首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent developments in sensor technology have given an onset for studying the earth surface features based on the detailed spectroscopic observation of different rocks and minerals. The spectroscopic profiles of the rocks are always quite different than their constituent minerals however, the spectral profile of a rock can be broadly reconstituted from the spectral profile of each constituent minerals. Interpretation of rock spectra using the spectra of constituent minerals based on relative spectral matching can bring out interesting information on the rock. Present study is an effort toward this and it highlights how visible-near infrared-shortwave-infrared (VNIR-SWIR) rock spectroscopy acts as an useful tool for understanding the rock-mineralogy in indirect and rapid way. It has also been observed that spectral signatures of rocks; studied in present case, are related to spectral signatures of constituent minerals although absorption features of constituent mineral in the rock are also modified by the other minerals juxtaposed in the rock fabric. However, each rock of the study area has their significant absorption features, but many of the absorption signatures are closely spaced, as altered rock has significant absorption at 2305 nm whereas amphibolite has its important absorption signature in 2385 nm and metabasalt has its significant absorption at 2342 nm. Therefore spectral measurement of high spectral resolution with appreciable signal to noise ratio (SNR) only can detect rocks from each other based on the absorption signatures mentioned above (each of which is 10 to 20 nm apart from the other) and therefore spectroscopy of rock is an innovative technique to map rocks and minerals based on the spectral signatures.  相似文献   

2.
Study of komatiites for their structures and textures in cratonic blocks could provide more insights into the early Archaean volcanism, mantle processes and associated metallogeny. Jayachamarajapura (J.C.Pura) belt in Western Dharwar craton is a komatiitc milieu, where outcrop features display several flow characteristics and sub-volcanic emplacement features typical of well known komatiitic areas of the world. In spite of deformation, metamorphism and alterations the komatiites still preserve many of the primary cooling structures, which stand testimony for their extrusive volcanic nature. Distinct features like pillows, flow-top polyhedral joints, ocelli, vesicular, flow-top breccia and cumulate segregations and crude layering are observed. However, massive, undifferentiated nature of komatiitic flows is more predominant. Because of serpentinisation, carbonitization and chloritization, the original mineralogy and textures are obliterated and scantily preserved. Still, these observed features provide vital clues to imply the formation of komatiite sequences in a submarine to subaerial conditions when episodic pulses of komatiite lava piled up (about 3.35 Ga ago) to form the ultramafic milieu of J.C. Pura belt.  相似文献   

3.
The Hira-Buddini gold deposit is located along the steeply dipping ENE trending sheared contact of felsic and mafic rocks of strike length of about 600 m with mylonitic foliation parallel to the S1 schistosity in amphibolites. Second-generation open folds with axial planes (S2) marked by fractures that are often filled by later calcite veins are observed in surface and underground exposures. Garnetiferous amphibolites occur in patches on the footwall side of the shear in the western part of the deposit. This rock shows garnet porphyroblasts, coarse second-generation hornblende and large grains of biotite that grow over an early S1 fabric which is made up of early hornblende, plagioclase, ilmenite and retrograde first-generation chlorite. Second-generation hornblende and biotite grains make high angles to S1 schistosity and are sub-parallel to S2. Late hydrothermal alteration is marked by an albite-epidote-chlorite-zoisite assemblage. Geothermometric estimates based on garnet-biotite, and garnet-hornblende pairs, as well as Ti in biotite, show that temperatures during D2 deformation that led to the growth of the porphyroblasts were \(530{\pm }20^{\circ }\hbox {C}\). The fabric and mineralogy of the rock indicate that porphyroblastic growth of garnet, hornblende and biotite was preceded and succeeded by stages of hydrothermal alteration. Primary gold mineralization is inferred to be associated with the early stage of hydrothermal ingress.  相似文献   

4.
The N–S trending, 2–4 km wide Ramagiri schist belt is made up of three blocks dominated by metavolcanic rocks, separated and surrounded by granitic rocks of distinct characteristics. The metavolcanic rocks are tholeiitic in composition and are very similar in their major element composition as well as in their abundances of some trace elements. However, the rare earth elements (REE) require distinct sources. The rocks of the amphibolite facies eastern block have LREE depleted REE patterns ([Ce/Yb] = 0.7–0.9), requiring derivation from depleted mantle-like sources. The greenschist facies metatholeiitic rocks of the central block have LREE enriched REE patterns ([Ce/Yb] = 3–6), reflecting the nature of their source(s). The Nd isotopic data require that the LREE enriched nature could not have been attained significantly prior to its melting. The fine-grained, upper greenschist facies metatholeiites of the western block have flat to slightly LREE depleted patterns ([Ce/Yb] = 0.8–0.95). Minor fractional crystallization of rock forming minerals may relate a few samples to each other among samples from each of the three blocks. Different extents of partial melting of distinct mantle sources have played a dominant role in the generation of the parent magmas to the central versus eastern and western block metatholeiites. The geochemical data suggest that the mantle sources were non-lherzolitic, and that these sources may have seen previous episodes of melt addition and extraction prior to melting that gave rise to the parent melts to the rocks ∼2750 Ma ago. The REE data indicate that while the sources of the eastern and western block rocks were similar to depleted mantle (ɛNd( i ) about +2), the source of the central block rocks (ɛNd( i ) about +3.5) were enriched in large ion lithophile element (LILE)-rich fluids/melts probably derived from subducting oceanic crust. This and other trace element signatures point to magma extraction in tectonic settings similar to modern island arcs. Subsequent to magma emplacement and crystallization, all the three suites of rocks were affected by interaction with low-temperature, crustal derived fluids (ɛNd 2750Ma of about −8 to −12), probably during the accretion of the three blocks of the belt in the present form. The inferred source characteristics, tectonic setting of magma generation and the crustal fluid processes seem to suggest that Phanerozoic-style tectonic processes may have been important in the generation of Archean crust in the Dharwar craton. Received: 31 July 1995 / Accepted: 12 May 1997  相似文献   

5.
The V-Ti magnetite layers (lodestone) occur within the layered gabbro-anorthosites-ultramafic rocks emplaced into the migmatitic gneisses close to the high grade Archeaen Sargur supracrustal rocks in the Kurihundi area. The ore petrographic studies of the lodestone reveal the presence of primary Ti-magnetite, ilmenite, ulvospinel, pleonaste, hematite and pyrite, chalcopyrite, pyrrhotite and secondary Ti-maghemite, martite and goethite as well as secondary covellite. These layers contain Ti-magnetite (60%) and ilmenite (30%) with silicates (<5%) exhibiting granular mosaic texture with well-defined triple junctions and are classified as adcumulus rocks. The grain-boundary relationships in the ores indicate considerable postcumulus growth and readjustment due to combined effects of sintering and adcumulus growth. Intergrowth textures (ulvospinel, ilmenite and pleonaste in Ti-magnetite and hematite in ilmenite) reflects exsolution features crystallized from solid-solutions compositions under different conditions of oxygen fugacities. Larger bodies of pleonaste and ilmenite in Ti-magnetite become lensoid or rounded in outline and these morphological modifications took place during the regional upper amphibolite to lower granulite facies metamorphism at 2.6 Ga ago. The lodestone contains high TiO2 (20 to 22.59 wt%), with V2O5 (0.85 to 1.15%) and Fe2O3 t (72.03 to 74.25%). Ti-magnetite shows alteration to Ti-maghemite, martite and goethite due to low temperature oxidation and hydration during weathering.  相似文献   

6.
The Banded Iron-Formation (BIF) of the Kushtagi schist belt, Dharwar Craton is interbedded with metavolcanics. The oxide fades cherty (Al2O3 < 2%) and shaley (Al2O3 > 2%) BIFs show large-scale variations in their major and trace elements abundance. Cherty Banded Iron-Formation (CBIF) is depleted in Al2O3, TiO2, Zr, Hf and other trace elements like Cr, Ni, Co, Rb, Sr, V, Y and REE in comparison to Shaley Banded Iron-Formation (SBIF). Depleted REE, positive Eu anomalies and the flat to HREE-enriched pattern of CBIF indicate that Fe and SiO2 for these BIFs were added to ambient ocean water by hydrothermal solutions at the AMOR vent sites. It is inferred that the higher amount of hydrothermal fluid flux with a higher exit temperature provided enormous quantities of iron and silica. Fine-grained sedimentation in the basin gave rise to the observed variability in the composition of BIF. During transgression a wave base was raised up, consequently deposition of CBIF became possible, whereas, during the regressive stage, these chemical sediments were buried by and/or mixed with the terrigenous sediments resulting in deposition of SBIF and interbedded shales. Volcaniclastic activity within the basin appears to have contributed significantly to the composition of some SBIF and shales. The hydrothermal exhalative hypothesis combined with the Archaean miniplate model explains most of the chemical features of the BIFs of greenstone belts.  相似文献   

7.
The late Archaean Shimoga schist belt in the Western Dharwar Craton, with its huge dimensions and varied lithological associations of different age groups, is an ideal terrane to study Archean crustal evolution. The rock types in this belt are divided into Bababudhan Group and Chitradurga Group. The Bababudhan Group is dominated by mafic volcanic rocks followed by shallow marine sedimentary rocks while the Chitradurga Group is dominated by greywackes, pillowed basalts, and deep marine sedimentary rocks with occasional felsic volcanics. The Nb/Th and Nb/La ratios of the studied metabasalts of the Bababudhan Group indicate crustal contamination. They were extruded onto the vast Peninsular Gneisses through the rifting of the basement gneiss. The Nb/Yb ratios of high-magnesium basalts and tholeiitic basalts of Chitradurga Group suggest the enrichment of their source magma. Based on the flat primitive mantle-normalized multi-element plot with negative Nb anomalies and Th/Ta-La/Yb ratios, the high-magnesium basalts and tholeiitic basalts are considered to have erupted in an oceanic plateau setting with minor crustal contamination. The high-magnesium basalts and tholeiitic basalts formed two different pulses of same magma type, in which the first pulse of magma gave rise to high-magnesium basalts which were derived from deep mantle sources and underwent minor crustal contamination en route to the surface, while the second pulse of magma gave rise to tholeiitic basalts formed at similar depths to that of high-magnesium basalts and escaped crustal contamination. The associated lithological units found with the studied metavolcanic rock types of Bababudan and Chitradurga Groups of Dharwar Supergroup of rocks in Shimoga schist belt of Western Dharwar Craton confirm the mixed-mode basin development with a transition from shallow marine to deep marine settings.  相似文献   

8.
The high-grade Sargur schist belt in the southern part of Karnataka craton is characterised by two contrasting magmatic suites: an older suite of metavolcanics and basic granulites of tholeiitic chemistry and a differentiated metabasic-serpentinised ultramafic sequence of calc-alkaline chemistry. The metavolcanics have a distinctive chemistry of their own and are not comparable to modern mid-oceanic ridge basalts and island-arc tholeiites.The chemistry of the metasediments, which mostly comprise pelites, semipelites, minor Ca-rich marbles and quartzites, indicates a mixed source consisting mostly of basic rocks and minor granitic material.  相似文献   

9.
In the Dharwar Craton, southern India, gold deposits are found mostly along the six arcuate shear zones passing through late Archaean greenstone belts (2.7 Ga). One such shear zone complex extends for about 400 km within and along the Ramagiri–Hungund schist belt. The Penakacherla sector of this shear zone is excellently exposed, enabling a detailed investigation of synorogenic gold mineralisation and its relationship to associated hydrothermal alteration.Metamorphism and deformation under NE–SW compression associated with Archaean subduction processes converted mafic volcanic rocks into amphibolites and intermediate to felsic volcanic rocks into quartz mica schists. Continued compression generated a 50–100-m-wide shear zone complex consisting of mafic phyllonites. Advection of hydrothermal fluids through this shear zone and reaction between fluids and the mafic phyllonites resulted in a silicified, K-metasomatic assemblage mainly consisting of chlorite, amphibole, K-mica, plagioclase, ankerite, quartz, Fe-oxides, pyrite, chalcopyrite and arsenopyrite. Networks of quartz and carbonate veinlets, a few millimeters to a few centimeters thick, formed along the foliation planes giving rise to microscopic alteration envelope, in which individual veinlet systems are merged into one another to form a composite alteration system. Gold is found within these quartz veinlets, mafic phyllonites and at their mutual contacts.Hydrothermal fluids have modified the primary major, minor, trace and LREE compositions of host rocks such that their mutual behaviour became non-systematic. Some HFSE and HREE also show minor mobility but the overall REE pattern generally resembles that of the precursor mafic volcanic rocks. Mass and volume loss/gain by Si and Ca has made significant impact on Al, Ti and Zr abundances, which are generally immobile during hydrothermal alteration. However, element pairs such as Zr–Hf, V–Sc and Nb–Ta maintain primary inter-element ratios, although their absolute abundances are drastically diluted. Similarly, ΣREE in highly silicified and carbonatised samples are reduced, but patterns remain similar to those of relatively least altered mafic phyllonites with (LaN/Yb)N between 1 and 3. In some samples, LREE enrichment is observed elevating in (LaN/Yb)N from 3 to 11. Pathfinder elements and base metals such as As, Cd, Cu, Pb, Zn and Sb have been added along with the Au and Ag.δ13C of carbon varies from −16‰ to −21‰ suggesting a biogenic origin, whereas coexisting pyrite δ34S ranges from 1‰ to 3‰, pointing towards the involvement of magmatic or average crustal sulphur. Overall concentrations of K, Rb, Sr, Ba, Nb, Ta, Ti, Cs, Cr, Co, V, Y and Sc and many of the ratios such as K/Rb, La/Sc, La/Yb indicate that metamorphism, devolatilisation and dehydration of an oceanic subducting slab might have partially contributed the mineralising fluids and generated the alteration assemblage observed in the host rocks. Fluid sources were mantle and greenstone belt dehydration and devolatilisation generating observed compositional and alteration diversity.  相似文献   

10.
Greywackes (Dharwar greywackes) are the most abundant rock types in the northern part of the Dharwar-Shimoga greenstone belt of the western Dharwar craton. They are distinctly immature rocks with poorly-sorted angular to sub-angular grains, comprising largely quartz, plagioclase feldspar and lithic fragments of volcanics (mafic+felsic), chert and quartzite, with subordinate biotite, K-feldspar and muscovite. They are characterized by almost uniform silica (59.78-67.96 wt%; av. 62.58), alkali (4.62-7.35 wt%; av. 5.41) contents, SiO2/Al2O3 (3.71-5.25) ratios, and compositionally are comparable to the andesite and dacite. As compared to Ranibennur greywackes, located about 100 km south of Dharwad in the Dharwar-Shimoga greenstone belt, the Dharwar greywackes have higher K2O, CaO, Zr, Y, ΣREE, Th/Sc, Zr/Cr, La/Sc and lower Sr, Cr, Ni, Sc, Cr/Th values. The chondrite normalized patterns of Dharwar greywackes are characterized by moderately fractionated REE patterns with moderate to high LREE enrichment, with almost flat HREE patterns and small negative Eu anomalies, suggesting felsic dominated source rocks in the provenance. The frame work grains comprising felsic and mafic volcanics, feldspars and quartz suggest a mixed source in the provenance. The moderate CIA values ranging between 57 and 73, indicate derivation of detritus from fresh basement rocks and from nearby volcanic sources.The mixing calculations suggest that the average REE pattern is closely matching with a provenance having 40% dacite, 30% granite, 20% basalt and 10% tonalite. These greywackes were deposited in a subduction related forearc basin than a continental margin basin. Their La/Sc ratios are high (av. 4.07) compared to the Ranibennur greywackes (1.79), suggesting that the greywackes of the northern part of the basin received detritus from a more evolved continental crust than the greywackes of the central part of the Dharwar-Shimoga basin.  相似文献   

11.
The northern part of the Nellore–Khammam schist belt and the Karimnagar granulite belt, which are juxtaposed at high angle to each other have unique U–Pb zircon age records suggesting distinctive tectonothermal histories. Plate accretion and rifting in the eastern part of the Dharwar craton and between the Dharwar and Bastar craton indicate multiple and complex events from 2600 to 500 Ma. The Khammam schist belt, the Dharwar and the Bastar craton were joined together by the end of the Archaean. The Khammam schist belt had experienced additional tectonic events at \(\sim \)1900 and \(\sim \)1600 Ma. The Dharwar and Bastar cratons separated during development of the Pranhita–Godavari (P–G) valley basin at \(\sim \)1600 Ma, potentially linked to the breakup of the Columbia supercontinent and were reassembled during the Mesoproterozoic at about 1000 Ma. This amalgamation process in southern India could be associated with the formation of the Rodinia supercontinent. The Khammam schist belt and the Eastern Ghats mobile belt also show evidence for accretionary processes at around 500 Ma, which is interpreted as a record of Pan-African collisions during the Gondwana assembly. From then on, southern India, as is known today, formed an integral part of the Indian continent.  相似文献   

12.
13.
西秦岭阳山金矿带安坝矿床热液蚀变作用   总被引:2,自引:4,他引:2  
张志超  李楠  戢兴忠  韩忠  郭耀宇  李在春 《岩石学报》2015,31(11):3405-3419
安坝金矿床是阳山金矿带内已探明金资源储量最大的金矿床,矿体受NEE向的区域性安昌河-观音坝断裂带及其次级断裂-裂隙系统控制,主要赋存于紧邻断裂带的千枚岩和斜长花岗斑岩中。围绕断裂-裂隙系统的赋矿围岩硫化、硅化、绢云母化、碳酸盐化、绿泥石化、绿帘石化和粘土化蚀变发育,其中前三种蚀变与金成矿作用关系最为密切。论文在厘定安坝金矿床热液蚀变类型、矿物组合特征、以及断裂变形与蚀变空间变化关系的基础上,通过对蚀变岩及其原岩的地球化学分析,剖析了热液蚀变作用过程与机理。研究结果表明,硅化蚀变贯穿发育于成矿前、成矿期和成矿后,绢云母化蚀变为成矿前和成矿期的产物,碳酸盐化蚀变主要发育于成矿晚阶段和成矿后,而粘土化蚀变为成矿后的产物。在长石蚀变为绢云母的过程中,有少量Al2O3带出,而TiO 2在蚀变过程中相对稳定,为此选取TiO 2作为不活动组分,开展质量平衡计算得出:在硅化过程中,明显带入的组分有SiO 2、Fe2O3、FeO、MgO、CaO、C、S、Au、As、Hg、Pb和Zn,而被带出的元素为Rb和Ba;在绢云母化过程中,明显带入的组分为SiO 2、Fe2O3、CaO、C、S、Au、As、Hg、Pb、Zn、Rb和Ba,带出组分为Na2O。稀土元素地球化学特征显示千枚岩原岩稀土元素含量比硅化和绢云母化千枚岩的稀土元素含量高,表明在蚀变过程中有稀土元素的流失。此外,千枚岩原岩的δEu=0.70,δCe=0.95;硅化千枚岩的δEu=0.72,δCe=1.00;绢云母化千枚岩的δEu=0.76,δCe=0.95。硅化、绢云母化千枚岩与千枚岩原岩的REE球粒陨石标准化配分模式曲线变化趋势相似,表现为明显的Eu负异常、无Ce异常的富轻稀土的右倾型曲线。含矿流体沿断裂带运移并与围岩反应,形成了石英和绢云母等蚀变矿物。硅化过程中,含矿流体中还原硫活度降低导致金沉淀;而绢云母化过程中,含矿流体的pH增大及K+和H+含量的减少和CO2含量的增加,致使载金黄铁矿、毒砂和金的沉淀。  相似文献   

14.
桐柏山地区信阳-舒城断裂带西段石榴云母片岩中石榴石变斑晶保留了较多岩石形成过程中的变形-变质信息,它真实地反映了中国南北两大板块缝合带的形成条件和演化历史.石榴石探针成分分析结果表明其属于铁铝榴石,反映出经受中级区域变质作用的特征.在Nadi石榴石成分与变质带的关系图上主要投影在略偏石榴石带的蓝晶石带内,显示岩石遭受了...  相似文献   

15.
The Channagiri Mafic-Ultramafic Complex occupies lowermost section of the Neoarchaean Shimoga supracrustal group in the Western Dharwar Craton. It is a segmented body occupying the interdomal troughs of granitoids. The magnetite deposits occur in the northeastern portion; typically occupying the interface zone between gabbro and anorthositic. Mineralogically, the deposits are simple with abundant magnetite and ilmenite. Hogbomite is a consistent minor mineral. Magnetites are typically vanadiferous (0.7–1.25% V2O5). Ilmenite consistently analyses more MgO and MnO than coexisting magnetite. Chlorite, almost the only silicate present; lies in the range of ripidolite, corundophilite and sheridanite. The chromiferous suit occupying eastern side of Hanumalapur block (HPB) contains Fe-Cr-oxide analysing 37.8–11.9% Cr2O3 and 40.5–80% FeO t . In these too, chlorite, typically chromiferous (0.6–1.2% Cr2O3), is the most dominant silicate mineral. Geochemistry of V-Ti-magnetite is dominated by Fe, Ti and V with Al, Si, Mg and Mn contributing most of the remaining. Cr, Ni, Zn, Co, Cu, Ga and Sc dominate trace element geochemistry. The Cr-magnetite is high in Cr2O3 and PGE. Two separate cycles of mafic magmatism are distinguished in the CMUC. The first phase of first cycle, viz., melagabbro-gabbro, emplaced in the southeastern portion, is devoid of magnetite deposits. The second phase, an evolved ferrogabbroic magma emplaced in differentiated pulses, occupying northeastern portion of the complex, consists of melagabbro→gabbro-anorthosite→V-Ti magnetite→ferrogabbro sequence. Increase in oxygen fugacity facilitated deposition of V-Ti magnetite from ferrogabbroic magma pulse emplaced in late stages. The second cycle of chromiferous PGE mineralized suite comprises fine-grained ultramafite→alternation of pyroxinite-picrite→Crmagnetite sequence formed from fractionation of ferropicritic magma. HPB also includes >65m thick sill-like dioritic phase at the base of the ferriferous suit and a sinuous band of coarse-grained ultramafite enclosed within the chromiferous suit; both unrelated to the two mafic magmatic cycles.  相似文献   

16.
The nature of secondary geochemical dispersion of As, Sb, Hg and Bi in soil and ground water of the semi-arid, tropical, Archaean, auriferous, Hutti-Maski greenstone belt has been investigated for identification of appropriate geochemical techniques for Au exploration in similar terrains.Results indicate that the <180 μm size-fraction of C-horizon soil is an appropriate sampling medium for delineating pedogeochemical anomalies of As, Sb, Hg and Bi related to gold mineralisation. These pedogeochemical anomalies along with anomalous values of alkalinity, chloride, sulphate, As and Sb in groundwater are controlled significantly by primary mineralisation located along shear zones in the greenstone belt. Arsenic anomalies in soil are broad, whereas, those of Sb and Bi are restricted to narrow zones directly over mineralised areas. In contrast, Hg anomalies around known mineralised areas are irregular and do not clearly demarcate the mineralised areas. The study indicates that anomalies of As, Sb and Hg in soil are principally hydromorphic, whereas those of Bi are clastic.The study recommends use of groundwater sampling at 2–3 km spacing with routine analysis of chloride, sulphate and alkalinity along with As and Sb in the first phase. This may be followed up with sampling of C-horizon of soils on a 1 km square grid for As-anomalies. Arsenic-anomalous areas may be sampled for As, Sb, Hg and Bi on a 500 m square grid for detailed exploration.  相似文献   

17.
The chromite deposits in the Archean Nuggihalli schist belt are part of a layered ultramafic–mafic sequence within the Western Dharwar Craton of the Indian shield. The 3.1-Ga ultramafic–mafic units occur as sill-like intrusions within the volcano-sedimentary sequences of the Nuggihalli greenstone belt that are surrounded by the tonalite–trondhjemite–granodiorite (TTG) suite of rocks. The entire succession is exposed in the Tagdur mining district. The succession has been divided into the lower and the upper ultramafic units, separated by a middle gabbro unit. The ultramafic units comprise of deformed massive chromitite bodies that are hosted within chromite-bearing serpentinites. The chromitite bodies occur in the form of pods and elongated lenses (~60–500 m by ~15 m). Detailed electron microprobe studies reveal intense compositional variability of the chromite grains in silicate-rich chromitite (~50% modal chromite) and serpentinite (~2% modal chromite) throughout the entire ultramafic sequence. However, the primary composition of chromite is preserved in the massive chromitites (~60–75% modal chromite) from the Byrapur and the Bhaktarhalli mining district of the Nuggihalli schist belt. These are characterized by high Cr-ratios (Cr/(Cr + Al) = 0.78–0.86) and moderate Mg-ratios (Mg/(Mg + Fe2+) = 0.38–0.58). The compositional variability occurs due to sub-solidus re-equilibration in the accessory chromite in the serpentinite (Mg-ratio = 0.01–0.38; Cr-ratio = 0.02–0.99) and in silicate-rich chromitite (Mg-ratio = 0.06–0.48; Cr-ratio = 0.60–0.99). In the massive chromitites, the sub-solidus re-equilibration for chromite is less or absent. However, the re-equilibration is prominent in the co-existing interstitial and included olivine (Fo96–98) and pyroxene grains (Mg-numbers = 97–99). Compositional variability on the scale of a single chromite grain occurs in the form of zoning, and it is common in the accessory chromite grains in serpentinite and in the altered grains in chromitite. In the zoned grains, the composition of the core is modified and the rim is ferritchromit. In general, ferritchromit occurs as irregular patches along the grain boundaries and fractures of the zoned grains. In this case, ferritchromit formation is not very extensive. This indicates a secondary low temperature hydrothermal origin of ferritchromit during serpentinization. In some occurrences, the ferritchromit rim is very well developed, and only a small relict core appears to remain in the chromite grain. However, complete alteration of the chromite grains to ferritchromit without any remnant core is also present. The regular, well-developed and continuous occurrence of ferritchromit rims around the chromite grain boundaries, the complete alteration of the chromite grains and the modification of the core composition indicate the alteration in the Nuggihalli schist belt to be intense, pervasive and affected by later low-grade metamorphism. The primary composition of chromite has been used to compute the nature of the parental melt. The parental melt calculations indicate derivation from a high-Mg komatiitic basalt that is similar to the composition of the komatiitic rocks reported from the greenstone sequences of the Western Dharwar Craton. Tectonic discrimination diagrams using the primary composition of chromites indicate a supra-subduction zone setting (SSZ) for the Archean chromitites of Nuggihalli and derivation from a boninitic magma. The composition of the komatiitic basalts resembles those of boninites that occur in subduction zones and back-arc rift settings. Formation of the massive chromitites in Nuggihalli may be due to magma mixing process involving hydrous high-Mg magmas or may be related to intrusions of chromite crystal laden magma; however, there is little scope to test these models because the host rocks are highly altered, serpentinized and deformed. The present configurations of the chromitite bodies are related to the multistage deformation processes that are common in Archean greenstone belts.  相似文献   

18.
19.
为探讨马达加斯加北部绿岩带石英脉型金矿的成矿温度和物质来源,对Maevatanana和Andriamena两个绿岩带石英脉型金矿的石英脉流体包裹体的研究表明,这两条绿岩带金矿流体包裹体较为发育,有H2O-NaCl包裹体,即水溶液型(Ⅰ类);CO2-H2O-NaCl包裹体,即LH2O+VCO2型(Ⅱ类);富CO2包裹体,即LH2O+L CO2+VCO2型(Ⅲ类)和少量含子晶的H2O-NaCl包裹体,即含NaCl子矿物型(Ⅳ类)等4种类型;成矿阶段可分为早期成矿、主成矿、后期成矿阶段,早期成矿阶段以I和部分Ⅱ类包裹体为主,偶见少量Ⅳ类含NaCl子晶包裹体,主成矿阶段以大部分Ⅱ类和Ⅲ类包裹体为主,后期成矿阶段以Ⅰ类包裹体为主;Maev和Adm金矿成矿流体以CO  相似文献   

20.
Abstract. Pink piemontite-spessartine-bearing and grey-green spessartine-bearing manganiferous quartzose schists derived from siliceous pelagites, and green quartzofeldspathic schists, are described from the greenschist facies of the Haast Schist terrane, near Arrow Junction, western Otago. Electron microprobe data are reported for sphene, spessartine-rich garnet, manganoan epidote, piemontite, tourmaline, phengitic muscovite, chlorite, albite, haematite, rutile, manganoan calcite and chalcopyrite. Metamorphism occurred at about 6.4kbar, 400°C. Xco2 was above the quartz-rutile-calcite-sphene buffer (Xco2± 0.02) throughout the recorded metamorphic history of the piemontite schists. It dropped from above to below this critical buffering value in a spessartine-rich schist and it was close to or below the buffering value in the quartzofeldspathic schists. Production of piemontite required high fO2, believed to be inherited from MnOx in the parent pelagite. Substantial loss of O2 (e.g. minimum of 0.19% by weight in one rock) during diagenesis and/or metamorphism is inferred. In the grey-green schists this inhibited piemontite formation. Slight loss of O2 and Ca2+ accompanied minor late-stage replacement of piemontite by second generation spessartine. Observed zoning and mineral replacements indicate rise of temperature, drop in pressure, or invasion by solutions of lower fO2 and XCO2 equilibrated with surrounding schists. The detailed chemistry of the minerals studied correlates with available Mn and with bulk-rock (Fe3+ x 100)/(Fe2++ Fe3+). The oxidation ratio ranges from 24 in average green quartzofeldspathic schist, through 78 in average grey-green manganiferous quartzose schist, to almost 100 in some piemontite-bearing schists. As Fe2+ gives way to Fe3+, Mg/Fe ratios tend to rise in chlorite, phengite, tourmaline, spessartine, and calcite, Mn increases and Ti decreases in haematite, Mn increases in spessartine and calcite, and Fe increases in rutile. Available divalent cations are depleted relative to Al; chlorite is more aluminous, and phengite more paragonitic than in typical Haast schists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号