首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sun Watcher with Active Pixels and Image Processing (SWAP) is an EUV solar telescope onboard ESA’s Project for Onboard Autonomy 2 (PROBA2) mission launched on 2 November 2009. SWAP has a spectral bandpass centered on 17.4 nm and provides images of the low solar corona over a 54×54 arcmin field-of-view with 3.2 arcsec pixels and an imaging cadence of about two minutes. SWAP is designed to monitor all space-weather-relevant events and features in the low solar corona. Given the limited resources of the PROBA2 microsatellite, the SWAP telescope is designed with various innovative technologies, including an off-axis optical design and a CMOS–APS detector. This article provides reference documentation for users of the SWAP image data.  相似文献   

2.
The very steep decrease in density with heliocentric distance makes imaging of coronal density structures out to a few solar radii challenging. The radial gradient in brightness can be reduced using numerous image processing techniques, thus quantitative data are manipulated to provide qualitative images. We introduce a new normalizing-radial-graded filter (NRGF): a simple filter for removing the radial gradient to reveal coronal structure. Applied to polarized brightness observations of the corona, the NRGF produces images which are striking in their detail. Total-brightness, white-light images include contributions from the F corona, stray light, and other instrumental contributions which need to be removed as effectively as possible to properly reveal the electron corona structure. A new procedure for subtracting this background from LASCO C2 white-light, total-brightness images is introduced. The background is created from the unpolarized component of total-brightness images and is found to be remarkably time-invariant, remaining virtually unchanged over the solar cycle. By direct comparison with polarized-brightness data, we show that the new background-subtracting procedure is superior in depicting coronal structure accurately, particularly when used in conjunction with the NRGF. The effectiveness of the procedures is demonstrated on a series of LASCO C2 observations of a coronal mass ejection (CME).  相似文献   

3.
The increase in the amount of solar data provided by new satellites makes it necessary to develop methods to automate the detection of solar features. Here we present a method for automatically detecting active regions in solar extreme ultraviolet (EUV) images using a series of steps. Initially, the bright regions in the image are segmented using seeded region growing. In a second phase these bright regions are clustered into active regions. Partition-based clustering (both hard and fuzzy) and hierarchical clustering are compared in this work. The aim of the clustering phase is to associate a group to each segmented region in order to reduce the total number of active regions. This facilitates the documentation or subsequent monitoring of these regions. We use two indicators to validate the partitioning: i) the number of detected clusters approximates the number of active regions reported by the National Oceanic and Atmospheric Administration (NOAA) and ii) the area that defines each cluster overlaps with the area of an active region of NOAA. Experiments have been performed on over 6000 images from SOHO/EIT (195 Å). The best results were obtained using hierarchical clustering. The method detects a set of active regions in an image of the solar corona that successfully matches the number of NOAA regions. We will use these regions to perform real-time monitoring and flare detection.  相似文献   

4.
Lewis  D.J.  Simnett  G.M. 《Solar physics》2001,200(1-2):75-89
We present data obtained from the Large Angle Spectrometric Coronagraph (LASCO) aboard the Solar and Heliospheric Observatory spacecraft (SOHO). We compare the rotation of the white-light corona as seen during a period approaching the maximum of the solar 11-year activity cycle with that observed in a previous study made at solar minimum (Lewis et al., 1999). We find no fundamental difference in the rotation characteristics and again find the white-light corona to be radially rigid. The rotation has been observed at altitudes from 2.5 R to beyond 15 R and as predicted in the previous study, the greater level of complexity in the coronal structures and their relatively rapid evolution has not allowed periods to be determined as accurately as at solar minimum. Our best estimate of the mean synodic rotation period during the period of study (7 March 1999 to 6 March 2000) is 27.5±0.3 days. This is consistent with the relatively small scale structures associated with the surface activity imposing their rotation signature on an otherwise axisymmetric background corona. The short-lived nature of the small scale coronal morphologies at this epoch has made a thorough analysis of the latitudinal variation difficult, although we again find some evidence for the white light corona's increased latitudinal rigidity when compared to the underlying photosphere. However, we again note how projection effects create difficulties in confirming the exact degree of rigidity in the corona at these altitudes and a very simple coronal model is used to highlight how the appearance of lower latitude features in projection can contaminate the coronal signal observed at other latitudes. We also note evidence for a sudden and apparently fundamental change to the global coronal morphology on the approach to solar maximum and suggest this may represent the time beyond which the classical solar dipole ceases to dominate the coronal field.  相似文献   

5.
The inner white-light corona (up to 2 solar radii) can only be observed during total solar eclipses. New mathematical methods of the corona image processing and digital photo cameras or CCD cameras allow us to detect very faint structures (of a few arcseconds) in this part of the corona, even from images taken with relatively small telescopes (1–2 meters in the focal length). In the present paper we will discuss such structures as observed during the last few solar eclipses, mainly those of 2001 and 2006. Obtained results show that the white-light corona is highly structured not only in the sense of a variety of different types of its classical “objects”, e.g., polar plumes, helmet streamers, threadlike streamers, etc, but also within these objects themselves. Voids, loops, radial and non-radial threads, and other yet-undefined dark structures (“empty space”?) are well visible especially inside helmet streamers. This strongly indicates that the classical picture of the corona characterized by a hydrostatic distribution of density and temperature is no longer a sufficient assumption. It is magnetic forces that play a dominant role in shaping and structuring this part the corona. Given a remarkable similarity between the EUV corona as observed by SOHO and the white-light corona observed by us during the above-mentioned eclipses up to two solar radii. We suggest that the “missing” observations of the white-light corona should be replaced by those of the EUV one. Moreover, the last eclipse’s observations also indicate that the knots of some prominences extend well into the white-light corona. So, the next total eclipses of the Sun, of 1 August 2008 and 22 July 2009, offer an excellent opportunity for preparing joint observations for space-borne and ground-based eclipse teams.  相似文献   

6.
Coronal Mass Ejections (CMEs) release tremendous amounts of energy in the solar system, which has an impact on satellites, power facilities and wireless transmission. To effectively detect a CME in Large Angle Spectrometric Coronagraph (LASCO) C2 images, we propose a novel algorithm to locate the suspected CME regions, using the Extreme Learning Machine (ELM) method and taking into account the features of the grayscale and the texture. Furthermore, space–time continuity is used in the detection algorithm to exclude the false CME regions. The algorithm includes three steps: i) define the feature vector which contains textural and grayscale features of a running difference image; ii) design the detection algorithm based on the ELM method according to the feature vector; iii) improve the detection accuracy rate by using the decision rule of the space–time continuum. Experimental results show the efficiency and the superiority of the proposed algorithm in the detection of CMEs compared with other traditional methods. In addition, our algorithm is insensitive to most noise.  相似文献   

7.
We continue our study (Grechnev et al., 2013, doi: 10.1007/s11207-013-0316-6 ; Paper I) on the 18 November 2003 geoffective event. To understand possible impact on geospace of coronal transients observed on that day, we investigated their properties from solar near-surface manifestations in extreme ultraviolet, LASCO white-light images, and dynamic radio spectra. We reconcile near-surface activity with the expansion of coronal mass ejections (CMEs) and determine their orientation relative to the earthward direction. The kinematic measurements, dynamic radio spectra, and microwave and X-ray light curves all contribute to the overall picture of the complex event and confirm an additional eruption at 08:07?–?08:20 UT close to the solar disk center presumed in Paper I. Unusual characteristics of the ejection appear to match those expected for a source of the 20 November superstorm but make its detection in LASCO images hopeless. On the other hand, none of the CMEs observed by LASCO seem to be a promising candidate for a source of the superstorm being able to produce, at most, a glancing blow on the Earth’s magnetosphere. Our analysis confirms free propagation of shock waves revealed in the event and reconciles their kinematics with “EUV waves” and dynamic radio spectra up to decameters.  相似文献   

8.
This article describes a novel algorithm for cosmic‐ray rejection in single spectroscopic CCD images. This algorithm is based on a variation of template matching. It focuses on identifying those pixels belong to spectra, while other conventional algorithms tried to locate the cosmic‐ray hits directly. The main principle is applying template matching to find suspicious blocks, which is followed by surface patching to locate the legitimate pixels accurately. Therefore, the rest pixels are the ones corrupted by cosmic‐ray hits. Meanwhile, almost all the parameters are automatically extracted from the images. Examples of its performance are given for both simulated and observed images. It shows an advantage of significantly low false alarm rate with relatively high detection rate (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We present velocity estimates of bulk motions in the solar corona using data from the Large Angle Spectrometric Coronagraph (LASCO) aboard the Solar and Heliospheric Observatory spacecraft ( SOHO ). We describe a new technique which automatically provides a mass-weighted mean velocity profile in an entirely objective fashion without the need for individual event identification. A weighted velocity profile of this kind reflects the motion of the energetically dominant component of the coronal mass ejection (CME) mass spectrum and is of particular interest in consideration of the overall energy budget of the CME process. We consider the mean motion within three latitudinal bands centred at 0°, 20° and 40° over a one-year period around the time of solar minimum. We find terminal velocities within the LASCO field of around 300 km s−1 in all latitude bands but note a latitudinal dependence in CME evolution through the low corona prior to reaching these velocities. We find evidence that ejections in the equatorial zone undergo continuous acceleration whilst at higher latitudes a discrete burst of acceleration is seen to occur at around 4 R from the Sun's centre with relatively little acceleration thereafter. We also consider the energy deposition rates necessary to generate these profiles.  相似文献   

10.
We applied advanced image enhancement techniques to explore in detail the characteristics of the small-scale structures and/or the low contrast structures in several Coronal Mass Ejections (CMEs) observed by SOHO. We highlight here the results from our studies of the morphology and dynamical evolution of CME structures in the solar corona using two instruments on board SOHO: LASCO and EIT.  相似文献   

11.
Richard Woo 《Solar physics》2007,241(2):251-261
In the absence of magnetic field measurements of the solar corona, the density structure of white-light images has provided important insight into the coronal magnetic field. Recent work sparked by highly sensitive radio occultation measurements of path-integrated density has elucidated the density structure of unprocessed solar eclipse pictures. This paper does the same for processed images that reveal low-contrast small-scale structures, specifically Koutchmy’s edge-enhanced white-light image of the 11 August 1999 solar eclipse. This processed image provides visual evidence for two important results deduced from radio occultation measurements of small-scale density variations. First, in addition to the closed loops readily seen at the base of the corona in high-resolution EUV and soft X-ray images, open filamentary structures permeate the corona including active regions generally thought to be magnetically closed. Observed at the image resolution, the filamentary structures are 1° wide in latitude and an order of magnitude smaller than polar plumes. Second, although inhomogeneities that are convected along with the solar wind are also present, filamentary structures dominate the image because of their steeper density gradients. The quantitative profile of polarized brightness (pB) at the base of the corona shows that the filamentary structures have transverse density gradients that are proportional to their density. This explains why edge-enhanced images, limited in sensitivity to density gradients, tend to detect filamentary structures more readily in high-density regions (e.g., active regions, streamer stalks, and prominences) than in low-density polar coronal holes, and why filamentary structures seem more prevalent in solar eclipse pictures during solar maximum. The pB profile at the base of the corona also fills the gap in Doppler measurements there, reinforcing that open ultra-fine-scale filamentary structures observed by the radio measurements are predominantly radial and that they are an integral part of the radial expansion of the solar wind.  相似文献   

12.
A filament disappearance event was observed on 22 May 2008 during our recent campaign JOP 178. The filament, situated in the Southern Hemisphere, showed sinistral chirality consistent with the hemispheric rule. The event was well observed by several observatories, in particular by THEMIS. One day, before the disappearance, Hα observations showed up- and down-flows in adjacent locations along the filament, which suggest plasma motions along twisted flux rope. THEMIS and GONG observations show shearing photospheric motions leading to magnetic flux canceling around barbs. STEREO A, B spacecraft with separation angle 52.4°, showed quite different views of this untwisting flux rope in He ii 304 Å images. Here, we reconstruct the three-dimensional geometry of the filament during its eruption phase using STEREO EUV He ii 304 Å images and find that the filament was highly inclined to the solar normal. The He ii 304 Å movies show individual threads, which oscillate and rise to an altitude of about 120 Mm with apparent velocities of about 100 km?s?1 during the rapid evolution phase. Finally, as the flux rope expands into the corona, the filament disappears by becoming optically thin to undetectable levels. No CME was detected by STEREO, only a faint CME was recorded by LASCO at the beginning of the disappearance phase at 02:00 UT, which could be due to partial filament eruption. Further, STEREO Fe xii 195 Å images showed bright loops beneath the filament prior to the disappearance phase, suggesting magnetic reconnection below the flux rope.  相似文献   

13.
Andrews  M.D. 《Solar physics》2001,204(1-2):179-196
The period of 10–14 July 2000 saw a large number of energetic solar events ending with a very energetic flare that was associated with a large solar energetic particle event and a fast halo coronal mass ejection (CME) that produced the largest geomagnetic disturbance since 1989. This paper tries to summarize the complex coronal activity observed during this period, in order to establish a background for a number of papers in this topical issue. The GOES X-ray data are presented. Data animations of observations from EIT and LASCO C2 and C3 are presented on the accompanying CD-ROM. The observations around the time of the three X-class flares are considered. EIT observations of the Bastille Day flare show coronal brightening followed by dimming. LASCO had good data coverage for all three events. For one of the flares, no coronal response was seen. The other two flares are associated with halo CMEs. The timing suggests that the start of the flares and CMEs are simultaneous to approximately 30 min. Analysis of the LASCO and EIT images following the Bastille Day flare show the arrival of energetic particles at SOHO at approximately 10:41 UT on 14 July. Individual features of these CMEs have been tracked and the height–time plots used to estimate the dynamics of the CMEs. The initial speed and deceleration of the halo CMEs estimated from the fitting of height–time plots are compared with the in-situ observations at L1. The three flares are identified as the solar sources of three shocks observed at 1 AU. Finally, it is stressed that global heliospheric effects during periods of exceptional activity should consider a cumulative scenario rather than events in isolation.  相似文献   

14.
This work investigates the solar quasi-periodic cycles with multi-timescales and the possible relationships with planetary motions. The solar cycles are derived from long-term observations of the relative sunspot number and microwave emission at frequency of 2.80 GHz. A series of solar quasi-periodic cycles with multi-timescales are registered. These cycles can be classified into three classes: (1) the strong PLC (PLC is defined as the solar cycle with a period very close to the ones of some planetary motions, named as planetary-like cycle) which is related strongly with planetary motions, including nine periodic modes with relatively short period (P<12 yr), and related to the motions of the inner planets and of Jupiter; (2) the weak PLC, which is related weakly to planetary motions, including two periodic modes with relatively long period (P>12 yr), and possibly related to the motions of outer planets; (3) the non-PLC, for which so far there has been found no clear evidence to show the relationship with any planetary motions. Among the planets, Jupiter plays a key role in most periodic modes due to its sidereal motion or spring tidal motions associated with other planets. Among planetary motions, the spring tidal motion of the inner planets and of Jupiter dominates the formation of most PLCs. The relationships between multi-timescale solar periodic modes and the planetary motions will help us to understand the essential nature and prediction of solar activities.  相似文献   

15.
16.
We examine the uncertainties in two plasma parameters from their true values in a simulated asymmetric corona. We use the Corona Heliosphere (CORHEL) and Magnetohydrodynamics Around the Sphere (MAS) models in the Community Coordinated Modeling Center (CCMC) to investigate the differences between an assumed symmetric corona and a more realistic, asymmetric one. We were able to predict the electron temperatures and electron bulk flow speeds to within ±?0.5 MK and ±?100 km?s?1, respectively, over coronal heights up to 5.0 R from Sun center. We believe that this technique could be incorporated in next-generation white-light coronagraphs to determine these electron plasma parameters in the low solar corona. We have conducted experiments in the past during total solar eclipses to measure the thermal electron temperature and the electron bulk flow speed in the radial direction in the low solar corona. These measurements were made at different altitudes and latitudes in the low solar corona by measuring the shape of the K-coronal spectra between 350 nm and 450 nm and two brightness ratios through filters centered at 385.0 nm/410.0 nm and 398.7 nm/423.3 nm with a bandwidth of ≈?4 nm. Based on symmetric coronal models used for these measurements, the two measured plasma parameters were expected to represent those values at the points where the lines of sight intersected the plane of the solar limb.  相似文献   

17.
Since January 1996, the Solar and Heliospheric Observatory (SOHO)has been providing unprecedented views of the extended solar coronato heliocentric distances of up to 32 solar radii. During the past threeyears we carried out studies of the morphology and dynamical evolutionof various structures in the solar corona using two instruments on boardSOHO: the Large Angle Spectrometric Coronagraph (LASCO) and the ExtremeUltraviolet Imaging Telescope (EIT). We have applied advanced image resolutionenhancement techniques to explore in detail the characteristics of thesmall-scale structures and/or the low contrast structures in the solarcorona. We describe here the results from these high-angular resolutionstudies, including of the kinematics of several Coronal Mass Ejections andpolar jets.  相似文献   

18.
The ground based observations of the coronal emission lines using a coronagraph are affected by the short duration of clear sky and varying sky transparency. These conditions do not permit to study small amplitude variations in the coronal emission reliably necessary to investigate the process or processes involved in heating the coronal plasma and dynamics of solar corona. The proposed Visible Emission Line Coronagraph (VELC) over comes these limitations and will provide continuous observation 24 h a day needed for detailed studies of solar corona and drivers for space weather predictions. VELC payload onboard India’s Aditya-L1 space mission is an internally occulted solar coronagraph for studying the temperature, velocity, density and heating of solar corona. To achieve the proposed science goals, an instrument which is capable of carrying out simultaneous imaging, spectroscopy and spectro-polarimetric observations of the solar corona close to the solar limb is required. VELC is designed with salient features of (a) Imaging solar corona at 500 nm with an angular resolution of 5 arcsec over a FOV of 1.05Ro to 3Ro (Ro:Solar radius) (b) Simultaneous multi-slit spectroscopy at 530.3 nm [Fe XIV],789.2 nm [Fe XI] and 1074.7 nm [Fe XIII] with spectral dispersion of 28mÅ, 31mÅ and 202mÅ per pixel respectively, over a FOV of 1.05Ro to 1.5Ro. (c) Multi-slit dual beam spectro-polarimetry at 1074.7 nm. All the components of instrument have been optimized in view of the scientific objectives and requirements of space payloads. In this paper we present the details of optical configuration and the expected performance of the payload.  相似文献   

19.
We examine solar sources for 20 interplanetary coronal mass ejections (ICMEs) observed in 2009 in the near-Earth solar wind. We performed a detailed analysis of coronagraph and extreme ultraviolet (EUV) observations from the Solar Terrestrial Relations Observatory (STEREO) and Solar and Heliospheric Observatory (SOHO). Our study shows that the coronagraph observations from viewpoints away from the Sun–Earth line are paramount to locate the solar sources of Earth-bound ICMEs during solar minimum. SOHO/LASCO detected only six CMEs in our sample, and only one of these CMEs was wider than 120°. This demonstrates that observing a full or partial halo CME is not necessary to observe the ICME arrival. Although the two STEREO spacecraft had the best possible configuration for observing Earth-bound CMEs in 2009, we failed to find the associated CME for four ICMEs, and identifying the correct CME was not straightforward even for some clear ICMEs. Ten out of 16 (63 %) of the associated CMEs in our study were “stealth” CMEs, i.e. no obvious EUV on-disk activity was associated with them. Most of our stealth CMEs also lacked on-limb EUV signatures. We found that stealth CMEs generally lack the leading bright front in coronagraph images. This is in accordance with previous studies that argued that stealth CMEs form more slowly and at higher coronal altitudes than non-stealth CMEs. We suggest that at solar minimum the slow-rising CMEs do not draw enough coronal plasma around them. These CMEs are hence difficult to discern in the coronagraphic data, even when viewed close to the plane of the sky. The weak ICMEs in our study were related to both intrinsically narrow CMEs and the non-central encounters of larger CMEs. We also demonstrate that narrow CMEs (angular widths ≤?20°) can arrive at Earth and that an unstructured CME may result in a flux rope-type ICME.  相似文献   

20.
We present digitized photographs of the white-light solar corona taken during the total solar eclipse of 22–23 November, 1984, on both calibrated black-and-white film and on color film. Conditions on site in Hula, Papua New Guinea, were exceptionally clear. The color image was used to produce an isophotal map of the inner corona, from which a flattening coefficient of 0.23 was measured. The black-and-white image was enhanced through a digital radial filter. Our images are the best processed images available from the 1984 eclipse and so provide important data for synoptic observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号