首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NumericalsimulationofthedetachmentdynamicsinNorthChinaBasinDong-Ning;ZHANG(张东宁)andRong-ShengZENG(曾融生)(InstituteofGeophysics,S...  相似文献   

2.
Numerical models show that maximum dike width at oceanic spreading centers should scale with axial lithospheric thickness if the pre-diking horizontal stress is close to the Andersonian normal faulting stress and the stress is fully released in one dike intrusion. Dikes at slow-spreading ridges could be over 5 m wide and maximum dike width should decrease with increasing plate spreading rate. However, data from ophiolites and tectonic windows into recently active spreading ridges show that mean dike width ranges from 0.5 m to 1.5 m, and does not clearly correlate with plate spreading rate. Dike width is reduced if either the pre-diking horizontal stress difference is lower than the faulting stress or the stress is not fully released by a dike. Partial stress release during a dike intrusion is the more plausible explanation, and is also consistent with the fact that dikes intrude in episodes at Iceland and Afar. Partial stress release can result from limited magma supply when a crustal magma chamber acts as a closed source during dike intrusions. Limited magma supply sets the upper limit on the width of dikes, and multiple dike intrusions in an episode may be required to fully release the axial lithospheric tectonic stress. The observation of dikes that are wider than a few meters (such as the recent event in Afar) indicates that large tectonic stress and large magma supply sometimes exist.  相似文献   

3.
Intrusions of ultramafic bodies into the lower density continental crust are documented for a large variety of tectonic settings spanning continental shields, rift systems, collision orogens and magmatic arcs. The intriguing point is that these intrusive bodies have a density higher by 300-500 kg m−3 than host rocks. Resolving this paradox requires an understanding of the emplacement mechanism. We have employed finite differences and marker-in-cell techniques to carry out a 2D modeling study of intrusion of partly crystallized ultramafic magma from sublithospheric depth to the crust through a pre-existing magmatic channel. By systematically varying the model parameters we document variations in intrusion dynamics and geometry that range from funnel- and finger-shaped bodies (pipes, dikes) to deep seated balloon-shaped intrusions and flattened shallow magmatic sills. Emplacement of ultramafic bodies in the crust lasts from a few kyr to several hundreds kyr depending mainly on the viscosity of the intruding, partly crystallized magma. The positive buoyancy of the sublithospheric magma compared to the overriding, colder mantle lithosphere drives intrusion while the crustal rheology controls the final location and the shape of the ultramafic body. Relatively cold elasto-plastic crust (TMoho = 400 °C) promotes a strong upward propagation of magma due to the significant decrease of plastic strength of the crust with decreasing confining pressure. Emplacement in this case is controlled by crustal faulting and subsequent block displacements. Warmer crust (TMoho = 600 °C) triggers lateral spreading of magma above the Moho, with emplacement being accommodated by coeval viscous deformation of the lower crust and fault tectonics in the upper crust. Strong effects of magma emplacement on surface topography are also documented. Emplacement of high-density, ultramafic magma into low-density rocks is a stable mechanism for a wide range of model parameters that match geological settings in which partially molten mafic-ultramafic rocks are generated below the lithosphere. We expect this process to be particularly active beneath subduction-related magmatic arcs where huge volumes of partially molten rocks produced from hydrous cold plume activity accumulate below the overriding lithosphere.  相似文献   

4.
A significant number of volcano-tectonic (VT) earthquake swarms, some of which are accompanied by ground deformation and/or volcanic gas emissions, do not culminate in an eruption. These swarms are often thought to represent stalled intrusions of magma into the mid- or shallow-level crust. Real-time assessment of the likelihood that a VT swarm will culminate in an eruption is one of the key challenges of volcano monitoring, and retrospective analysis of non-eruptive swarms provides an important framework for future assessments. Here we explore models for a non-eruptive VT earthquake swarm located beneath Iliamna Volcano, Alaska, in May 1996–June 1997 through calculation and inversion of fault-plane solutions for swarm and background periods, and through Coulomb stress modeling of faulting types and hypocenter locations observed during the swarm. Through a comparison of models of deep and shallow intrusions to swarm observations, we aim to test the hypothesis that the 1996–97 swarm represented a shallow intrusion, or “failed” eruption. Observations of the 1996–97 swarm are found to be consistent with several scenarios including both shallow and deep intrusion, most likely involving a relatively small volume of intruded magma and/or a low degree of magma pressurization corresponding to a relatively low likelihood of eruption.  相似文献   

5.
This paper presents a study of the tectonic stresses in central Asia based on an interpretation of satellite gravity data for mantle convection and supplemented with published fault plane solutions of earthquakes. Northwest-southeast to north-south compressional stresses exist in the Tien Shan region where reverse faulting dominates. The maximum compressive stress is oriented approximately northeast-southwest in the regions of Altai and southern Mongolia. Farther north, compressive stress gives way to tensional stress which causes normal faulting in the Baikal rift system. It is also shown that all of the tectonic stresses in the Tibetan plateau and Himalayan frontal thrust are related to the convection-generated stress patterns inferred from satellite gravity data. These results suggest that the complex crustal deformation in central Asia can be convincingly described by the deformation of the lithosphere on top of the up- and down-welling asthenospheric material beneath it. This observational fact may not only upset the simple view of the fluid crustal model of the Tibetan plateau, but also provide some useful constraints for the future development of deformation theory of continental crust.  相似文献   

6.
Numerical simulation of Dabie orogenic belt's tectonic evolution   总被引:1,自引:0,他引:1  
IntroductionDabieorogenicbeltisthecollisionorogenbetweentheSino-KoreancratonandYangtzecraton.Sincethediscoveriesofcoesiteatthelater1980s,Dabieorogenicbelthasbecomethemostfamousultra-highpressure(UHP)metamorphicbeltinafewyears.Coesite-bearingeclogitef...  相似文献   

7.
Emplacement and arrest of sheets and dykes in central volcanoes   总被引:1,自引:0,他引:1  
Sheet intrusions are of two main types: local inclined (cone) sheets and regional dykes. In Iceland, the inclined sheets form dense swarms of (mostly) basaltic, 0.5–1 m thick sheets, dipping either at 20–50° or at 75–90° towards the central volcano to which they belong. The regional dykes are (mostly) basaltic, 4–6 m thick, subvertical, subparallel and form swarms, less dense than those of the sheets but tens of kilometres long, in the parts of the volcanic systems that are outside the central volcanoes. In both types of swarms, the intrusion intensity decreases with altitude in the lava pile. Theoretical models generally indicate very high crack-tip stresses for propagating dykes and sheets. Nevertheless, most of these intrusions become arrested at various crustal depths and never reach the surface to supply magma to volcanic eruptions. Two principal mechanisms are proposed to explain arrest of dykes and sheets. One is the generation of stress barriers, that is, layers with local stresses unfavourable for the intrusion propagation. The other is mechanical anisotropy whereby sheet intrusions become arrested at discontinuities. Stress barriers may develop in several ways. First, analytical solutions for a homogeneous and isotropic crust show that the intensity of the tensile stress associated with a pressured magma chamber falls off rapidly with distance from the chamber. Thus, while dyke and sheet injection in the vicinity of a chamber may be favoured, dyke and sheet arrest is encouraged in layers (stress barriers) at a certain distance from the chamber. Second, boundary-element models for magma chambers in a mechanically layered crust indicate abrupt changes in tensile stresses between layers of contrasting Young’s moduli (stiffnesses). Thus, where soft pyroclastic layers alternate with stiff lava flows, as in many volcanoes, sheet and dyke arrest is encouraged. Abrupt changes in stiffness between layers are commonly associated with weak and partly open contacts and other discontinuities. It follows that stress barriers and discontinuities commonly operate together as mechanisms of dyke and sheet arrest in central volcanoes.  相似文献   

8.
Formulas are derived for two-dimensional problems relating stresses across a plane boundary that divides infinite homogeneous half-spaces being in welded contact. The calculations are made for both anti-plane and in-plane stress cases. The results obtained for the former case that involve only two stress components are useful in the analysis of fracture of strike-slip type. For the in-plane case, the relations that link stresses in one half-space with the corresponding homogeneous stresses in the other half-space are presented for arbitrarily oriented shear and normal stresses and for the center of compression (dilatation). The above relations provide a compete set of expressions that, among other things, make it possible to analyze stresses involved in faulting of deep-slip type in an inhomogeneous medium. The quantitative preliminary evaluations based on the results obtained demonstrate the great role of low rigidity media in fracture processes of all kinds within the Earth’s crust.  相似文献   

9.
A general model of magma intrusion into the crust is developed which is based on a viscous-dissipation, forced-convection flow process driven by gravitational-buoyancy forces. Although some of the points in this general model have been studied before, it is possible with the present model to go further and calculate magma volumetric intrusion rates from fundamental properties and parameters. Equations for forced convection in a conduit with viscous dissipation are combined with results for the temperature dependence of magma viscosity. The volumetric intrusion rate is shown to be not a function of viscosity as might be expected, but rather a function primarily of the rate of change of viscosity with temperature. The model predictions for intrusion rate correlate well with field results for several sites where data exist for both intrusion or extrusion rate and for the temperature-dependent behavior of magma viscosity. The model predicts magma chamber replenishment rates equivalent to thermal energy rates on the order 10 GW (gigawatts) for a single active magma site. Assuming active magma sites on a 50-km spacing along volcanic lineaments leads to an estimate of a renewable magma intrusion rate into the crust of the western U.S. on the order of 2 TW (terawatts).  相似文献   

10.
The influence of hot mantle intrusive body on tectonic stress field and displacement field of Dabie orogenic belt have been analyzed by means of finite element method. Numerical simulations show that the intrusion of hot mantle material leads to an extensional stress state in the upper crust of central Dabie mountains, while compressive stress state appears on both sides of orogenic belt under the action of horizontal compression from Yangtze craton. This is in accordance with the actual faulting tectonics in this area. Possible evolution trend in transition area is discussed, too. Contribution No. 99FE2020, Institute of Geophysics, China Seismological Bureau.  相似文献   

11.
The orientations of dykes from many of the islands of the Lesser Antilles island arc have been mapped. Most of these dykes can be interpreted in terms of local or regional swarms derived from specific volcanoes of known age, with distinct preferred orientations. Dykes are known from all Cenozoic epochs except the Palaeocene, but are most common in Pliocene, Miocene and Oligocene rocks. A majority of the sampled dykes are basaltic, intrude volcaniclastic host rocks and show a preference for widths of 1–1.25 m. Locally, dyke swarms dilate their hosts by up to 9% over hundreds of metres and up to 2% over distances of kilometres. The azimuths of dykes of all ages show a general NE-SW preferred orientation with a second NW-SE mode particularly in the Miocene rocks of Martinique. The regional setting for these minor intrusions is a volcanic front above a subduction zone composed of three segments: Saba-Montserrat, Guadeloupe-Martinique, St. Lucia-Grenada. The spacing of volcanic centres along this front is interpreted in terms of rising plumes of basaltic magma spaced about 30 km apart. This magma is normally intercepted at crustal depths by dioritic plutons and andesitic/dacitic magma generated there. Plumes which intersect transverse fracture systems or which migrate along the front can avoid these crustal traps. Throughout its history the volcanic front as a whole has migrated, episodically, towards the backarc at an average velocity of about 1 km/Ma. The local direction of plate convergence is negatively correlated with the local preferred orientation of dykes. The dominant NE-SW azimuth mode corresponds closely to the direction of faulting in the sedimentary cover of the backarc and the inferred tectonic fabric of the oceanic crust on which the arc is founded. A generalised model of the regional stress field that controls dyke intrusion outside of the immediate vicinity of central volcanic vents is proposed, in which the maximum horizontal stress parallels the volcanic front except in the northern segment where subduction of the Barracuda Rise perturbs the stress field. There is also evidence of specific temporal changes in the stress field that are probably due to large scale plate kinematics.  相似文献   

12.
Geochronological studies of mafic-ultramafic intrusions occurrence in the northern Dabie zone (NDZ) suggest that these pyroxenite-gabbro intrusions formed 120—130 Ma ago should be post-collisional magmatic rocks[1—4]. These mafic-ultramafic rocks provid…  相似文献   

13.
南海北部陆缘地震带的深部结构和孕震机制   总被引:6,自引:2,他引:4  
邹和平 《华南地震》1998,18(3):16-20
南海北部陆缘地震带的地震震源基本上分布在地壳内6 ̄13km和17 ̄22km两个深度范围内,发震层恰好位于区内中地震低速层和下地壳低速层的顶部附近。地壳深部结构的不稳定性以及侧向应力和垂向应力共同作用下的平移正断层错动,可能是该带地震孕育、发生的一种重要机制。  相似文献   

14.
The South Aegean active volcanic arc lies along the 150-km seismic isodepth of a Benioffzone and consists in andesitic, dacitic and rhyolitic volcanoes of an orogenic calc-alkaline type. In the eastern part of the arc there are two main volcanic sites in the Nisyros and Kos islands. High shallow and intermediate depth seismic activity occurs in this volcanic area. Seismological data concerning the 1911–1980 period have been used to investigate seismic properties in that area. Two, distinct regions with different seismotectonic features have been defined. The internal region (Nisyros active volcano and its proximity) is characterized by a shallow, thin seismogenetic layer with abnormally highb-value, locally concentrated stresses, low seismicity and highly heterogeneous structure. These features are probably due to a magmatic body intruded in shallow depths within the crust. The possibility of magma formation in the upper surface of the descending slab or within the upper mantle wedge overlying this slab in the Nisyros-Kos area is herein discussed. On the contrary, the remaining (external) region, including the non-active volcanic island of Kos, is characterized by normal for tectonic shocksb-value, thick seismogenetic layer and high seismicity. It seems that in this region there is not a magmatic intrusion at least in shallow depths within the crust.  相似文献   

15.
火山与地震的共性特征及有关问题讨论   总被引:4,自引:1,他引:3  
对火山与地震及其伴随现象进行了对比分析,发现二者除外在形式不同外,在分布范围、深部构造及其它方面具有明显的共性特征.讨论了火山与地震具有共性特征的原因,认为它们都与岩浆活动有关.因此,内陆地震的发生有可能是地壳内岩浆上涌的直接结果  相似文献   

16.
The U-Pb isotope geochemical study of the pyroxenite-gabbro intrusion in the Dabie Mountains shows that the post-collisional mafic-ultramafic rocks of the Dabie Mountains are characterized by relative high Pb contents, low U contents and low U/Pb ratios. These characters may be results of interaction between lithosphere or depleted asthenospheric mantle (DMM) and lower crust, but have nothing to do with mantle plume and subducted continental crust. It was first observed that some samples with lower 206Pb/204Pb and higher 207Pb/204Pb ratios show typical characters of the LOMU component. The Pb, Sr, and Nd isotopic tracing shows that three components are needed in the source of the Zhujiapu pyroxenite-gabbro intrusion. They could be old enriched sub-continental lithospheric mantle (LOMU component), lower crust and depleted asthenospheric mantle. The crust-mantle interaction process producing primitive magma of post-collisional mafic-ultramafic rocks in the Dabie Mountains could be described by a lithospheric delamination and magma underplating model. After continent-continent collision, delamination of the thickened lithosphere induced the upwelling of depleted asthenospheric mantle, which caused partial melting of asthenospheric mantle and residual sub-continental lithospheric mantle. The basaltic magma produced in this process underplated in the boundary between the crust and mantle and interacted with lower crust resulting in the geochemical characters of both enriched lithospheric mantle and lower crust.  相似文献   

17.
Significant advances were made in the last century in the investigations of the Neogene stress history of the NE Japan arc. However, previous studies have failed to fully resolve middle Miocene post‐rift stress conditions owing to their assumption of Andersonian faulting and an inability to determine maximum and intermediate stress axes from dike orientations. We applied the latest methods of paleostress analysis in this study to igneous dikes and mesoscale faults in the Kakunodate area of the NE Japan arc to elucidate post‐rift stress conditions. Stratigraphic constraints and U–Pb dating indicate that the doleritic and dacitic dikes were formed at 16–12 Ma and 15–12 Ma, respectively. Dolerite and dacite dikes yielded NW–SE extensional stresses with intermediate and low stress ratios, respectively. Mesoscale faults in the middle Miocene formations of the studied area indicated similar stresses. We suggest the sluggish deformations resulting in the dike intrusion and faulting in the normal‐faulting stress regime after the termination of intra‐arc rifting at ca. 15 Ma.  相似文献   

18.
张渤地震带及邻区近震体波成像及孕震环境分析   总被引:3,自引:0,他引:3       下载免费PDF全文

针对张渤地震带深部孕震构造环境和地幔岩浆对地壳底侵作用的问题, 本文充分收集了华北地区区域数字地震台网176个固定台站记录到的观测数据, 应用近震体波层析成像方法, 获得了华北地区地壳的P波三维速度结构和VP/VS波速比.依据VP/VS波速比能反映岩石物理性质和流变学特征的特性, 并结合人工地震测深剖面、大地电磁测深、地球化学等成果, 讨论了张渤地震带的孕震环境和动力学机制等问题.研究结果显示:张渤地震带强震位于高低速异常分界线附近或偏向高速体一侧, 震源体下方均存在广泛的低速异常分布, 据此推测这些低速异常的存在可能与流体有关, 同时也揭示出张渤地震带地震主要分布在上地壳, 从震源深度分布及地壳物性结构分析上地壳具有发震的构造背景, 也有发震的物性基础, 是一个易震层和多震层.张渤地震带地壳内部在20 km下方存在偏高的波速比特征, 这些可能反映了在该区域内中、上地壳幔源物质的侵入和热状态的岩体在横向上的变化, 可能是地幔岩浆长期底侵作用的结果.由于深部幔源物质的侵入, 使得地壳深部流体的供给量增加, 在地壳发震层下长期存在的流体会影响断裂带的结构, 降低断裂带的强度, 使区域应力场发生变化从而导致断裂带上应力的集中, 进而引发地震发生.

  相似文献   

19.
Sr and Nd isotope and geochemical investigations were performed on a remarkably homogeneous, high-silica rhyolite magma reservoir of the Aira pyroclastic eruption (22,000 years ago), southern Kyushu, Japan. The Aira caldera was formed by this eruption with four flow units (Osumi pumice fall, Tsumaya pryoclastic flow, Kamewarizaka breccia and Ito pyroclastic flow). Quite narrow chemical compositions (e.g., 74.0–76.5 wt% of SiO2) and Sr and Nd isotopic values (87Sr/86Sr=0.70584–0.70599 and Nd=−5.62 to −4.10) were detected for silicic pumices from the four units, with the exception of minor amounts of dark pumices in the units. The high Sr isotope ratios (0.7065–0.7076) for the dark pumices clearly suggest a different origin from the silicic pumices. Andesite to basalt lavas in pre-caldera (0.37–0.93 Ma) and post-caldera (historical) eruptions show lower 87Sr/86Sr (0.70465–0.70540) and higher Nd (−1.03 to +0.96) values than those of the Aira silicic and dark pumices. Both andesites of pre- and post-caldera stages are very similar in major- and trace-element characteristics and isotope ratios, suggesting that the both andesites had a same source and experienced the same process of magma generation (magma mixing between basaltic and dacitic magmas). Elemental and isotopic signatures deny direct genetic relationships between the Aira pumices and pre- and post-caldera lavas. Relatively upper levels of crust (middle–upper crust) are assumed to have been involved for magma generation for the Aira silicic and dark pumices. The Aira silicic magma was derived by partial melting of a separate crust which had homogeneous chemistry and limited isotope compositions, while the magma for the Aira dark pumice was generated by AFC mixing process between the basement sedimentary rocks and basaltic parental magma, or by partial melting of crustal materials which underlay the basement sediments. The silicic magma did not occupy an upper part of a large magma body with strong compositional zonation, but formed an independent magma body within the crust. The input and mixing of the magma for dark pumices to the base of the Aira silicic magma reservoir might trigger the eruptions in the upper part of the magma body and could produce a slight Sr isotope gradient in the reservoir. An extremely high thermal structure within the crust, which was caused by the uprise and accumulation of the basaltic magma, is presumed to have formed the large volume of silicic magma of the Aira stage.  相似文献   

20.
New Pb, Sr and O isotopic analyses of rocks from the Skaergard intrusion indicate the following: (1) initial87Sr/86Sr of the gabbroic magma was less than or equal to 0.7041; (2) limited contamination of magma with crustal Sr and Pb may have occurred in a deep reservoir below the presently exposed parts of the intrusion; (3) marked crustal contamination occurred at high level in marginal border group rocks, but these rocks effectively shielded the main magma body from further interaction with country rock gneisses; (4) subsolidus interaction between Skaergard gabbros and hydrothermal fluids modified δ18O values but had little effect on Sr and perhaps Pb isotopic ratios; (5) late-stage melanogranophyres may be comagmatic with the Skaergard magma, but silicic granophyres are not; (6) silicic granophyres contain large and varied proportions of crustal Sr and Pb; some may be largely anatectic melts derived from the deep crust whereas others may represent mixing of such anatectic melts with late-stage differentiated liquids of the Skaergard intrusion (e.g. Sydtoppen sill).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号