首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Repeated electronic distance measurements across Kilauea Caldera with Tellurometers and Geodimeter show definite horizontal expansion related to the vertical uplift and outward tilting of the summit prior to an eruption, and contraction during and after a flank eruption. Measurements started in October 1964, along a 3098 meter line between Uwekahuna and Keanakakoi, indicate a relatively uniform lengthening of 12 centimeters during the interval October 22, 1964 to March 1, 1965. Rapid shortening of the line by 28 centimeters was measured 4 days after the beginning of a flank eruption which involved emission of approximately 29 million cubic meters of lava during the period March 5 to March 15, 1965. During the expansion, the standard deviation of 10 Tellurometer measurements from a least-squares srtaight line solution is ± 2.0 centimeters (6.5 ppm) whereas 9 Geodimeter measurements have a standard deviation of ± 1.1 (3.6 ppm) centimeters. Absolute distance readings between the two instruments differ by 4 centimeters (13 ppm), but relative changes in distance were the same on both instruments. Changes in distance across Kilauea Caldera can, therefore, be easily measured to accuracies of 4 to 7 parts per million with standard electronic distance measuring systems. On active volcanoes where ground surface deformation exceeds 10–100 parts per million with changes in subsurface magma pressure or volume, repeated horizontal distance measurements can be a most useful technique.  相似文献   

2.
3.
The Hilina Formation comprises the oldest sequence of lava flows and tuffs exposed on Kilauea Volcano. These rocks are only exposed in kipukas in younger Puna Formation lavas along cliffs on the south flank of Kilauea Volcano. Locally, tuffs and flows of the Pahala Formation separate the underlying Hilina Formation rocks rom the overlying Puna Formation rocks. Charcoal collected from the base of the Pahala Formation yielded a C14 age of 22.800±340 years B.P. which defines a minimum age for the Hilina Formation. Hilina Formation lavas crop out over a wide region and probably originated from the summit area and from both rift zones. The Hilina Formation contains both olivine-controlled and differentiated lavas (using the terminology ofWright, 1971). The olivine-controlled lavas of the Hilina Formation are distinguishable mineralogically and geochemically from younger olivine-controlled Kilauea lavas. The younger lavas generally contain discrete low-calcium pyroxene grains. greater glass contents, higher K2O/P2O5 ratios and lower total iron contents. Similar geochemical trends prevail for Manuna Loa lavas, and may typify the early lavas of Hawaiian shield volcanoes. Despite these similarities, the Hilina Formation (and all Kilauea) lavas have higher TiO2 and CaO, and lower SiO2 and Al2O3 contents than Mauna Loa Lavas. These differences have existed for over 30,000 years. Therefore, it is unlikely that the older lavas of Kilauea are compositionally similar to recent Mauna Loa lavas as was previously suggested. K2O, TiO2, Na2 and Zr contents of lavas from a stratigraphic sequence of Hilina Formation lavas are variable. These variations may be utilized to subdivide the sequence into geochemical groups. These groups are not magma batches. Rather, they represent lavas from batches whose compositions may have been modified by crystal fractionation and magma mixing.  相似文献   

4.
Most of the known pit craters in Hawaii occur along the East and Southwest Rift Zones of Kilauea volcano. The pit craters typically are either astride a single rift zone fracture or between a pair of rift zone fractures. These fractures are prominent in the pit crater walls. The pit craters are elliptical in plan view, with their major diameters ranging from 8 to 1140 m. They range in depth from 6 m to 186 m. They typically develop with initially steep, locally overhanging walls, but as the walls collapse, the craters fill with talus and become shaped like inverted elliptical cones. None of the craters apparently formed as eruptive vents, although some have been subsequently filled by lava. Devil's Throat is the best-exposed pit crater along the East Rift Zone. It is sited at a `waist' between two east-striking zones of ground cracks; the spacing between the crack zones decreases towards Devil's Throat. East-striking fractures are also prominent in the pit crater walls. Pit craters along the Southwest Rift Zone typically are elongate in plan view along the direction of the rift, have large caves at their bases along the long axes of the craters, and are smaller than those of the East Rift Zone. Some closely spaced pits there have coalesced to form a trough. Based on our observations and mechanical considerations, we infer that pit craters form by stoping over an underlying large-aperture rift zone fracture, and not by piston-like collapse over broad magma bodies or voids. Flow of magma along the underlying fracture may remove stoped blocks and prevent the fracture from being choked with debris. This mechanism is consistent with pit crater location, ground crack patterns, the preferred orientation of fractures in pit crater walls, and pit crater geometry (both in map view and cross-section). The mechanism also fits with observations of stoping into a gaping rift fracture that conducted lava from Kilauea caldera during the 1920s. Additionally, the ratio of pit crater width to depth of 0.5 to 2 is consistent with pit craters forming over a nearly vertical opening mode fracture.  相似文献   

5.
This paper presents a new method of analysing lava flow deposits which allows the velocity, discharge rate and rheological properties of channelled moving lavas to be calculated. The theory is applied to a lava flow which was erupted on Kilauea in July 1974. This flow came from a line of fissures on the edge of the caldera and was confined to a pre-existing gully within 50 m of leaving the vent. The lava drained onto the floor of the caldera when the activity stopped, but left wall and floor deposits which showed that the lava banked up as it flowed around each of the bends. Field surveys established the radius of curvature of each bend and the associated lava levels, and these data, together with related field and laboratory measurements, are used to study the rheology of the lava. The results show the flow to have been fast moving but still laminar, with a mean velocity of just over 8 m s–1; the lava had a low or negligible yield strength and viscosities in the range 85–140 Pa s. An extension of the basic method is considered, and the possibility of supercritical flow discussed.  相似文献   

6.
The chemical surveillance of Kilauea volcano, Hawaii, has continued. No relationship has thus far been identified between the helium content of an associated fumarole and the activity at the volcano. Fume samples from Halemaumau crater in Kilauea caldera and from a fissure eruption that occurred nearby on the floor of the caldera during August 1971 were examined for their halogen (Cl and F) and sulfur contents. The ratio of Cl/F in fume showed an abnormal increase in samples taken at Halemaumau a month before the eruption. This change in ratio may be a helpful indicator of the onset of eruption in volcanic areas.  相似文献   

7.
A three-dimensional model has been used to estimate the location and dimensions of the eruptive fissure for the 24–29 September 1971 eruption along the southwest rift zone of Kilauea volcano, Hawaii. The model is an inclined rectangular sheet embedded in an elastic half-space with constant displacement on the plane of the sheet. The set of best model parameters suggests that the sheet is vertical, extends from a depth of about 2 km to the surface, and has a length of about 14 km. Because this sheet intersects the surface where eruptive vents and extensive ground cracking formed during the eruption, this sheet probably represents the conduit for erupted lava. The amount of displacement perpendicular to the sheet is about 1.9 m, in the middle range of values measured for the amount of opening across the September 1971 eruptive fissure. The thickness of the eruptive fissure associated with the January 1983 east rift zone eruption was determined in an earlier paper to be 3.6 m, about twice the thickness determined here for the September 1971 eruption. Because the lengths (12 km for 1983 and 14 km for 1971) and heights (about 2 km) of the sheet models derived for the January 1983 and September 1971 rift zone eruptions are nearly identical, the greater thickness for the January 1983 eruptive fissure implies that the magma pressure was about a factor of two greater to form the January 1983 eruptive fissure. Because the September 1971 and January 1983 eruptive fissures extent to depths of only a few kilometers, the region of greatest compressive stress produced along the volcano's flank by either of these eruptive fissures would also be within a few kilometers of the surface. Previous work has shown that rift eruptions and intrusions contribute to the buildup of compressive stress along Kilauea's south flank and that this buildup is released by increased seismicity along the south flank. Because south flank earthquakes occur at significantly greater depths, i.e., from 5 to 13 km, than the vertical extent of the 1971 and 1983 eruptiv fissures, the depth of emplacement of these eruptive fissures cannot be the main factor in controlling the hypocentral depths of south flank earthquakes. Two possible explanations for the occurrence of south flank earthquakes in the depth range of 5–13 km are (1) a deeper pressure source, possibly related to deeper magma storage within the rift zone, and (2) a lowstrength region located between 5 and 13 km beneath Kilauea's south flank, possibly at the interface between oceanic sediments and the base of the Hawaiian volcanics.  相似文献   

8.
Volcanic gas samples were collected from July to November 1985 from a lava pond in the main eruptive conduit of Pu'u O'o from a 2-week-long fissure eruption and from a minor flank eruption of Pu'u O'o. The molecular composition of these gases is consistent with thermodynamic equilibrium at a temperature slightly less than measured lava temperatures. Comparison of these samples with previous gas samples shows that the composition of volatiles in the magma has remained constant over the 3-year course of this episodic east rift eruption of Kilauea volcano. The uniformly carbon depleted nature of these gases is consistent with previous suggestions that all east rift eruptive magmas degas during prior storage in the shallow summit reservoir of Kilauea. Minor compositional variations within these gas collections are attributed to the kinetics of the magma degassing process.  相似文献   

9.
Accelerating rates of volcano-tectonic (VT) earthquakes are commonly observed during volcanic unrest. Understanding the repeatability of their behaviour is essential to evaluating their potential to forecast eruptions. Quantitative eruption forecasts have focused on changes in precursors over intervals of weeks or less. Previous studies at basaltic volcanoes in frequent eruption, such as Kilauea in Hawaii and Piton de La Fournaise on Réunion, suggest that VT earthquake rates tend to follow a power-law acceleration with time about 2 weeks before eruption, but that this trend is often obscured by random fluctuations (or noise) in VT earthquake rate. These previous studies used a stacking procedure, in which precursory sequences for several eruptions are combined to enhance the signal from an underlying acceleration in VT earthquake rate. Such analyses assume a common precursory trend for all eruptions. This assumption is tested here for the 57 eruptions and intrusions recorded at Kilauea between 1959 and 1984. Applying rigorous criteria for selecting data (e.g. maximum depth; restricting magnitudes to be greater than the completeness magnitude, 2.1), we find a much less pronounced increase in the aggregate rate of earthquakes than previously reported. The stacked trend is also strongly controlled by the behaviour of one particular pre-eruptive sequence. In contrast, a robust signal emerges among stacked VT earthquake rates for a subset of the eruptions and intrusions. The results are consistent with two different precursory styles at Kilauea: (1) a small proportion of eruptions and intrusions that are preceded by accelerating rates of VT earthquakes over intervals of weeks to months and (2) a much larger number of eruptions that show no consistent increase until a few hours beforehand. The results also confirm the importance of testing precursory trends against data that have been filtered according to simple constraints on the spatial distribution and completeness magnitude of the VT earthquakes.  相似文献   

10.
11.
Low-to-high temperature fumaroles discharging from the Active Crater of Lascar volcano (northern Chile) have been collected in November 2002, May 2005 and October 2006 for chemical and isotopic analysis to provide the first geochemical survey on the magmatic-hydrothermal system of this active volcano. Chemical and isotopic gas composition shows direct addition of high-temperature fluids from magmatic degassing, mainly testified by the very high contents of SO2, HCl and HF (up to 87,800, 29,500 and 2,900 μmol/mol) and the high R/Ra values (up to 7.29). Contributions from a hydrothermal source, mainly in gas discharges of the Active Crater rim, has also been detected. Significant variations in fluid chemistry, mainly consisting of a general decrease of magmatic-related compounds, i.e. SO2, have affected the fumarolic system during the period of observation, indicating an increase of the influence of the hydrothermal system surrounding the ascending deep fluids. The chemical composition of Active Crater fumaroles has been used to build up a geochemical model describing the main processes that regulate the fluid circulation system of Lascar volcano to be utilized in volcanic surveillance.  相似文献   

12.
A detailed investigation of earthquake locations and focal mechanisms for swarms associated with intrusive events at Kilauea volcano, Hawaii, further illuminates the relationships among stress state, faulting, and magma transport. We determine the earthquake locations and mechanisms using a three-dimensional crustal model to improve their accuracy and consistency. Swarms in Kilauea's upper east and southwest rift zones, from the years 1980 through 1982, provide clear evidence for the propagation and/or dilation of dikes. Focal mechanisms are predominantly strike-slip, and the faulting and inferred dike orientations can be interpreted quite consistently in terms of the model ofHill (1977). Stresses induced by the summit magma reservoir system strongly control faulting and magma transport in the rift zones close to the summit.  相似文献   

13.
Hawaiian volcanoes characteristically have but few of the many types of minerals found in incrustations of other volcanic areas. In Hawaii sulfates resulting from air oxidation of volatiles predominate, and fluorides produced during rock alteration by fumarolic gases are prominent. Halides are generally found where reducing conditions exist in fumaroles and lava lake drill holes. The most common mineral types are sulfur, opaline silica, gypsum, ralstonite, and thenardite. Minerals from the same deposit are found to vary markedly in the content of the less abundant components. Condensates from vapor issuing from fumaroles show little quantitative relationship in component content to incrustations deposited at the same fumaroles. It is believed that an energetically favorable isomorphic substitution of some elements in the crystal lattice of a depositing mineral may lead to the build-up of a high concentration of an element from a lean vapor. Equilibrium calculations applied to condensate studies give a good quantitative approximation to the concentrations of the elements found in natural systems, but when applied to incrustations they serve only to indicate general compositional relations. Laboratory studies have shown the important role of chlorides in metal transfer in the gas phase in high-temperature aqueous systems, but only in the absence of oxygen. These studies also demonstrated the important role of HF in rock alteration and in the transfer of silica.  相似文献   

14.
Based on geochemical studies we have updated our knowledge of the generation conditions and discharge of thermal waters on Shiashkotan Island. The thermal springs, which are abundant on the island, are surface expressions of the North Shiashkotan and Kuntomintar hydrothermal systems. The North Shiashkotan hydrothermal system shows the classical hydrochemical zonality. The discharge of the Kuntomintar hydrothermal system is confined within two thermal fields that are situated in the central and northeastern craters of the eponymous volcano. The high temperature of the gases that are issuing from Kuntomintar Volcano to the ground surface and the higher predictive ratios S/Cl, S/C, and CO2/H2 in its composition provide evidence of a possible renewal of its fumarole activity.  相似文献   

15.
Detailed geologic mapping and radiocarbon dating of tholeiitic basalts covering about 275 km2 on the lower east rift zone (LERZ) and adjoining flanks of Kilauea volcano, Hawaii, show that at least 112 separate eruptions have occurred during the past 2360 years. Eruptive products include spatter ramparts and cones, a shield, two extensive lithic-rich tuff deposits, aa and pahoehoe flows, and three littoral cones. Areal coverage, number of eruptions and average dormant interval estimates in years for the five age groups assigned are: (I) historic, i.e. A D 1790 and younger: 25%, 5, 42.75; (II) 200–400 years old: 50%, 15, 14.3: (III) 400–750 years old: 20%, 54, 6.6; (IV) 750–1500 years old: 5%, 37, 20.8; (V) 1500–3000 years old: <1%, 1, unknown. At least 4.5–6 km3 of tholeiitic basalt have been erupted from the LERZ during the past 1500 years. Estimated volumes of the exposed products of individual eruptions range from a few tens of cubic meters for older units in small kipukas to as much as 0.4 km3 for the heiheiahulu shield. The average dormant interval has been about 13.6 years during the past 1500 years. The most recent eruption occurred in 1961, and the area may be overdue for its next eruption. However, eruptive activity will not resume on the LERZ until either the dike feeding the current eruption on the middle east rift zone extends farther down rift, or a new dike, unrelated to the current eruption, extends into the LERZ.  相似文献   

16.
Shallow crustal magma reservoirs beneath the summit of Kilauea Volcano and within its rift zones are linked in such a way that the magma supply to each can be estimated from the rate of ground deformation at the volcano's summit. Our model builds on the well-documented pattern of summit inflation as magma accumulates in a shallow summit reservoir, followed by deflation as magma is discharged to the surface or into the rift zones. Magma supply to the summit reservoir is thus proportional to summit uplift, and supply to the rift zones is proportional to summit subsidence; the average proportionality constant is 0.33 × 106 m3/γrad. This model yields minimum supply estimates because it does not account for magma which escapes detection by moving passively through the summit reservoir or directly into the rift zones.Calculations suggest that magma was supplied to Kilauea during July 1956– April 1983 at a minimum average rate of 7.2 × 106 m3/month. Roughly 35% of the net supply was extruded; the rest remains stored within the volcano's east rift zone (55%) and southwest rift zone (10%). Periods of relatively rapid supply were associated with the large Kapoho eruption in 1960 and the sustained Mauna Ulu eruptions in 1969–1971 and 1972–1974. Bursts of harmonic tremor from the mantle beneath Kilauea were also unusually energetic during 1968–1975, suggesting a close link between Kilauea's deep magma supply region and shallow storage reservoirs. It remains unclear whether pulses in magma supply from depth give rise to corresponding increases in shallow supply, or if instead unloading of a delicately balanced magma transport system during large eruptions or intrusions triggers more rapid ascent from a relatively constant mantle source.  相似文献   

17.
Multispectral thermal infrared radiance measurements of the Kupaianaha flow field were acquired with the NASA airborne Thermal Infrared Multispectral Scanner (TIMS) on the morning of 1 October 1988. The TIMS data were used to map both the temperature and emissivity of the surface of the flow field. The temperature map depicted the underground storage and transport of lava. The presence of molten lava in a tube or tumulus resulted in surface temperatures that were at least 10° C above ambient. The temperature map also clearly defined the boundaries of hydrothermal plumes which resulted from the entry of lava into the ocean. The emissivity map revealed the boundaries between individual flow units within the Kupaianaha field. In general, the emissivity of the flows varied systematically with age but the relationship between age and emissivity was not unique. Distinct spectral anomalies, indicative of silica-rich surface materials, were mapped near fumaroles and ocean entry sites. This apparent enrichment in silica may have resulted from an acid-induced leaching of cations from the surfaces of glassy flows. Such incipient alteration may have been the cause for virtually all of the emissivity variations observed on the flow field, the spectral anomalies representing areas where the acid attack was most intense.  相似文献   

18.
Surface geochemical mapping of Rn, Hg and pH on the summit of Kilauea volcano, Hawaii, has shown some of the characteristics of outgassing. Rn concentrations measured in shallow ground gas are highest (10 to 155 units, i.e. up to 0.016 nCi/l222Rn) over deep structures associated with the summit caldera, low (1 to 5 units) over the upper rift zones (which are underlain by shallow intrusions) and low to negative (1 to -3 units) over most of the volcanically inactive peripheral areas. High Rn concentrations were measured over peripheral well-developed structures such as the Kaoiki and Koae fault systems (45 and 12 units, respectively). The pattern of Rn values broadly suggests the existence of a summit-wide convection system interrupted locally by specific permeable structures. The low pH (3.5 to 5.6) of soils over the caldera is suggested to be largely due to the sulfurous component of the ground gas. The low concentrations of Hg (5 to 80 ppb) in these soils are postulated as being partly a function of subsurface complexing of Hg with the abundant sulfur. The shallow intrusions below the upper rift zones appear to have outgassed much of their sulfur content, so soils in these areas are only slightly acid (5.6 to 6.2), allowing the accumulation of Hg to concentrations of several thousands of ppb. These conditions change during extrusive (and intrusive) events with the increases in shallow subsurface temperatures and volatiles in ground gas producing an increase in Rn concentration, and a decrease in soil Hg due to volatilization. After such events, Rn concentration decreases, and soil Hg increases significantly.  相似文献   

19.
Since the March–April 1982 eruption of El Chichòn volcano, intense hydrothermal activity has characterised the 1-km-wide summit crater. This mainly consists of mud and boiling pools, fumaroles, which are mainly located in the northwestern bank of the crater lake. During the period 1998–2000, hot springs and fumaroles discharging inside the crater and from the southeastern outer flank (Agua Caliente) were collected for chemical analyses. The observed chemical fluctuations suggest that the physico-chemical boundary conditions regulating the thermodynamic equilibria of the deep rock/fluid interactions have changed with time. The chemical composition of the lake water, characterised in the period 1983–1997 by high Na+, Cl, Ca2+ and SO42− contents, experienced a dramatic change in 1998–1999, turning from a Na+–Cl- to a Ca2+–SO42−-rich composition. In June 2000, a relatively sharp increase in Na+ and Cl contents was observed. At the same time, SO2/H2S ratios and H2 and CO contents in most gas discharges increased with respect to the previous two years of observations, suggesting either a new input of deep-seated fluids or local variations of the more surficial hydrothermal system. Migration of gas manifestations, enhanced number of emission spots and variations in both gas discharge flux and outlet temperatures of the main fluid manifestations were also recorded. The magmatic-hydrothermal system of El Chichòn is probably related to interaction processes between a deep magmatic source and a surficial cold aquifer; an important role may also be played by the interaction of the deep fluids with the volcanic rocks and the sedimentary (limestone and evaporites) basement. The chemical and physical changes recorded in 1998–2000 were possibly due to variations in the permeability of the conduit system feeding the fluid discharges at surface, as testified by the migration of gas and water emanations. Two different scenarios can be put forward for the volcanic evolution of El Chichòn: (1) build-up of an infra-crater dome that may imply a future eruption in terms of tens to hundreds of years; (2) minor phreatic–phreatomagmatic events whose prediction and timing is more difficult to constrain. This suggests that, unlike the diminished volcanic activity at El Chichòn after the 1982 paroxistic event, the volcano-hydrothermal fluid discharges need to be more constantly monitored with regular and more frequent geochemical sampling and, at the same time, a permanent network of seismic stations should be installed.  相似文献   

20.
Physical, chemical and isotopic parameters were measured in fumaroles at the Vulcano crater and in drowned fumaroles near the beach. The data were used to define boundary conditions for possible conceptual models of the system.Crater fumaroles: time variations of CO2 and SO2 concentrations indicate mixing of saline gas-rich water with local fresh water. Cl/Br ratios of 300– 400 favour sea-water as a major source for Cl, Brand part of the water in the fumaroles. Cl concentrations and D values revealed, independently, amixing of 0.75 sea-water with 0.25 local freshwaterin furmarole F-5 during September 1982.Patterns of parameter correlation and mass balances reveal that CO2, S, NH3 and B originate from sources other than sea water. The CO2 value of 13C = – 2%o favours, at least partial, origin from decomposition of sedimentary rocks rather than mantle-derived material. Radiogenic4He(1.3 × lO–3 ccSTP/g water) and radiogenic40Ar(10.6 × 10–4 ccSTP/g water) are observed, (4He/40Ar)radiogenic = 1.2, well in the range of values observed in geothermal systems.Drowned fumaroles: strongly bubbling gas at a pond and at the beachappears to have the same origin and initial compositionas the crater fumaroles (2 km away). The fumarolic gas is modified by depletion of the reactive gases, caused by dissolution in shallow-water. Atmospheric Ne, Ar, Kr and Xe are addeden route, some radiogenic He and Ar are maintained. The Vulcano system seems to be strongly influenced by the contribution of sea-water and decomposition of sedimentary rocks. Evidence of magmatic contributions is mainly derived from heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号