首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Melting phase relations of an augite-olivine high-magnesian andesite and an augite-olivine basalt from the Miocene Setouchi volcanic belt in southwest Japan have been studied under water-saturated, water-undersaturated and under anhydrous conditions. Both the andesite and the basalt are characterized by low FeO*/MgO ratios (0.86 and 0.76 in weight, respectively) and qualify as primary magmas derived from the upper mantle.The andesite melt coexists with olivine, orthopyroxene and clinopyroxene at 15 kbar and 1030°C under water-saturated conditions, and at 10 kbar and 1070°C under water-undersaturated conditions (7 wt.% H2O in the melt). The basalt-melt also coexists with the above three phases at 11 kbar and 1305°C under anhydrous conditions, and at 15 kbar and 1205°C in the presence of 4 wt.% water.Present studies indicate that high-magnesian andesite magmas may be produced even under water-undersaturated conditions by partial melting of mantle peridotite. It is suggested that two types of high-magnesian andesites in the Setouchi volcanic belt (augite-olivine and bronzite-olivine andesites) were produced by different degrees of partial melting; augite-olivine andesite magmas, whose mantle residual is lherzolite, were formed by lower degrees of partial melting than bronzite-olivine andesite magmas, which coexist with harzburgite. The basalt magmas, which were often extruded in close proximity to the high-magnesian andesite magmas, are not partial melting products of a mantle peridotite which had previously melted to yield high-magnesian andesite magmas.  相似文献   

2.
Experiments of the melt-peridotite reaction at pressures of 1 and 2 GPa and temperatures of 1250–1400°C have been carried out to understand the nature of the peridotite xenoliths in the Mesozoic high-Mg diorites and basalts of the North China Craton,and further to elucidate the processes in which the Mesozoic lithospheric mantle in this region was transformed.We used Fuxin alkali basalt,Feixian alkali basalt,and Xu-Huai hornblende-garnet pyroxenite as starting materials for the reacting melts,and lherzolite xenoliths and synthesized harzburgite as starting materials for the lithospheric mantle.The experimental results indicate that:(1)the reactions between basaltic melts and lherzolite and harzburgite at 1–2 GPa and 1300–1400°C tended to dissolve pyroxene and precipitate low-Mg#olivine(Mg#=83.6–89.3),forming sequences of dunite-lherzolite(D-L)and duniteharzburgite(D-H),respectively;(2)reactions between hornblende-garnet pyroxenite and lherzolite at 1 GPa and 1250°C formed a D-H sequence,whereas reactions at 2 GPa and 1350°C formed orthopyroxenite layers and lherzolite;and(3)the reaction between a partial melt of hornblende-garnet pyroxenite and harzburgite resulted in a layer of orthopyroxenite at the boundary of the pyroxenite and harzburgite.The reacted melts have higher MgO abundances than the starting melts,demonstrating that the melt-peridotite reactions are responsible for the high-Mg#signatures of andesites or adakitic rocks.Our experimental results support the proposition that the abundant peridotite and pyroxenite xenoliths in western Shandong and the southern Taihang Mountains might have experienced multiple modifications in reaction to a variety of melts.We suggest that melt-peridotite reactions played important roles in transforming the nature of the Mesozoic lithospheric mantle in the region of the North China Craton.  相似文献   

3.
The solubility of fluorapatite in a wide variety of basic magmatic liquids was experimentally determined over a range of upper mantle P-T conditions (8–25 kbar, 1275–1350°C). Fluorapatite is stable over the entire range of conditions investigated, but its solubility in melts is variable, depending negatively on SiO2 content of the melt and positively upon temperature, with relatively little sensitivity to pressure above 8 kbar. At upper mantle pressures and a temperature of 1250°C, molten basalt (50% SiO2) will dissolve 3–4 wt.% P2O5 before saturation in apatite is reached. For a magma 100°C cooler or containing 10 wt.% more SiO2, apatite saturation occurs at less than 2 wt.% dissolved P2O5. The observed high solubility of apatite in basic magmas at their normal near-liquidus temperatures virtually precludes the occurrence of residual apatite in mantle source regions. If relatively low-temperature melting conditions prevail (e.g., 1100°C), as might be possible in H2O-bearing regions of the upper mantle, apatite could remain in the residue, but only in amounts too small to have significant effects on the rare earth patterns of the liquids.Because of the high solubility of apatite in basic magmas, phosphorus can be confidently treated as an incompatible element in peridotite melting models. Such models, in combination with observed characteristics of basic lavas, indicate that the upper mantle contains ~200 ppm of phosphorus, much less than the chondritic abundance of ~900 ppm.  相似文献   

4.
Young-Woo  Kil 《Island Arc》2006,15(2):269-282
Abstract   Geochemical data on Baegryeong Island spinel peridotites found in Miocene alkali basalt provide the information for lithosphere composition, chemical processes, equilibrium pressure and temperature conditions. Spinel peridotite xenoliths, showing transitional textures between protogranular and porpyroclastic textures, were accidentally trapped by the ascending alkali basalt magma. The xenoliths originate at depths from 50 to 70 km with a temperature range from 800 to 1100°C. The variations of modal and mineral compositions of the spinel peridotite xenoliths indicate that the xenoliths have undergone 1–10% fractional melting. The spinel peridotites from Baegryeong Island have undergone cryptic mantle metasomatism subsequent to melt extraction. Metasomatic agent of enriched spinel peridotite xenoliths was carbonatite melt.  相似文献   

5.
Toshio  Nozaka 《Island Arc》1997,6(4):404-420
Abstract Basic and ultrabasic xenoliths included in Cenozoic alkali basalts from the Kibi and Sera plateaus, Southwest Japan, can be classified into five groups on the basis of mineral association and texture. Their equilibration P-T conditions estimated from paragenesis and mineral chemistry indicate that the dominant rock type from the lower crust to upper mantle changes with increasing depth as follows: (i) pyroxene granulite (Group V) and meta-sediments; (ii) garnet gabbro (Group 111) and corundum anorthosite (Group IV); (iii) spinel pyroxenite (Group 11); and (iv) spinel peridotite and pyroxenite (Group I). Groups I1 and I11 show a lower degree of recrystallization than Groups I and V, and have similarities in composition and mineral chemistry to host basalts. Based on these facts along with the P-T conditions of equilibration, Groups I1 and I11 are interpreted as formed from basaltic magma that intruded beneath the crust-mantle boundary at an early stage of the magmatism of the alkali basalts, where the lower crust and uppermost mantle had consisted of Group V and metasediments, and Group I, respectively. It follows that the crust has grown downward due to underplating of basaltic magma beneath the bottom of pre-existing crust. Group IV has commonly the same mineral assemblage, corundum + calcic plagioclase + aluminous spinel, and shows locally, nearby kyanite crystals, almost the same texture as fine-grained aggregates in a quartzite xenolith. The aggregates appear to have been formed by reaction between kyanite and host basalt, and accordingly Group IV is interpreted as formed by reaction between metasediments and basaltic magma at the time of the underplating. The Kibi, Sera and Tsuyama areas are distinguished from the areas nearby the Sea of Japan by the occurrence of the garnet gabbro and corundum anorthosite xenoliths, by the absence of the association of olivine + plagioclase in basic and ultrabasic xenoliths, and by the lower temperature of equilibration of basic xenoliths. From these facts it is stressed that in general the crust becomes thinner and geothermal gradient becomes higher towards the back-arc side. Such a regional variation in crustal structure must reflect the tectonic situation of Southwest Japan at the time of the magmatism of the alkali basalts, namely rifting and shallow-level magmatism at the back-arc side.  相似文献   

6.
Chemical studies of two ophiolite suites and of selected mid-oceanic rift (MOR) regions indicate the presence of certain magmatic compositions: basalt, Fe-enriched basalt, and sodium granite (plagiogranite). There is a notable lack of evidence for melts of intermediate composition (i.e. 50–60 wt.% SiO2). To determine possible relationships between basic rocks (basalts and gabbros) and acidic rocks (plagiogranites) a primitive basalt was fractionated at low pressure, under anhydrous conditions, and at different oxygen fugacities near the iron-wustite buffer and slightly above the quartz-fayalite-magnetite buffer. Samples of this basalt were taken to slightly above liquidus temperatures and then cooled at rates ranging from 1 to 2°C/hr. A liquid line of descent characterized by an Fe enrichment was delineated by quenching these experiments from a final temperature in the range of 1200 to 1000°C and analyzing the residual liquid (glass). After 95% crystallization of olivine, plagioclase, calcium pyroxene, and ilmenite, the residual liquid was an Fe-enriched basalt. This Fe-enriched basalt became immiscible at a temperature of about 1010°C. The immiscible phases produced were a more Fe-enriched basaltic liquid and a granitic liquid. The granitic liquid is similar in composition to the naturally occurring plagiogranites found in small volumes in ophiolites and in certain MOR regions. It is therefore concluded that silicate liquid immiscibility could be the petrogenetic process responsible for producing plagiogranite in some MOR regions and in some ophiolites. On the other hand, plagiogranites in ophiolites and MOR rock suites having andesitic and dacitic composition rocks may have evolved under conditions more closely approximating equilibrium crystallization and/or they may have evolved at high water pressures. The available experimental data suggest that amphibole would crystallize early and yield SiO2-enriched liquids at depths greater than 4.5 km for PH2O's in the range 0.6–1.0 Ptotal.The major problem in interpreting any of the natural plagiogranites as products of silicate liquid immiscibility is the fact that neither the Fe-enriched conjugate liquid or its crystalline equivalent has been described in the ophiolite or MOR literature. The identification of this Fe-rich conjugate magma is essential in any rock suite if a completely convincing case for silicate liquid immiscibility is to be made.  相似文献   

7.
IPOD Leg 49 recovered basalts from 9 holes at 7 sites along 3 transects across the Mid-Atlantic Ridge: 63°N (Reykjanes), 45°N and 36°N (FAMOUS area). This has provided further information on the nature of mantle heterogeneity in the North Atlantic by enabling studies to be made of the variation of basalt composition with depth and with time near critical areas (Iceland and the Azores) where deep mantle plumes are thought to exist. Over 150 samples have been analysed for up to 40 major and trace elements and the results used to place constraints on the petrogenesis of the erupted basalts and hence on the geochemical nature of their source regions.It is apparent that few of the recovered basalts have the geochemical characteristics of typical “depleted” midocean ridge basalts (MORB). An unusually wide range of basalt compositions may be erupted at a single site: the range of rare earth patterns within the short section cored at Site 413, for instance, encompasses the total variation of REE patterns previously reported from the FAMOUS area. Nevertheless it is possible to account for most of the compositional variation at a single site by partial melting processes (including dynamic melting) and fractional crystallization. Partial melting mechanisms seem to be the dominant processes relating basalt compositions, particularly at 36°N and 45°N, suggesting that long-lived sub-axial magma chambers may not be a consistent feature of the slow-spreading Mid-Atlantic Ridge.Comparisons of basalts erupted at the same ridge segment for periods of the order of 35 m.y. (now lying along the same mantle flow line) do show some significant inter-site differences in Rb/Sr, Ce/Yb,87Sr/86Sr, etc., which cannot be accounted for by fractionation mechanisms and which must reflect heterogeneities in the mantle source. However when hygromagmatophile (HYG) trace element levels and ratios are considered, it is the constancy or consistency of these HYG ratios which is the more remarkable, implying that the mantle source feeding a particular ridge segment was uniform with respect to these elements for periods of the order of 35 m.y. and probably since the opening of the Atlantic. Yet these HYG element ratios at 63°N are very different from those at 45°N and 36°N and significantly different from the values at 22°N and in “MORB”.The observed variations are difficult to reconcile with current concepts of mantle plumes and binary mixing models. The mantle is certainly heterogeneous, but there is not simply an “enriched” and a “depleted” source, but rather a range of sources heterogeneous on different scales for different elements — to an extent and volume depending on previous depletion/enrichment events. HYG element ratios offer the best method of defining compositionally different mantle segments since they are little modified by the fractionation processes associated with basalt generation.  相似文献   

8.
Mineral chemical parameters and modal abundances for mantle-derived abyssal peridotite tectonites from 14 locations in the North Atlantic (0–79°N) vary over considerable ranges and are correlated together. The data indicate that there are differences in the bulk chemistry of the peridotites which correspond to the amount of basaltic melt that has been extracted from them. These differences appear to be regional in extent. Peridotites from 34° to 45°N are the most refractory. The more intense depletion could have resulted from greater extents of partial melting, possibly caused by the presence of the Azores hotspot in this region; or it could be a pre-existing depletion, due to an earlier melting event. Basalt chemical data does not rule out either possibility, but supports greater extents of partial melting occurring in this region.The regional variations in mantle peridotite composition correlate with long-wavelength variations of crustal elevation and gravity along the northern Mid-Atlantic Ridge. These correlations support the existence of regional variations of upper mantle thermal structure and composition.Peridotites collected from fracture zones are compared with those collected away from fracture zones in the same region. Based on basalt studies, there may well be a decrease in the amount of melting as certain fracture zones are approached. The peridotite data suggest that this may be true for some fracture zones but not others. In general, peridotites collected from fracture zones are representative of the suboceanic mantle.  相似文献   

9.
The total PGE amount (σPGE) of mantle peridotite in the Jiding ophiolite is slightly higher than that of the primitive mantle, but the PGE contents of basalt are higher than those of the mid-ocean ridge basalt (MORB), with obviously lower Pd/Ir ratios. The accumulates, dyke swarm and basalts show remarkable negative Pt and positive Rh anomalies, resulting in the special N-type PGE patterns. Mantle peridotite and crustal rocks have similar distribution patterns. It is proposed that the PGE distribution patterns in the Jiding ophiolite are closely related with a higher degree of partial melting of the mantle in this region. Magmatic crystallization-differentiation led to PGE fractionation, thus making the contents of PGE in the accumulates decrease in the ascending direction. The higher content of Au in the Jiding ophiolite is the result of metasomatic alteration at later stages. Pt-Pd fractionation indicates that both the PGEs are controlled by their alloy and sulfide phases. Positive Rh anomalies seem to be related with higher oxygen fugacity in the melts.  相似文献   

10.
Boninite is an unusual, plagioclase-free magnesian andesite, occurring as vesicular pillow lavas and hyaloclastites, accompanied by andesites and dacites in Chichi-jima, Bonin Islands. The Bonin Islands belong to the Izu-Mariana arc and consist of dominant volcanic rocks and subordinate sedimentary rocks of late Oligocene-early Miocene age. The chemistry of boninite is characterized by high contents of MgO. Cr and Ni similar to primitive basalts, but apparently in ill accord with its relatively high SiO2 content of ? 55%. The relation of SiO2 to total FeO/MgO ratio indicates that boninite belongs to the cale-alkalic rock suite. The mineralogy of boninite consists of olivine (Fo87-90), orthopyroxene (En87-90), clinopyroxene (Wo38-35En37-44Fs25-21), hydrous glass and Cr-spinel, Experimental studies show that the magma of boninite composition could be in equilibrium with upper mantle peridotite at pressures less than 17 kb and temperatures of 1200–1050°C under high PH2O. It is suggested that boninite is a sea-floor quenched product (900°C) of a direct partial melt of the upper mantle. Related andesites and dacites are considered to be probably fractional crystallization products from the same magma.  相似文献   

11.
碳酸盐化橄榄岩的电性研究   总被引:3,自引:1,他引:2       下载免费PDF全文
为进一步探讨上地幔的高导层成因,了解碳酸盐在上地幔电性方面的作用并估算上地幔高导层的碳酸盐含量,本文对不同碳酸盐含量的橄榄岩及玄武岩样品在2~3 GPa、300~1300℃的条件下进行了电性实验研究.研究初步发现:碳酸盐熔体显著增强橄榄岩、玄武岩样品的导电能力;单纯用含硅酸盐熔体的橄榄岩或单纯用含水橄榄岩可能难以解释上地幔某些区域的异常高导现象;同样,单纯用碳酸盐化的橄榄岩可能也难以解释上地幔某些区域的高导现象;上地幔的高导区很可能是碳酸盐熔体、硅酸盐熔体及水的共存区域.  相似文献   

12.
Melting experiments on a high-magnesian andesite   总被引:1,自引:0,他引:1  
Melting experiments were conducted on a high-magnesian bronzite olivine andesite (Teraga-Ike andesite) which is considered to be a primary andesite. The high-magnesian andesite magma is in equilibrium with both olivine and orthopyroxene at about 15.5 kbar and 1080°C under H2O-saturated conditions and at lower pressure and higher temperature under H2O-undersaturated conditions. This suggests that high-magnesian andesites could be generated by the partial melting of upper mantle peridotite containing a small amount of H2O.  相似文献   

13.
中国东部橄榄岩和榴辉岩深源包体的地理分布构成了全球环太平洋深源包体分布带的重要组成部分。深源包体的产出与地球内部构造密切相关。尖晶石橄榄岩和镁铝榴石橄榄岩两种包体与上地幔的构造分带相一致,榴辉岩包体代表上地幔中局部的分凝体。碱性玄武岩浆的活动和深源岩石带的形成应为板块构造运动的结果。  相似文献   

14.
Basalts dredged from the Galapagos Rift Zone between 85°W and 100°W were analyzed by electron microprobe to determine the chemistry of the glass exteriors and included phenocrysts, microphenocrysts and quench minerals. The basalts come from both “normal” mid-ocean ridge segments and from ridge segments that cross the Galapagos Platform. The basalts fall into two chemical and geographical groups. Group A basalts come from outside the central region of the Galapagos Platform (i.e., outside 89–92.5°W) and are chemically similar to basalts from “normal” ocean ridge segments. Group B basalts come from the center of the Galapagos Platform (89–92.5°W) and are enriched in incompatible elements like “plume-influenced” basalts from the Mid-Atlantic Ridge. The spinel, olivine, plagioclase and clinopyroxene phenocrysts in both groups of basalts are low-pressure, equilibrium phases, but the chemical difference among basalts from within each group indicates high-pressure fractional crystallization is also responsible for the chemical evolution of some of these basalts. Presently, no crystallization or partial melting model can relate the chemistry of the two groups of basalts and the compositional influence of a large-ion-lithophile elements and water-rich mantle beneath the Galapagos Platform is a viable alternate hypothesis. The eruption temperature of magmas from the “normal” ridge segments, as determined by olivine-liquid thermometry is 1217±10°C, suggesting steady-state conditions but on the Galapagos Platform the eruption temperatures are lower and more variable than on the “normal” ridge (1186°C±30°C) suggesting a more complex plumbing system and the absence of a steady-state magma chamber beneath the platform.  相似文献   

15.
Spectra of internal friction between 2 and 8 Hz were studied in a single crystal of enstatite, in a polycrystal of synthetic forsterite and in several samples of natural peridotite. Measurements of Q?1 and μ were performed in vacuum (10?6 torr), from room temperature up to 1100°C. For these experimental conditions no peak was observed in the polycrystalline undeformed forsterite, but the background attenuation irregularly increased from 5 · 10?3 to 10?2.A peak Q?1 = 7 · 10?2 appears in a deformed peridotite at 930°C. It is reduced of 60% after 5 h of annealing at 1100°C. But the background attenuation persists. In the single crystal of enstatite, a peak is observed at 760°C (Q?1 = 6 · 10?2). A mechanism involving dislocations is suggested as a possible explanation for the peak obtained with the peridotite samples. If this hypothesis is right, the observed effect would be diffusion controlled so that one can expect pressure to translate it towards higher temperature. This mechanism could therefore appear in the upper mantle. Background attenuation could be the result of intergranular thermal losses.  相似文献   

16.
Harrat Al-Birk volcanics are products of the Red Sea rift in southwest Saudi Arabia that started in the Tertiary and reached its climax at ~ 5 Ma.This volcanic field is almost monotonous and is dominated by basalts that include mafic-ultramafic mantle xenoliths(gabbro,websterite,and garnet-clinopyroxenite).The present work presents the first detailed petrographic and geochemical notes about the basalts.They comprise vesicular basalt,porphyritic basalt,and flow-textured basalt,in addition to red and black scoria.Geochemically,the volcanic rock varieties of the Harrat Al-Birk are low- to medium-Ti,sodic-alkaline olivine basalts with an enriched oceanic island signature but extruded in a within-plate environment.There is evidence of formation by partial melting with a sort of crystal fractionation dominated by clinopyroxene and Fe-Ti oxides.The latter have abundant titanomagnetite and lesser ilmenite.There is a remarkable enrichment of light rare earth elements and depletion in Ba,Th and K,Ta,and Ti.The geochemical data in this work suggest Harrat Al-Birk basalts represent products of watersaturated melt that was silica undersaturated.This melt was brought to the surface through partial melting of asthenospheric upper mantle that produced enriched oceanic island basalts.Such partial melting is the result of subducted continental mantle lithosphere with considerable mantle metasomatism of subducted oceanic lithosphere that might contain hydrous phases in its peridotites.The fractional crystallization process was controlled by significant separation of clinopyroxene followed by amphiboles and Fe-Ti oxides,particularly ilmenite.Accordingly,the Harrat Al-Birk alkali basalts underwent crystal fractionation that is completely absent in the exotic mantle xenoliths(e.g.Nemeth et al.in The Pleistocene Jabal Akwa A1 Yamaniah maar/tuff ring-scoria cone complex as an analogy for future phreatomagmatic to magmatic explosive eruption scenarios in the Jizan Region,SW Saudi Arabia 2014).  相似文献   

17.
Rare earth element (REE) and other trace element compositions of 16 lavas from all historic and 2 prehistoric eruptions on 5 islands of the Azores Archipelago show notable intra-and inter-island differences. Fe enrichment and “compatible” element depletion due to fractional crystallization have been superimposed on variations established in the source area. Fractionation of La/Sm, U/Th, K/Na and “large ion lithophile” (LIL) element abundances are probably related to variable fusion of a source peridotite whose LIL element distribution cannot be exactly specified in view of its possible heterogeneity. Relative light-REE enrichment in basalt appears greatest on the “potassic” island São Miguel, the more sodic island Fayal and one lava from Pico, and least in basalts from the “sodic” islands Terceira, São Jorge and Pico. This variation is matched by most other LIL elements, although P shows unexpected enrichment in Terceira lavas, otherwise the least LIL element-enriched and most heavy-REE-enriched. Upper mantle phase chemistry is probably critical in establishing the patterns. In particular, P—REE covariance may reflect phase stabilities of apatite and (P-bearing) garnet in the upper mantle. Distribution patterns of REE in the historic lavas are similar to those of basalts from the Atlantic median rift at the crest of the Azores “platform”. Transition to light-REE-depleted rift-erupted basalts to the southwest is believed to be step-wise with increasing water depth, possibly indicating retention of a light-REE-rich phase in the residue from partial fusion as intersection of geotherm and peridotite solidus occur at lower pressures. The source mantle for the Azores basalts is probably light-REE- and LIL element-enriched but we find no evidence so far to suggest its emplacement by thermal “plume” activity.  相似文献   

18.
Phase equilibria in a portion of the system forsterite-plagioclase (An50Ab50 by weight)-silica-H2O have been determined at 15 kbar pressure under H2O-saturated conditions. The composition of the liquid pertinent to the piercing point forsterite + enstatite solid solution + amphibole + liquid + vapor is similar to that of calc-alkaline andesite. The electron microprobe analysis of the glass coexisting with the above three crystalline phases is very close to that of the piercing point determined by phase assemblage observations; however, the glass near (< 8 μm) forsterite crystals is significantly depleted in the normative forsterite component. With the addition of 10 wt.% KAlSi3O8, the composition of this piercing point becomes even closer to the compositions of calc-alkaline andesites. It is also shown that the liquid coexisting with forsterite and enstatite solid solution remains silica-rich (60–62 wt.%) over a wide (~ 100°C) temperature range. The present experimental studies support the view that liquids similar in composition to calc-alkaline andesites can be generated by direct partial melting of hydrous upper mantle at least at or near 15 kbar.  相似文献   

19.
Volcanism related to subduction of the Philippine Sea (PHS) plate began in Central Kyushu at 5 Ma, after a pause of igneous activity lasting about 10 m.y. It formed a large volcano-tectonic depression, the Hohi volcanic zone (HVZ), and has continued to the present at a decreasing eruption rate. The products are largely andesite and dacite, which became enriched in K with time. The proportion of tholeiitic to calc alkalic rocks also increases with time. Calc-alkalic high-Mg basaltic andesites (YbBs) were erupted in the early stage of the HVZ activity (5–3 Ma), and high-alumina basalts (KjBs) were erupted in the later stage (2–0 Ma). In contrast to the basalts in the HVZ, Northwest Kyushu basalts (NWKBs) have been erupted on the backarc side of the HVZ since 11 Ma, and hence are not related to the PHS plate subduction. They are mainly high-alkali tholeiitic to alkali basalt that shows no notable chemical change with time. NWKB, YbB, and KjB have MORB-normalized incompatible-element spectra that differ from each other, as is well expressed in both Nb and Sr anomalies. The patterns of KjB and NWKB are typical of those for island-arc basalt (IAB) and ocean-island basalt (OIB), respectively. YbB shows a pattern intermediate between the two. We suggest that the magma source beneath the HVZ changed in composition from an OIB-type mantle to an IAB-type mantle as the subduction of PHS plate advanced. However, the magma source remained fertile under Northwest Kyushu. In order to explain the temporal change of source mantle beneath the HVZ, we propose a model for progressive contamination of the mantle wedge, in which three processes (contamination by a slab-derived component, subtraction of magma from the mantle, and mixing of the mantle residue and slab-derived component) are repeated as subduction continues. As long as the progressive contamination of mantle wedge proceeds, its trace-element composition converges at a steady-state value for a short period. This value does not depend on the initial composition of the mantle wedge but instead on the composition of the slab-derived component. The trace-element composition of the magma produced in such a mantle wedge approaches that of the slab-derived component with time, but the major-element composition is determined by the phase relations of mantle peridotite. The slab-derived component may be basaltic liquid that is partially melted from rutile-bearing eclogite.  相似文献   

20.
Fine-scale sampling with alvin and by dredging of the axial ridge in the Mariana Trough between 17°40′N and 18°30°N recovered basalts with isotopic compositions that span the range between N-type MORB and Mariana island arc basalts. There is a local tectonic-morphological control on basalt compositions; MORB-like basalts are found on the deeper ridge segment bounded by the Pagan transform and the ridge offset at 17°56′N, while basalts from the shallower ridge to the north are typical Mariana Trough basalts (MTB) having compositions intermediate between the two endmember rock types. Arc-like basalts were recovered from one site on the axial ridge.The discovery of basalts with such diverse isotopic characteristics from a short (100 km) section of this backarc spreading center constrains the chemical characteristics and distribution of mantle source variability in the Mariana Trough. SrNdPb isotopic variability suggests that the MTB source is heterogeneous on the scale of individual melt batches. The principal component in the MTB mantle source region is depleted peridotite similar to the source of MORB. The enriched component, most evident in the arc-like basalts and intimately mixed in MTB, has isotopic characteristics similar to those observed in the Mariana arc basalts. The isotopic data suggest that source variability for Mariana axial ridge basalts can be explained by mixed arc-like and MORB-like mantle. We hypothesize that there are fragments of old oceanic lithosphere in the backarc source region. This lithospheric component may reflect remnants of subducted seafloor or forearc-volcanic arc mantle that predate rifting in the backarc basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号