首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Applied Geochemistry》1986,1(6):647-657
The mechanism of222Rn release into fracture fluids by direct alpha-recoil, lattice and grain boundary/micro-crack diffusion is discussed. Experimental measurements of222Rn release into surrounding air and water phases have been made for crystalline rock specimens with well defined surface areas. The222Rn flux from an infinite plane surface and hence the effective diffusion length of222Rn in the rock matrix has been estimated.The222Rn flux from plane crystalline rock surfaces has been used in conjunction with a simple hydrological model of the reservoir to calculate the222Rn content of the return fluids of a geothermal doublet circulation system. For given production rate and piezometric difference between the injection and production wells, the222Rn content of the return fluid is dependent upon the distribution of flow path lengths and fracture apertures in the reservoir. Matching of the calculated and experimental222Rn contents of the return fluids has been used to select appropriate parameters for the reservoir model and hence to estimate the extent of the heat-transfer surface. The model estimates the fracture width of the flow paths, total swept surface area and fracture volume within the reservoir.  相似文献   

2.
The diffusion coefficient (D) of He in the Carnmenellis granite, recovered from the Rosemanowes hot dry rock (HDR) geothermal reservoir, is experimentally determined in the laboratory in a temperature range of 100–300°C. Temperature variation of D fits an Arrhenius plot, but yields an activation energy for He release from rock significantly lower than the value for feldspar or quartz, suggesting that most of the He in the reservoir granite resides within grain boundaries and jointing cement and may be easily released.The reservoir surface area (S) is estimated based on the laboratory determined value of D from granite and the measured4He contents of circulation fluids from RH 15 well. In the first year of reservoir circulation,4He-based reservoir surface area was about twice that based on222Rn. It increased and stabilized at about 6 times after 2 a. The excess He release from newly opened up fracture surfaces within the reservoir during its expansion is shown to be responsible for the temporal increase in the He-based reservoir surface area over that of Rn.  相似文献   

3.
Statistical analysis of the radon-222 potential of rocks in Virginia,U.S.A.   总被引:1,自引:0,他引:1  
More than 3,200 indoor radon-222 (222Rn) measurements were made seasonally in an area of about 1,000 square kilometers of the Coastal Plain and Piedmont physiographic provinces in Virginia, U.S.A. Results of these measurements indicate that some geological units are associated, on the average, with twice as much indoor222Rn as other geological units, and that indoor222Rn varies seasonally. The Kruskal-Wallis test was used to test whether indoor222Rn concentrations for data gathered over the winter and summer seasons differ significantly by rock unit. The tests concluded that indoor222Rn concentrations for different rock units were not equal at the 5-percent significance level. The rocks associated with the highest median indoor222Rn concentration are specific rocks in the Mesozoic Culpeper basin, including shale and siltstone units with Jurassic diabase intrusives, and mica schists in the Piedmont physiographic province. The pre-Triassic Peters Creek Schist has the highest ranking in terms of indoor222Rn concentration. The rocks associated with the lowest indoor222Rn concentrations include coastal plain sediments, the Occoquan Granite, Falls Church Tonalite, Piney Branch Mafic and Ultramafic complex, and unnamed mafic and ultramafic inclusions, respectively. The rocks have been ranked according to observed222Rn concentration by transforming the average rank of indoor222Rn concentrations to z scores.  相似文献   

4.
The fate of dissolved material delivered to the coastal ocean depends on its reactivity and the rate at which it is mixed offshore. To measure the rate of exchange of coastal waters, we employ two short-lived radium isotopes,223Ra and224Ra. Along the coast of South Carolina, shore-perpendicular profiles of223Ra and224Ra in surface waters show consistent gradients which may be modeled to yield eddy diffusion coefficients of 350–540 m2s−1. Coupling the exchange rate with offshore concentration gradients yields estimates of offshore fluxes of dissolved materials. For systems in steady state, the offshore fluxes must be balanced by new inputs from rivers, groundwater, sewers or other sources. Two tracers that show promise in evaluating groundwater input are barium and226Ra. These tracers have high relative concentrations in the fluids and low-reactivity in the coastal ocean. Applying the eddy diffusion coefficients to the offshore gradient of226Ra concentration provides an estimate of the offshore flux of226Ra. Measuring the concentrations of226Ra in subsurface fluids provides an estimate of the fluid flux necessary to provide the226Ra. These estimates indicate that the volume of groundwater required to support these fluxes is of the order of 40% of the surface water flow.  相似文献   

5.
Soil radon (222Rn) has been monitored during winter months under cool-temperate deciduous stands of different surface geology in Tomakomai and in Sapporo, Hokkaido, Japan. Radon level was lower in Tomakomai of immature soil of porous volcanic ash emitted from an active volcano (Mt. Tarumae), compared with those in Sapporo of alluvial sediments. In Tomakomai, mean value of the 222Rn activity concentration was higher in winter (570 Bq m?3) than in summer (350 Bq m?3) at a depth of 1 m, which is consistent with the results in cold and dry winter reported in the literature. In contrast, soil radon decreasing with decreasing soil temperature from mid-September (5.0 kBq m?3) remained low (2.6 kBq m?3) under persistent snow in Sapporo, which had already been observed in the same location. Measurements of the activity concentrations of 222Rn in snow and in snow air as well as in soil air indicate that the small amount of 222Rn is released from the ground surface to the overlying snowpack with a 222Rn flux density of 0.4 mBq m?2 s?1 under thick snow cover in Sapporo.  相似文献   

6.
Controls governing the production of 4He and 222Rn in the solid phase as well as parameters and processes contributing to their transport into the pore fluid are discussed. 222Rn activity is used to quantify the uranium sources for 4He and the result is a simplified pore-fluid age equation which is virtually independent of the porosity, the water/rock ratio, the rock density and the uranium concentration, but does require a Th/U estimate. The crucial parameter is the ratio of the release factors for the two species, /GLRn//GLHe, which is discussed in terms of three possible release mechanisms: (1) recoil; (2) recoil followed by diffusion; and (3) weathering release of accumulated 4He. It was found that /GLRn//GLHe can vary over several orders of magnitude, but can be expressed in terms of the effective grain size r, and the diffusive half-length for 222Rn decay, re.4He measurements are used to “date” gases from known gas fields and the agreement with the assumed source-rock age is good. Application of 4He/ 222Rn measurements to continental freshwater springs indicates that the weathering release of accumulated 4He dominates the input and results in a large overestimate of groundwater age. Measurement in the Lardarello geothermal field indicates that the 4He/222Rn method can indicate relative transport direction. Other possible applications in various geochemical fields are suggested.  相似文献   

7.
Controls governing the production of 4He and 222Rn in the solid phase as well as parameters and processes contributing to their transport into the pore fluid are discussed. 222Rn activity is used to quantify the uranium sources for 4He and the result is a simplified pore-fluid age equation which is virtually independent of the porosity, the water/rock ratio, the rock density and the uranium concentration, but does require a Th/U estimate. The crucial parameter is the ratio of the release factors for the two species, /GLRn//GLHe, which is discussed in terms of three possible release mechanisms: (1) recoil; (2) recoil followed by diffusion; and (3) weathering release of accumulated 4He. It was found that /GLRn//GLHe can vary over several orders of magnitude, but can be expressed in terms of the effective grain size r, and the diffusive half-length for 222Rn decay, re.4He measurements are used to “date” gases from known gas fields and the agreement with the assumed source-rock age is good. Application of 4He/ 222Rn measurements to continental freshwater springs indicates that the weathering release of accumulated 4He dominates the input and results in a large overestimate of groundwater age. Measurement in the Lardarello geothermal field indicates that the 4He/222Rn method can indicate relative transport direction. Other possible applications in various geochemical fields are suggested.  相似文献   

8.
A calculation method for determining the amount of Rn isotopes and daughter products at the start of measurement (CRAS) is proposed as a more accurate means of estimating the initial Rn concentration in soil gas. The CRAS utilizes the decay law between 222Rn and 220Rn isotopes and the daughter products 218Po and 216Po, and is applicable to α-scintillation counter measurements. As Rn is both inert and chemically stable, it is useful for fault investigation based on the soil gas geochemistry. However, the total number of α particles emitted by the decay of Rn has generally been considered to be proportional to the initial Rn concentration, without considering the gas condition with respect to radioactive equilibrium. The CRAS method is shown to be effective to derive Rn concentration for soil gases under both nonequilibrium conditions, in which the total number of decays increases with time, and equilibrium conditions, which are typical of normal soil under low gas flux. The CRAS method in conjunction with finite difference method simulation is applied to the analysis of two active fault areas in Japan, and it is demonstrated that this combination could detect the sharp rises in 222Rn concentrations associated with faults. The method also allows the determination of fault geometry near the surface based on the asymmetry variation of the Rn concentration distribution when coupled with a numerical simulation of 222Rn transport. The results for the new method as applied to the two case studies are consistent with the data collected from the geological survey. It implies that the CRAS method is suitable for investigating the fault system and interstitial gas mobility through fractures. The present analyses have also demonstrated that high Rn concentrations require the recent and repeated accumulation of 222Rn parents (230Th and 226Ra) in fault gouges through deep gas release during fault movement.  相似文献   

9.
The transport of dissolved gases in the anoxic sediments of Cape Lookout Bight, North Carolina, is controlled by diffusion and bubble ebullition and exhibits a distinct seasonal cycle. Detailed seasonal profiles of CH4, N2 and 222Rn and direct gas flux measurements indicate that ebullition dominates the flux of all dissolved gases across the sediment-water interface during summer months, and is of major importance on an annual basis. Transport within the upper 6–8 cm of sediment appears to be controlled by molecular diffusion of gases. Transport at greater depths is controlled by diffusion in winter and ebullition in summer. Rn-222 profiles were used to estimate the rate of stripping of dissolved gases within the CH4 production zone (10–30 cm); rates averaged 3–5 percent per day and agreed with estimates derived from N2 profiles. As a result of summer ebullition, the sediments of the bight are never at saturation with respect to the major gases present in seawater. Evidence from other sites suggests that ebullition may be an important transport process in many coastal sediments, and may provide mechanism for the transport of volatile reduced compounds between anoxic sediments and the atmosphere. 222Rn is a useful tracer for quantifying this transport.  相似文献   

10.
In arid regions of western China, water resources come from mountain watersheds and disappear in the desert plain. The exchange of surface water and groundwater takes place two or three times in a basin. It is essential to analyze the interaction of groundwater with surface water to use water resources effectively and predict the change in the water environment. The conventional method of analysis, however, measures only the flow of a stream and cannot determine groundwater seepage accurately. As the concentration of Radon-222 (222Rn) in groundwater is much higher than in surface water, the use of 222Rn was examined as an indicator for the analysis of the interaction between surface water and groundwater. Measurement of the 222Rn concentration in surface water was conducted to detect groundwater seepage into a stream in the middle Heihe Basin of northwestern China. Furthermore, the simultaneous groundwater flow into and out of a stream from the aquifers was quantified by solving the 222Rn mass balance equation, in which the losses of gas exchange and radioactive decay of 222Rn are considered. Meanwhile, river runoff was gauged to determine the exchange rates between surface water and groundwater. The result shows that 222Rn isotope can be used as a good environmental tracer with high sensitivity for the interaction between surface water and groundwater, especially in the fractured aquifer system, karst aquifer system and discharge basins.  相似文献   

11.
Depth-discrete tracing of residual dense non-aqueous phase liquid (DNAPL) sources in the subsurface is of great importance in making decisions related to contaminated groundwater remediation. Temporal variations in the natural tracer 222Rn and contaminant concentrations in groundwater contaminated with multiple chlorinated contaminants, such as trichloroethene, carbon tetrachloride, and chloroform, were examined to trace residual multiple DNAPL contaminants at an industrial complex in Wonju, Korea. The 222Rn activities and multiple DNAPL concentrations in the groundwater fluctuated irregularly according to the groundwater recharge. The natural tracer 222Rn in groundwater present in the soil layer, originating from the underlying crystalline biotite granite, had a wide range from 29,000 to 179,000 Bq/m3, and total concentrations of chlorinated solvents ranged from 0.06 to 17.77 mg/l, indicating the ambiguous results of 222Rn for tracing the residual DNAPL sources. In this paper, a method is presented to locate zones with a high probability of containing depth-discrete residual multiple DNAPL sources using 222Rn and considering relative contaminant concentrations. The results demonstrate that the combination of the 222Rn activities as a natural tracer and the relative contaminant concentrations is able to be used as a useful tool for tracing residual DNAPLs.  相似文献   

12.
《Applied Geochemistry》1995,10(4):437-446
This is the first study on Pb stable isotopes in fault gouges and their parent rocks. We analyzed the composition of Pb isotopes and contents of U and Pb in 10 pairs of fault gouges and their parent rocks collected along several active faults in central Japan. Thorium-232-208Pb ages of two fault systems were determined as pre-Tertiary, which are consistent with the data from KAr ages and geological considerations.Naturally, the235U207Pb system is of little use for dating because the magnitude of difference in207Pb/204Pb between gouges and parent rocks is too small. It is found that the206Pb/204Pb can indicate the contribution of206Pb resulting from excess supplies of226Ra and222Rn along the fault. The excess206Pb accumulation rate corresponds to the average222Rn concentration in soil gas or groundwater through geological time since the gouge formation. A comparison of Quaternary fault activity and estimated Tertiary activity reveals the characteristics of each fault system.  相似文献   

13.
Laboratory time-scale experiments were conducted on Carboniferous Limestone gravels from the Mendip Hills area, England, with the purpose of evaluating the release of222Rn to the water phase. The specific surface areas of the samples were 4.14 and 1.69 cm2 g−1 , which provided, respectively, values of 50.6 and 12.7 pCi for the released Rn. These results allowed the calculation of the emanation coefficient of this rock matrix with respect to the release of Rn, where completely different values corresponding to 23% and 6% were found, suggesting that the extent to which grain boundaries or imperfections in aggregates of micro-crystals of calcite intersect the particle surface certainly affects the Rn release. They also permitted the evaluation of models for the generation of Rn in rocks and transfer to water, in order to interpret the radioactivity due to this gas in groundwaters from the karstic aquifer of the Mendip Hills area, where the calculated activities in groundwater based on the values of 23% and 6% for the emanation coefficient were about 51 and 15 times higher than actually measured in groundwater. Therefore, the emanation coefficient in nature is considerably smaller than in the lab experiment, and another factork (0 < k < 1) may be introduced into the equations related to the modelling, with the aim of adjusting the theoretical-practical results.  相似文献   

14.
A mathematical model to calculate the234U/238U activity ratio (AR) in an aqueous phase in contact with rock/soil is presented. The model relies on the supply of238U by dissolution and that of234U by dissolution and preferential release from radiation damaged regions (recoil tracks). The model predicts that values of234U/238U AR>1 in the aqueous phase can be obtained only from weathering “virgin” surfaces. Thus, to account for the observed steady-state supply of234U excess to the oceans by the preferential leaching model, ‘virgin’ rock/soil surfaces would have to be continually exposed and weathered. The238U concentration and234U/238U AR in continental waters allow us to estimate the exposure rates of “virgin” rock/soil surfaces.  相似文献   

15.
In the Gran Sasso fissured carbonate aquifer (central Italy), a long-term (2001–2007) spatio-temporal hydrochemical and 222Rn tracing survey was performed with the goal to investigate groundwater flow and water–rock interaction. Analyses of the physico-chemical parameters, and comparisons of multichemical and characteristic ratios in space and time, and subsequent statistical analyses, permitted a characterisation of the hydrogeology. At the regional scale, groundwater flows from recharge areas to the springs located at the aquifer boundaries, with a gradual increase of mineralisation and temperature along its flowpaths. However, the parameters of each group of springs may significantly deviate from the regional trend owing to fast flows and to the geological setting of the discharge spring areas, as corroborated by statistical data. Along regional flowpaths, the effects of seasonal recharge and lowering of the water table clearly cause changes in ion concentrations over time. This conceptual model was validated by an analysis of the 222Rn content in groundwater. 222Rn content, for which temporal variability depends on seasonal fluctuations of the water table, local lithology and the fracture network at the spring discharge areas, was considered as a tracer of the final stages of groundwater flowpaths.  相似文献   

16.
To explore the causes of the ecological environment deterioration of lakes in the Inner Mongolia Plateau, this study took a typical inland lake Daihai as an example, and investigated the groundwater recharge in the process of lake shrinkage and eutrophication. Using the radon isotope (222Rn) as the main means of investigation, the 222Rn mass balance equation was established to evaluate the groundwater recharge in Daihai. The spatial variability of 222Rn activity in lake water and groundwater, the contribution of groundwater recharge to lake water balance and its effect on nitrogen and phosphorus pollution in lake water were discussed. The analysis showed that, mainly controlled by the fault structure, the activity of 222Rn in groundwater north and south of Daihai is higher than that in the east and west, and the difference in lithology and hydraulic gradient may also be the influencing factors of this phenomenon. The 222Rn activity of the middle and southeast of the underlying lake is greater, indicating that the 222Rn flux of groundwater inflow is higher, and the runoff intensity is greater, which is the main groundwater recharge area for the lake. The estimated groundwater recharge in 2021 was 3 017×104 m3, which was 57% of the total recharge to the lake, or 1.6 times and 8.1 times that of precipitation and surface runoff. The TN and TP contents in Daihai have been rising continuously, and the average TN and TP concentrations in the lake water in 2021 were 4.21 mg·L?1 and 0.12 mg·L?1, respectively. The TN and TP contents entering the lake with groundwater recharge were 6.8 times and 8.7 times above those of runoff, accounting for 87% and 90% of the total input, respectively. The calculation results showed that groundwater is not only the main source of recharge for Daihai, but also the main source of exogenous nutrients. In recent years, the pressurized exploitation of groundwater in the basin is beneficial in increasing the groundwater recharge to the lake, reducing the water balance difference of the lake, and slowing down the shrinking degree of the lake surface. However, under the action of high evaporation, nitrogen and phosphorus brought by groundwater recharge would become more concentrated in the lake, leading to a continuous increase in the content of nutrients and degree of eutrophication. Therefore, the impact of changes in regional groundwater quantity and quality on Daihai is an important issue that needs further assessment.  相似文献   

17.
The Chandrayaan-1 mission to the Moon scheduled for launch in late 2007 will include a high energy X-ray spectrometer (HEX) for detection of naturally occurring emissions from the lunar surface due to radioactive decay of the238U and232Th series nuclides in the energy region 20–250 keV. The primary science objective is to study the transport of volatiles on the lunar surface by detection of the 46.5 keV line from radioactive210Pb, a decay product of the gaseous222Rn, both of which are members of the238U decay series. Mapping of U and Th concentration over the lunar surface, particularly in the polar and U-Th rich regions will also be attempted through detection of prominent lines from the U and Th decay series in the above energy range. The low signal strengths of these emissions require a detector with high sensitivity and good energy resolution. Pixelated Cadmium-Zinc-Telluride (CZT) array detectors having these characteristics will be used in this experiment. Here we describe the science considerations that led to this experiment, anticipated flux and background (lunar continuum), the choice of detectors, the proposed payload configuration and plans for its realization  相似文献   

18.
Geothermal power seems to be a potential source of green energy in India. But these renewable energy resources are still ignored in India even after having a lot of potential sources as seen in more than 300 hot springs scattered throughout different geothermal areas of the country. Many of them could be utilized for power generation using the earth’s internal heat. More hours are needed to explore these geothermal areas using geochemical, geophysical techniques, and statistical analysis to qualitatively estimate power harnessing capabilities and sustainability of the areas for generation of geothermal power. In the present paper, attention has been focused to investigate Bakreswar geothermal field of India by continuous (24*7) and online monitoring of terrestrial gases such as He and radioactive gases (222Rn) in hot spring emanations of the geothermal area for more than 5 years along with discrete measurement of some other geochemical and geophysical parameters. The discrete measures imply that the seven hot spring vents at the study area are linked to the aquifer through different ways covering non-uniform rock assemblies and ascertain the presence of high amount of radioactive minerals at the underneath terrains. Stable activities with a high-out flux of 222Rn and He for a prolonged time period is expected within the reservoir present at the study area as consequence of analysis of the temporal variations and statistical measures of the continuous data sets. Seasonal variation of time series data also recommends that the high amount of radioactive sources present at the crust of the reservoir is able to produce enough quantity of heat irrespective of meteorological effects. The investigation on the power spectra interferes that the geothermal system is still in quite active phase on the influence of tectonic activities. Therefore, the geothermal reservoir present at the Bakreswar geothermal area may be utilized as a constant and continuous heat source for a long time period to run a geothermal power plant.  相似文献   

19.
222Rn was used to assess river–groundwater interactions within Castel di Sangro alluvial aquifer (Italy). The effectiveness of results obtained through this indicator was verified by also analyzing δ18O, major ions and temperature in both surface and groundwater, and carrying out piezometric head monitoring and discharge measurements. Hydrogeological investigations suggested that the river infiltrates into the aquifer in the south-eastern aquifer portion, while groundwater discharges into the river in the north-eastern portion. The latter phenomenon is supported by 222Rn data. Nevertheless, flow-through conditions cause the modelled discharge along this river reach, estimated by 222Rn data in a degassing-corrected two-component mixing model, to be greater than the measured discharge. Concerning river infiltration into the aquifer, δ18O, major ions and temperature data show that the river contribution is negligible in terms of aquifer recharge. Thus, the observed increase in 222Rn concentration in that portion of the aquifer is due to the enrichment process caused by infiltration of rainwater (222Rn free) which flows from the local divide area. Hence, in the study site, the use of only 222Rn to predict river–groundwater interactions causes some estimation inaccuracies and it must be coupled with other hydrochemical and hydrogeological parameters to gain a thorough understanding of such interactions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号