首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The Bashikaogong-Shimierbulake granitoid complex is about 30 km long and 2―6 km wide, with an area of 140 km2, located at the north margin of the Bashikaogong Basin in the north Altun terrain. It intruded into schist, metapelite and metatuff of Precambrian ages. This granitoid complex consists of darkish quartz diorite, grey granite, pink granite and pegmatite. Geochemically, the quartz diorite has I-type granite affinity and belongs to Calc-alkaline sereies, and the other gran- ites have S-type affinity and to high-K calc-alkaline series. Zircon SHRIMP U-Pb dating shows that the quartz diorite has a bigger age than those of other granites, which is 481.6±5.6 Ma for quartz diorite, 437.0±3.0 Ma―433.1±3.4 Ma for grey granite and 443±11 Ma―434.6±1.6 Ma for pink granite, re- spectively. Combined with regional geology, we think that the quartz diorite formed in tectonic envi- ronment related to oceanic crust subduction and the granites in post-collision.  相似文献   

2.
江西省大湖塘石门寺矿区超大型钨矿的发现及找矿意义   总被引:4,自引:0,他引:4  
江西省武宁县大湖塘石门寺超大型钨矿的成功勘查是我国地质找矿工作的重大发现。矿化类型划分为细脉浸染型、隐爆角砾岩型和石英大脉型。前者占总储量的74%,该类型以晋宁晚期黑云母花岗闪长岩为容矿围岩,以燕山中期酸性深成至浅成花岗岩为成矿母岩。矿体厚大且产状平缓,大致平行于黑云母花岗闪长岩与似斑状黑云母花岗岩株顶部的接触面分布,以外接触带为主(I1矿体),水平投影面积1.50km2,单工程最大厚度389.33m,平均厚度143.67m,平均品位0.193%,厚度变化系数63.7%,品位变化系数115.8%。工业矿物主要为白钨矿、黑钨矿、黄铜矿、辉钼矿。矿石组构类型主要有结晶结构、交代结构、细脉状构造、浸染状构造,常见近矿围岩蚀变为黑鳞云母化、云英岩化、绿泥石化,成因类型属岩浆期后高中温热液矿床,工业类型可划归为细脉浸染型白钨矿。石门寺矿区以黑云母花岗闪长岩为容矿围岩的细脉浸染状白钨的发现,改变了以往只专注评价石英大脉型黑钨矿的找矿思路,为矿区及九岭矿集区实现钨多金属找矿突破指明了新的方向。  相似文献   

3.
梅子坑钼矿位于九岭钨钼成矿带,为中型石英脉型钼矿床。矿区内地层和岩浆岩钼元素含量分别是克拉克值的43倍和21倍。矿体赋存于双桥山群修水组浅变质岩系中及北西向断裂控制的裂隙密集带中;矿石主要类型为石英脉型,矿石有益组分为辉钼矿,形成于石英-黄铁矿-辉钼矿-黄铜矿早期矿化阶段。矿床可能与隐伏的燕山期细粒花岗岩、花岗斑岩岩脉有成因关系,属与燕山期岩浆活动有关的中-高温热液矿床。北西向断裂密集带,硅化、云英岩化、黄铁矿化围岩蚀变,燕山期花岗岩类及双桥山群浅变质岩系,是其主要找矿标志。  相似文献   

4.
Pristine granite clasts in Apollo-14 breccias 14321 and 14303 have estimated masses of 1.8 and 0.17 g, respectively. The 14321 clast is ~ 60% K-feldspar and 40% quartz, with traces of extremely Mg-poor mafic silicates and ilmenite. The 14303 clast is roughly 33% plagioclase, 32% K-feldspar, 23% quartz, 11% pyroxene, and 1% ilmenite; pyroxene and ilmenite are moderately Mg-rich; plagioclase and pyroxene are strongly zoned. Both clasts are severely brecciated, but monomict (pristine). Both have abundant graphic intergrowths of K-feldspar with quartz. Unlike the majority of similar Earth rocks, both clasts are devoid of hydrous phases. The bulk composition of the 14321 clast is similar to those of several other lunar granitic samples, but the 14303 clast is unique: it bears as close a resemblance to KREEP as it does to other lunar granites. Silicate liquid immiscibility may explain why the granites are low in REE relative to KREEP.  相似文献   

5.
Upper Cretaceous volcanic rocks were collected at 24 sites along the Pontides, N-NE Turkey, for rock magnetic and geochemical studies. Rock magnetic and petrographic methods showed that the lavas are characterized predominantly by titanomagnetites with a mixture of pseudo-single and multi-domain grains, whereas in tephrite single domain titanohematite was dominant. Measurements of magnetic susceptibility and the geochemical properties on different volcanic rock types provide important knowledge about the magnetic stability of the rocks. The magnetic properties are interpreted in terms of the composition, concentration, magma generation. Tephrite and phonotephrites with the highest intensities (5200 mA/m) and high magnetic susceptibility values (2585 × 10−5), largest grain sizes and Fe/Ti values, showing minor or no alteration are the most magnetic stable samples in contrast to dacites with the lowest intensity-magnetic susceptibility (520 mA/m − 573 × 10−5) and high alteration degree. The basanite samples show very low NRM (48–165 mA/m) but very high magnetic susceptibility (2906–3100 × 10−5) values suggesting the alteration of Fe-Ti minerals. It is shown that the magnetic properties of the basic to acidic rocks show a systematic variation with magma differentiation and could be related to fractional crystallization. Major and trace elements revealed that the lavas are compatible with complex magma evolution, with mineral phases of olivine+magnetite+clinopyroxene in basic series, amphibole+ +clinopyroxene in intermediate rocks and plagioclase+clinopyroxene+biotite in acidic series.  相似文献   

6.
Thermomagnetic curves have been obtained for samples from 25 granites and gneisses in Georgia, South Carolina, and North Carolina. This data set can be divided into two distinct curve types: Type I includes rocks which exhibit no distinct Curie points and a linear decrease in magnetization with increasing temperature; Type II curves exhibit a distinct Curie point over a range of temperatures expected for magnetite (500–580°C). Synthetic samples constructed from magnetite and hematite powder exhibit Type I behavior when the hematite to magnetite ratio is high (e.g. 15 : 1). Examination of polished sections shows relatively coarse-grained magnetite only in Type II rocks. We interpret our data to indicate that Type I thermomagnetic curves are dominated by relatively large hematite/magnetite ratios while Type II granites are characterized by relatively coarse-grained magnetite. Type I granite samples have low magnetic susceptibility values (less than 4 × 10?4 cgs) while most Type II granite samples have higher values. The Type I granites are invariably18O-enriched whereas Type II granites typically exhibit low18O/16O ratios. These relationships are consistent with previously reported correlations of susceptibility (generally indicative of magnetite content) and oxygen isotopic trends in the southern Appalachian Piedmont.  相似文献   

7.
南海北部陆区岩石磁化率的矿物学研究   总被引:6,自引:3,他引:3       下载免费PDF全文
基于2517套现场测量资料,245块岩石样品的体积磁化率测量和详细的岩矿鉴定及硅酸盐全分析结果,结合单矿物磁化率特征及各岩石之间的对比研究,发现岩石磁化率主要受组成岩石的矿物磁化率控制.即岩石磁化率(κr)与组成岩石各个矿物磁化率(κ1)及其体积含量(C2)成正比.例如侵入岩磁化率,κr=-5.68×102Cq+2.8...  相似文献   

8.
Northern Xinjiang has been an idea and focus re-gion for post-collisional tectonic-metallogenic re-search. The time span of post-collisional stage, as well as the time span of extrusion and extension gyration of a post-collisional stage, and the process and dynamicssetting of Paleozoic continental growth are the key problems[1-7]. According to the definition by Liegeois[8], Wang et al. (in press)1) proposed that the taphrogeosyncline sedimentary formation that unconformably overliesthe main c…  相似文献   

9.
Abstract Anisotropy of magnetic susceptibility (AMS) has been used to infer finite strain fabrics in plastically deformed rocks, but there are few studies of magnetic properties in fractured fault rocks. Changes in magnetic and fractal properties of fractured granites from the Disaster Prevention Research Institute, Kyoto University (DPRI) 500 m drilling core towards the Nojima Fault and of the well-foliated fault gouge are described. Fractal analysis of fractured granites shows that the fractal dimension ( D ) increases linearly toward the gouge zone of the fault. In weakly fractured granites ( D = 1.05–1.24), it was found that the degree of AMS correlates positively with the fractal dimension, suggesting a fracture-related magnetic fabric due to fracturing. In strongly fractured granites ( D = 1.25–1.50), weaker, nearly isotropic AMS is found, suggesting erasure by the fragmentation of the magnetic minerals. Within the fault gouge zone, an isotropic AMS fabric was found, as well as twofold increases in magnetic intensity and susceptibility. These changes reflect the production of new magnetite grains, subsequently confirmed by hysteresis studies, which suggests that fault gouge might be regarded as the source of the regional geomagnetic field contrast along active faults. Thus, AMS is clearly a potentially useful tool for inferring the fracturing texture of magnetic minerals in fractured rocks and detecting active faults from the high susceptibility contrast of fault gouge.  相似文献   

10.
Origin of Li-F-rich granite: Evidence from high P-T experiments   总被引:2,自引:0,他引:2  
In South China and some regions around the world, there is a special type of rocks. These rocks are usually ultra-acidic, peraluminous, rich in Na and volatile components, such as H2O, F, B and P, and with higher concentrations of lithophile rare metal elements, including Li, Rb, Cs, Be, Ta, Nb, Sn, W, etc. Rocks of this type are commonly called Li-F-rich, rare-metal bearing granitic rocks, or Li-F granites for short[1]. The economic importance and distinct forma-tion mechanism of Li-…  相似文献   

11.
It is well-known that South China experienced suc- there are also the Indosinian granitoids in Jiangxi, cessively two important tectonic movements during Guangdong, Guangxi, Hainan and so on[4], most of Mesozoic time, i.e. Indosinian and Yanshanian move- them, in the mass, are fairly concentrated in Hunan ment[1], which yield widely-distributed granitoids and Province, in which the Indosinian granites outcrop abundant mineral resources[2]. Therefore, the geologic over an area of ca. 5000 k…  相似文献   

12.
The Mesoproterozoic deeply eroded Keurusselk? impact structure in central Finland is situated within the ??1860?C1890 Ma Central Finland Granitoid Complex. An estimate for the original size of the structure is 30 km, yielding a 5 km wide central uplift with insitu shatter cones and shock metamorphic features in quartz. Petrophysical and rock magnetic properties of the three shallow drill cores (V-001, V-002 and V-003) in the vicinity of the central uplift are determined in order to assess the dimensions of the central uplifts magnetic anomalies. The drill core lithologies consist of schists (metagraywackes), metavolcanic rocks, gneisses and breccia. Petrophysical properties of the drill core rocks show average densities (D) of 2644?C2752 kg/m3, susceptibilities (??) of 160?C761 × 10?6 SI and natural remanent magnetization (NRM) of 3?C306 mA/m and Koenigsberger Q ratios of 0.1?C10. Rock magnetic measurements with temperature dependence of susceptibility (??-T) curves and hysteresis indicated mostly paramagnetic behaviour. However, a fraction of fine-grained ferromagnetic minerals (pyrrhotite and magnetite) was detected from all lithologies. Breccia veins cutting the parautochthonous subcrater floor show lower values of petrophysical properties (D, ??, NRM, Q) and this could be related to the impact event. Amphiboles and micas in the breccia are strongly altered and replaced by secondary chlorite. Chloritization may indicate widespread impact-induced hydrothermal alteration of the target rocks or it may be related to regional tectonic shearing. However, planar deformation features in quartz, found from shatter cones in the central uplift area, are decorated with fluid inclusions indicating that alteration by post-impact processes was present.  相似文献   

13.
The Shapinggou porphyry molybdenum(Mo) deposit, located in Jinzhai County, Anhui Province, China, is the largest in the Qinling-Dabie Mo Metallogenic Belt. The intrusive rocks in the Shapinggou Mo ore district formed in the Yanshanian can be divided into two stages based on zircon U-Pb dating and geochemical features. This study focuses on the late stage intrusions(quartz syenite and granite porphyry), which are closely genetically related to molybdenum mineralization. Petrographic observations identified two quartz polymorphs in the quartz syenite and granite porphyry, which were derived from the same magmatic sources and similar evolutionary processes. The quartzes were identified as a xenomorphic β-quartz within quartz syenite, while the quartz phenocrysts within the granite porphyry were pseudomorphous b-quartz, characterized by a hexagonal bipyramid crystallography. The pseudomorphous b-quartz phenocrysts within the granite porphyry were altered from b-quartz through phase transformation. These crystals retained b-quartz pseudomorph. Combined with titanium-inzircon thermometry, quartz phase diagrams, and granitic Q-Ab-Or-H_2O phase diagrams, it is suggested that the quartz syenite and granite porphyry were formed under similar magmatic origins, including similar depths and magmatic crystallization temperatures. However, the β-quartz within quartz syenite indicated that the crystallization pressure was greater than 0.7 GPa, while the original b-quartz within the granite porphyry was formed under pressures between 0.4 and 0.7 GPa. The groundmass of the granite porphyry which formed after the phenocryst indicated a crystallizing pressure below 0.05 GPa. This indicates that the granite porphyry was formed under repetitive and rapid decompression. The decompression was significant as it caused the exsolution of the ore-forming fluids, and boiling and material precipitation during the magmatic-fluid process. The volumetric difference during the phase transformation from b-quartz to β-quartz caused extensive fracturing on the granite porphyry body and the wall rocks. As the main ore-transmitting and ore-depositing structures, these fractures benefit the hydrothermal alteration and stockwork-disseminated mineralization of the porphyry deposit. It is considered that the pseudomorphous β-quartz phenocrysts of the porphyritic body are metallogenic indicators within the porphyry deposits. The pseudomorphous β-quartzes therefore provide evidence for the formation of the porphyry deposit within a decompression tectonic setting.  相似文献   

14.
Being a part of the Paleo‐Tethys Ocean, closing of the Buqingshan‐Anyemaqen oceanic basin left a rich geologic record in the East Kunlun Orogenic Belt. The genesis and tectonic setting of the granites including quartz monzodiorite, granodiorite and mozogranite is discussed in light of the geochemical and U–Pb chronological data obtained. U–Pb dating studies on zircon from the quartz monzodiorite and monzogranite of the research area yielded ages of 220.11 ± 0.49 Ma ((Mean Square Weighted Deviates) MSWD = 0.046) and 223.33 ± 0.54 Ma (MSWD = 0.14), respectively, by Laser Ablation Multiple Collector Inductively Coupled Plasma Mass Spectrometry (LA–MC–ICP–MS) method. According to sedimentological and structural investigations, the Paleo‐Tethys Ocean in the Qimantag region began to close at about 235 Ma, and completely disapperared at about 220 Ma. The three types of granites in this study are considered to intrude the syn‐ to post‐collisional stages. The quartz monzodiorite and granodiorite belong to the I‐type granite whereas the monzogranite is of the S‐type granite. These two types of granites were formed by different ways of partial melting: first, partial melting of the lower crust took place as a result of asthenosphere upwelling triggered by break‐up of the leading edge or tearing of the descending oceanic slab. Subsequently partial melting of the middle–lower crust was caused by the underplating of basaltic magma formed by partial melting of the mantle wedge fluxed by fluids liberated by the oceanic slab dehydration. The magma responsible for the formation of S‐type granites appears to have originated from partial melting of the upper crustal material at a shallower level with a clear signature of continental crust.  相似文献   

15.
广东南山花岗岩体位于陂头复式岩体西端,锆石的SHRIMP U-Pb年龄为158.1±1.8Ma,是燕山早期岩浆活动的产物。岩石化学特征显示岩体以高硅、富碱、贫Ca和Mg以及高TFeO/MgO、低CaO/Na2O为特征。其K2O/Na2O〉1,A/NK=7.8~11.92,A/CNK=1.33~1.68,属过铝质碱性岩石。在稀土和微量元素组成上,岩石富含稀土元素(除明显的负Eu异常,δEu=0.09~0.16)以及Zr、Y、Th、U、Nb等高场强元素,贫Ba、Sr、Ti等,高10000x Ga/Al(比值大于2.6)。在Zr、Nb、Ce、Y对10000×Ga/Al以及TFeO/MgO-SiO2等A型花岗岩多种判别图上,投影点主要落在A型花岗岩区,而与高分异的I、S型花岗岩明显不同。这些特征均指示,南山岩体具有铝质A型花岗岩的特点。通过Y-Nb-3Ga和Y-Nb-Ce构造环境判别图解将其进一步划分为A2型花岗岩,代表其形成于拉张的构造背景之下。本文在此研究基础上,认为南山花岗质岩浆可能形成于相对挤压的中侏罗世。而在晚侏罗世早期相对拉张的作用下,岩石圈减薄,软流圈地幔上涌,地壳的泥质岩和少量砂质岩受到幔源流体富集后发生部分熔融后上侵形成铝质A型花岗岩,且有较强的结晶分异作用。  相似文献   

16.
— The success of the Soultz-sous-Forêts Hot-Dry-Rock project depends on the ability to maintain fluid circulation in a fractured granite. Fractures represent the main fluid pathways. To understand the behavior of this granite in respect to thermal fluid-rock interaction the important aspects are (1) the porous network around these fractures and (2) the thermal conductivity of the rock. This granite is altered and composed of different weathered facies. Variations of porosity and thermal conductivity take place in regard to the alteration and fracturing of the granite. Two types of porosity measurements were performed, mercury injection and water porosity on two samples sizes. The two methods give similar porosity values between 0.3% and 10%. Thermal conductivity measurements were performed in two perpendicular directions to look at anisotropy with two methods at different scale and value ranges from 2.3 to 3.9 W.m?1.K?1. Optical scanning provides us with a good knowledge of local increase of thermal conductivity due to sealed fracture or quartz-cemented matrix. The relationship between porosity and thermal conductivity is not obvious and has to be studied in details, and results show three cases: (1)?a relationship between conductivity and porosity (increase of conductivity with a decrease of porosity), (2)?a relationship between conductivity and sealed fractures (increase of conductivity related to an increase of fracture density), (3)?and a combination of the two previous ones. The results are carefully compared for different types of granite: alterated, fractured or both. These first results indicate that parameters such as thermal conductivity are linked to the porous medium, the structure and the mineralogy of the rock.  相似文献   

17.
In southern Tibet, crustal thickening due to the India-Asia collision has led to the formation of two granite belts. One is located at the southern edge of the accretionary wedge of Tethyan sedimentary rocks, close to the contact with basement gneisses of the Tibetan slab. The other is found within the wedge itself, close to the Kangmar thrust trace. Available ages suggest that the granites appeared first in the southern belt and then in the Kangmar belt. This sequence seems to violate the chronology of thrusting. Another feature of the Himalayas is that melting started only about 20 Ma after the onset of thickening, which is much less than the thermal time constant of thick crust. We give a thermal model, based on the assumption of conductive heat transfer, which explains these features. The model relies on the geometry of a sedimentary accretionary wedge bounded by low-angle thrust faults and on the existence of a thermal conductivity contrast between old basement and young sedimentary rocks. The wedge of sedimentary rocks acts as an insulating cap and its southern edge heats up along the contact with basement rocks. On a horizontal cross-section, there is a temperature maximum along this southern edge, which explains why melting starts there. The early thermal evolution is sensitive to local conditions and granites first appear in the vicinity of the most radiogenic parts of the basement. The distribution of granites in space and time is seemingly random, reflecting different melting events in different radiogenic environments in the heterogeneous basement. This model predicts a relationship between radioactivity and age which is compatible with available data. The results emphasize that there are large horizontal temperature variations across a thickened region and that granite ages are not related simply to the timing of tectonic phases.  相似文献   

18.
The Har?it granitoid in northeastern Turkey, comprises four separate granite units that are apparently unfoliated. The Har?it granitoid was investigated here by using microstructural, petrofabric and anisotropy of magnetic susceptibility (AMS) data. The structural data of the granitoid were found to be highly compatible with the zonation recognized from AMS measurements. The orientation of magnetic fabrics within the granite units indicates that tectonic deformation might have occurred coevally with the magmatic emplacement of the intrusion. When we evaluated the manners on the scale of the pluton that the disruption took place in the form of uplifting, probably related to a rapid migration of the volcanic front and the documented change from deep sea sedimentation predominant until late Cretaceous to shallower environments during the Paleocene. The possible tectonic control of fault systems on the ascent and emplacement of the granitic magma in the study area, however, cannot be completely ruled out because the Har?it granitoid is situated at or very near the NAF systems in northern Anatolia. In any case, the intrusion is clearly discordant to the regional deformational features formed during the collisional events between the Eurasia and Anatolia plates in northern Turkey.  相似文献   

19.
岩浆岩在青藏高原的大陆动力学研究中有着重要的作用,它既是构造演化的记录,又是重要构造-岩浆-成矿带的指示.本文主要基于冈底斯带及邻区的地面重力和航磁数据,首先进行地质-地球物理先验信息约束下的重磁2.5维交互式反演,再将2.5维反演结果作为参考模型加入到三维反演计算中,得到地下三维密度和磁化率结构.结合岩浆岩密度、磁化率统计资料和岩浆岩地球化学成果,推断研究区基性岩、I型花岗岩和S型花岗岩的三维分布图,得到如下结论:S型花岗岩主要分布在冈底斯东带和冈底斯弧背断隆带以北;北冈底斯的西部无明显的岩浆活动,而在其南侧和北侧,发现大量的隐伏基性岩和零散分布的I型花岗岩;中生代I型花岗岩在南冈底斯和冈底斯弧背断隆带广泛分布,且到新生代才出现大量的S型花岗岩.上述结果为中生代班公湖—怒江洋壳和新特提斯洋壳的双向剪刀式俯冲模式的观点提供了重要佐证,并认为班公湖—怒江洋壳在北冈底斯西部约84°E—88°E的范围内先后存在向北和向南俯冲的可能,北向羌塘地体下俯冲,南向冈底斯地体下俯冲.  相似文献   

20.
The data on magnetic susceptibility, thermomagnetic, and hysteresis parameters of bottom sediments from the North Caspian Basin demonstrate at least two types of temporal variations in their magnetic properties: relatively large-scale variations related to the transgressive-regressive rhythms of the sea level oscillations, and small-scale variations likely determined by local features of sedimentation and the magnetic fraction of the deposits. The latter is reflected in loamy sediments of transgressive phases, the magnetic fraction of which is largely composed of Fe sulfides, and primarily greigite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号