge-top or piggy-back basins, partially or completely isolated from the main foredeep. Meanwhile, the depocenter shifted to a more external position and the sub-basins were incorporated within an accretionary thrust belt.  相似文献   


10.
Large areas of north-east Africa were dominated by regional extension in the Late Phanerozoic. Widespread rifting occurred in the Late Jurassic, with regional extension culminating in the Cretaceous and resulting in the greatest areal extent and degree of interconnection of the west, central and north African rift systems. Basin reactivation continued in the Paleocene and Eocene and new rifts probably formed in the Red Sea and western Kenya. In the Oligocene and Early Miocene, rifts in Kenya, Ethiopia and the Red Sea linked and expanded to form the new east African rift system.This complex history of rifting resulted in failed rift basins with low to high strain geometries, a range of associated volcanism and varying degrees of interaction with older structures. One system, the Red Sea rift, has partially attained active seafloor spreading. From a comparison of these basins, a general model of three-dimensional rift evolution is proposed. Asymmetrical crustal geometries dominated the early phases of these basins, accompanied by low angle normal faulting that has been observed at least locally in outcrop. As rifting progressed, the original fault and basin forms were modified to produce larger, more through-going structures. Some basins were abandoned, others experienced reversals in regional dip and, in general, extension and subsidence became focused along narrower zones near the rift axes. The final transition to oceanic spreading was accomplished in the Red Sea by a change to high angle, planar normal faulting and diffuse dike injection, followed by the organization of an axial magma chamber.  相似文献   

11.
Small‐mammalian faunas enable the discrimination and correlation of uppermost Lower Miocene lacustrine sedimentary units in central western Anatolia. On the basis of sequential stratigraphic relationships, early Early Miocene and latest Early Miocene relative ages are suggested for the older lacustrine mass‐flow deposits and younger paper shale units, respectively, which are devoid of age‐diagnostic fossils. In central western Anatolia, the sequential differences between the uppermost Lower Miocene successions delineate a deformation zone of NE–SW‐trending fault blocks separated by vertical faults. This deformation zone, inherited from Late Oligocene tectonics, underwent an early Early Miocene sinistral transtension leading to pull‐aparts that were emplaced by granitoids. Limited extension caused the late Early Miocene repetitive up‐ and down‐wards motions of the fault blocks, with variable magnitudes. This led to contrasting subsidence histories in the relevant basinal system. During the latest Early Miocene, fault blocks coalesced into a regional body characterized by uniform slow subsidence and non‐extensional deformation facies. The general trend of the above tectonic events can be explained by lateral slab segmentation and progressive asthenospheric wedging, in response to NE‐directed and decelerated palaeosubduction in the Aegean. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Regional cross sections at the scale of the eastern Maghreb based on subsurface and field data allow presenting the structural styles related to the Middle-Late Eocene compressional events. The structural cross sections depict that the Late Eocene front of the Atlas Belt extends far through the Northern Africa plate margin comparatively to the Late Miocene front cropping out in the Eastern Tunisian Atlas. The sections allow proposing a new subsurface front for the Atlas belt encompassing a large part of the Pelagian-Sirt basins. The consequences of this particular configuration are discussed at the scale of the south Tethys margin and replaced in the frame of the geodynamic evolution of the Mediterranean Domain.  相似文献   

13.
In the northeastern corner of Sicily (Peloritani Mountains) thin bodies of hercynian crystalline basement, covered by Meso-Cenozoic veneers of sedimentary rocks, represent the highest and innermost Africa-vergent group of thrust units of the Sicilian Belt. The Peloritani tectonic edifice consists of a set of prevalently middle- to high-grade crystalline rocks (so-called Fondachelli Unit, Mandanici Unit and Aspromonte Unit) and thrusts over a thin tectonic wedge made of prevalently Mesozoic to Tertiary sedimentary covers overlying pre-Triassic low-grade metamorphic rocks (Longi-Taormina Unit). The tectonic bodies of the Peloritani thrust system are overlain by thick clastic sequences of late Oligoceneearly Miocene age (the so-called Stilo-Capo d'Orlando Formation). Previous work has pointed out the 'molassic' character of these clastic sequences, which postdate the main deformation phase of the Peloritani belt, started during Oligocene time. New structural data on the crystalline and sedimentary terrains, sedimentological analysis of the outcropping Oligo-Miocene foreland clastic deposits and their geometric relationships with the substrate, make it possible to recognize the syn-tectonic character and the timing of deformation of these basin-fill deposits, which are expressed by prograding clastic fans in the active margin of a foreland-foredeep system. This system has progressively been involved in the accretion of the Sicilian Belt and migration during the early Miocene towards the more external areas represented by the Sicilide sector. Seen in this light, three different lithological units have been distinguished to prdvide a framework for a review of the palaeotectonic significance of the overall Oligo-Miocene terrigenous covers of the Peloritani Thrust belt  相似文献   

14.
Present-day Asia comprises a heterogeneous collage of continental blocks, derived from the Indian–west Australian margin of eastern Gondwana, and subduction related volcanic arcs assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones containing ophiolites, accretionary complexes and remnants of ocean island arcs. The Phanerozoic evolution of the region is the result of more than 400 million years of continental dispersion from Gondwana and plate tectonic convergence, collision and accretion. This involved successive dispersion of continental blocks, the northwards translation of these, and their amalgamation and accretion to form present-day Asia. Separation and northwards migration of the various continental terranes/blocks from Gondwana occurred in three phases linked with the successive opening and closure of three intervening Tethyan oceans, the Palaeo-Tethys (Devonian–Triassic), Meso-Tethys (late Early Permian–Late Cretaceous) and Ceno-Tethys (Late Triassic–Late Cretaceous). The first group of continental blocks dispersed from Gondwana in the Devonian, opening the Palaeo-Tethys behind them, and included the North China, Tarim, South China and Indochina blocks (including West Sumatra and West Burma). Remnants of the main Palaeo-Tethys ocean are now preserved within the Longmu Co-Shuanghu, Changning–Menglian, Chiang Mai/Inthanon and Bentong–Raub Suture Zones. During northwards subduction of the Palaeo-Tethys, the Sukhothai Arc was constructed on the margin of South China–Indochina and separated from those terranes by a short-lived back-arc basin now represented by the Jinghong, Nan–Uttaradit and Sra Kaeo Sutures. Concurrently, a second continental sliver or collage of blocks (Cimmerian continent) rifted and separated from northern Gondwana and the Meso-Tethys opened in the late Early Permian between these separating blocks and Gondwana. The eastern Cimmerian continent, including the South Qiangtang block and Sibumasu Terrane (including the Baoshan and Tengchong blocks of Yunnan) collided with the Sukhothai Arc and South China/Indochina in the Triassic, closing the Palaeo-Tethys. A third collage of continental blocks, including the Lhasa block, South West Borneo and East Java–West Sulawesi (now identified as the missing “Banda” and “Argoland” blocks) separated from NW Australia in the Late Triassic–Late Jurassic by opening of the Ceno-Tethys and accreted to SE Sundaland by subduction of the Meso-Tethys in the Cretaceous.  相似文献   

15.
Quaternary sediments cored on the continental slope off the Grand Banks and on nearby seamounts and abyssal hills have been correlated back to at least isotopic stage 6. using lithologic and hioslratigraphic markers and warm-cold cyclicity in microfossil assemblages. The sequence is dated using limited oxygen isotope and l4C data. The oldest continental slope cores penetrate to a glacial stade with an extrapolated age of 50. 0(H) B. P. The oldest scamount cores probably penetrate to isotopic stage 13. Watcrmass distribution over the area results from interaction of the Labrador Current with locally generated shelf water, and to a lesser extent, the Gulf Stream. Planktic foraminiferal assemblages and sedimentological evidence suggest that arctic Labrador Current core water extends onto the eastern Grand Banks only during full interglacials. During intcrstadials, this arctic core water is absent, probably because its source-was blocked by ice. Cold water during stadials probably results mostly from local cooling on the continental shelf.  相似文献   

16.
17.

新特提斯洋长期俯冲消减作用在早白垩世可能经历二次俯冲启动或板片俯冲几何形态的重大转换。确定西藏南部冈底斯岩基早白垩世岩浆作用的岩石地球化学特征和作用方式是甄别上述过程的关键,对理解新特提斯洋的俯冲演化过程至关重要。本文就冈底斯岩基东段朗县杂岩中保存的各类早白垩世岩浆岩,开展了锆石U-Pb地质年代学和Hf同位素、全岩元素和同位素(Sr-Nd)组成分析。数据结果表明:1)基性岩侵位时代为早白垩世晚期(103.6~100.8Ma),为高钾钙碱性偏铝质岩石,锆石εHft)=+0.3~+5.7,全岩εNdt)=-0.8和-0.3,暗示其岩浆源区具有大量俯冲沉积物或流体的混入,为沉积物熔体和流体交代的地幔楔物质部分熔融的产物,经历了一定程度的角闪石分离结晶作用;2)中性岩形成于99.8~97.6Ma,略晚于基性岩,其主量元素与基性岩具有较好的线性关系,全岩εNdt)=+1.1,具有较多的地幔物质参与,为基性岩浆进一步演化形成;3)酸性岩(脉体)记录了多阶段岩浆作用(124.1~95.3Ma),根据同位素组成不同进一步划分为两类,第一类具有较低的全岩εNdt)值(-8.3~-6.0),其岩浆源区显示富集特征,tDM2=1385~1586Ma,由古老地壳物质的再熔融形成;第二类的锆石εHft)值(-2.8~+3.2)变化较大,岩脉的锆石εHft)=+0.4~+8.1,tDM=428~906Ma,全岩εNdt)=+0.1和+0.8,表明岩浆源区具有不均一性,为古老地壳物质被富流体地幔岩浆改造形成;和4)镁铁质包体的主量元素与寄主花岗岩具有较好的线性关系,锆石的Hf同位素组成变化较大(εHft)=-9.3~+4.1),变化范围可达13个ε单位,为岩浆混合成因。寄主花岗岩和角闪辉长岩分别作为酸性和基性端元,是基性岩浆与其诱发古老地壳熔融形成的花岗质岩浆经混合形成。结合冈底斯岩基早白垩世岩浆岩的研究结果,朗县杂岩在早白垩世(124~97Ma)的岩浆作用具有明显的岩浆混合现象,锆石Hf和全岩Sr-Nd同位素组成变化较大,可达13个ε单位,其岩浆源区复杂且富含流体,代表了新特提斯洋在早期(240~144Ma)经历漫长的俯冲之后,在早白垩世时期(~120Ma)俯冲带发生跃迁或俯冲角度达到临界点,导致大量俯冲沉积物和流体沿俯冲带俯冲下去,与发生部分熔融的地幔楔物质混合,底侵导致上覆古老地壳物质的再熔融,形成早白垩世复杂的岩浆岩组合,很可能是新特提斯洋二次俯冲开始的标志。

  相似文献   

18.
In this paper, we summarize results of studies on ophiolitic mélanges of the Bangong–Nujiang suture zone (BNSZ) and the Shiquanhe–Yongzhu–Jiali ophiolitic mélange belt (SYJMB) in central Tibet, and use these insights to constrain the nature and evolution of the Neo-Tethys oceanic basin in this region. The BNSZ is characterized by late Permian–Early Cretaceous ophiolitic fragments associated with thick sequences of Middle Triassic–Middle Jurassic flysch sediments. The BNSZ peridotites are similar to residual mantle related to mid-ocean-ridge basalts (MORBs) where the mantle was subsequently modified by interactions with the melt. The mafic rocks exhibit the mixing of various components, and the end-members range from MORB-types to island-arc tholeiites and ocean island basalts. The BNSZ ophiolites probably represent the main oceanic basin of the Neo-Tethys in central Tibet. The SYJMB ophiolitic sequences date from the Late Triassic to the Early Cretaceous, and they are dismembered and in fault contact with pre-Ordovician, Permian, and Jurassic–Early Cretaceous blocks. Geochemical and stratigraphic data are consistent with an origin in a short-lived intra-oceanic back-arc basin. The Neo-Tethys Ocean in central Tibet opened in the late Permian and widened during the Triassic. Southwards subduction started in the Late Triassic in the east and propagated westwards during the Jurassic. A short-lived back-arc basin developed in the middle and western parts of the oceanic basin from the Middle Jurassic to the Early Cretaceous. After the late Early Jurassic, the middle and western parts of the oceanic basin were subducted beneath the Southern Qiangtang terrane, separating the Nierong microcontinent from the Southern Qiangtang terrane. The closing of the Neo-Tethys Basin began in the east during the Early Jurassic and ended in the west during the early Late Cretaceous.  相似文献   

19.
北美东部被动大陆边缘是世界上最古老的完整被动大陆边缘之一,是研究被动大陆边缘发育演化的天然实验室。本文在大量国外研究成果的基础上,应用盆地构造解析方法,深入研究了北美东部被动大陆边缘盆地群的地质结构和构造演化特征,并揭示了盆地群的油气地质规律。研究认为,北美东部盆地群沉积充填和不整合面发育具有明显的分段性和差异性。以区域不整合面为界,不同段盆地可划分为不同的构造层:南段盆地可划分为两套构造层;中段南部盆地可划分为3套构造层;中段北部盆地可划分为4套构造层;而北段盆地可划分为5套构造层。盆地群整体经历了陆内裂谷—陆间裂谷—被动大陆边缘的演化过程,但不同段盆地的构造演化具有明显的分段性和迁移性:晚三叠世沉降中心位于南段盆地;早侏罗世初期迁移至中段盆地,南段大陆开始裂解;中侏罗世逐渐迁移至北段盆地,中段大陆开始裂解;早白垩世晚期,北段大陆开始裂解。受持续的抬升剥蚀及大西洋岩浆活动省的联合作用,南段盆地和中段大多数盆地缺乏油气保存条件;斯科舍盆地和大浅滩盆地是主要的含油气盆地,以上侏罗统烃源岩为主,主要发育断层—背斜圈闭和盐体刺穿圈闭,整体表现为“自生自储”和“下生上储”的特征。  相似文献   

20.
The synorogenic basins of central Cuba formed in a collision-related system. A tectono-stratigraphic analysis of these basins allows us to distinguish different structural styles along the Central Cuban Orogenic Belt. We recognize three distinct structural domains: (1) the Escambray Metamorphic Complex, (2) the Axial Zone, and (3) the Northern Deformation Belt. The structural evolution of the Escambray Metamorphic Complex includes a latest Cretaceous compressional phase followed by a Palaeogene extensional phase. Contraction created an antiformal stack in a subduction environment, and extension produced exhumation in an intra-arc setting. The Axial Zone was strongly deformed and shortened from the latest Cretaceous to Eocene. Compression occurred in an initial phase and subsequent transpressive deformation took place in the middle Eocene. The Northern Deformation Belt consists of a thin-skinned thrust fault system formed during the Palaeocene to middle Eocene; folding and faulting occurred in a piggyback sequence with tectonic transport towards the NNE. In the Central Cuban Orogenic Belt, some major SW–NE structures are coeval with the Cuban NW–SE striking folds and thrusts, and form tectonic corridors and/or transfer faults that facilitated strain-partitioning regime attending the collision. The shortening direction rotated clockwise during deformation from SSW–NNE to WSW–ENE. The synchronicity of compression in the north with extension in the south is consistent with the opening of the Yucatan Basin; the evolution from compression–extension to transpression is in keeping with the increase in obliquity in the collision between the Caribbean and North American plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号