首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mathematical modeling is used to study the conditions of natural biotransformation of biogenic element compounds (containing C, N, P, Si) in five areas within Aniva Bay. The input data for the model are evaluated with the use of GIS “Sakhalin Shelf” and the available reference literature on the bay oceanography. Water masses that transferred through the boundaries between the areas were evaluated based on the values of water level, river runoff, atmospheric precipitation, evaporation, and the volume of water in the bay, all of which vary as a result of water heating. The model was used to evaluate annual variations in the concentrations of organic and mineral fractions of these elements and the biomasses of planktonic organisms for the five areas in the bay. Modeling results also allowed the assessment of biogenic substance input with river runoff into Lososei Bay. Based on the internal fluxes of substances, the monthly and annual aquatic animal production was evaluated.  相似文献   

2.
The possibility of forming of higher diatomic biomasses in winter in the waters of the Sea of Okhotsk water and Aniva Bay is considered. Data of field observations, satellite information, and a mathematical model describing the transformations of compounds of biogenic elements (C, Si, N, and P) are used for this purpose. Field observations confirmed that active microalgae reproduction takes place in the ice of the Sea of Okhotsk. Determinations of their species composition were carried out. The active development of diatoms in winter was confirmed by the analysis of satellite observations during the examination of chlorophyll “a” dynamics on the sea surface. Mathematical modeling yielded quantitative data to characterize the development of diatoms in winter and within the year and interrelated variations in nutrient concentrations and the biomass of planktonic community in Aniva Bay. This is the first analysis of this type for the Sea of Okhotsk.  相似文献   

3.
The conditions of transformations of biogenic substances and the redistribution of their concentrations in the shelf water of Sakhalin Island are studied. Preliminary works have given the results for the water area of La Perouse Strait and Aniva Bay (the Sea of Okhotsk), while this paper gives such results for Tatar Strait (the Sea of Japan). Three electronic instruments of oceanographic studies are applied: an adapted version of Bergen Oceanic Model (for the reconstruction of the space and time distribution of seawater temperature, salinity, and density; the circulation intensity of water masses; and water exchange parameters with nearby water areas and within the strait); GIS “Sakhalin Shelf” (for the reconstruction of annual variations in thermohaline characteristics on a standard grid and horizons of oceanographic stations, and the parameters of the aquatic environment); hydroecological CNPSi-model (for studying the annual dynamics of biogenic element compounds, the biomasses, biohydrochemical activity and bioproduction of microorganisms—bacteria, phytoplankton, and zooplankton, taking part in transformation of biogenic substances and petroleum hydrocarbons, as well as the internal fluxes of biogenic substances governed by the activity of microorganisms and the external load on the marine ecosystem). The results of modeling the spatial transport of biogenic substances through the outer boundaries of Tatar Strait water area and the boundaries of the three areas identified within it are presented and discussed.  相似文献   

4.
A hydroecological model is used for simultaneous studying water pollution processes by petroleum hydrocarbons and their decay under the oceanographic conditions of Tatar Strait. The model calculations were based on long-term averaged observational data on interannual variations of water temperature, light intensity, and transparency. Some oceanographic characteristics of the strait were reconstructed with the help of GIS “Sakhalin Shelf.” The strait’s water area was divided into three regions, and water exchange between them and the neighboring regions of the Sea of Japan was estimated by a hydrodynamic model. The results of the study made it possible to assess interannual variations in the concentrations and inner fluxes of petroleum hydrocarbons, oil-oxidizing bacteria biomasses, and the characteristics of their oxidation activity.  相似文献   

5.
Literary data have been used to assess the inflow of petroleum hydrocarbons (with river runoff, precipitation, wastewaters, sea transport, and at ice thawing) into different regions of the White Sea. The hydroecological CNPSi-model was used as an instrument to reproduce the annual dynamics of hydrocarbon concentrations at their parallel inflow and subsequent transformation in the waters of the nine White Sea regions (the bays of Kandalaksha, Onega, Dvina, and Mezen; the Solovetskie Islands; the deep-water part: Bassein, Gorlo, Voronka, and Chupa Bay). The calculations were based on normal annual values of monthly variations of water temperature, light intensity, and transparency, the morphometric parameters of the regions (water areas, mean depths, and water volumes) and water exchange between the regions and with the Barents Sea (calculated by a hydrodynamic model). The calculated concentrations of hydrocarbons, the biomasses and activity characteristics of hydrocarbon-oxidizing bacteria have been analyzed (their values were estimated for the 2-m surface water layer). The results of calculations were used to evaluate hydrocarbon balances for regions and the sea as a whole. The calculations demonstrate the balanced character of hydrocarbon fluxes, the balance discrepancy for the regions being <0.1–16.1%.  相似文献   

6.
A prominent vector of aquatic invasive species to coastal regions is the discharge of water, sediments, and biofilm from ships' ballast-water tanks. During eight years of studying ships arriving to the lower Chesapeake Bay, we developed an understanding of the mechanisms by which invasive microorganisms might arrive to the region via ships. Within a given ship, habitats included ballast water, unpumpable water and sediment (collectively known as residuals), and biofilms formed on internal surfaces of ballast-water tanks. We sampled 69 vessels arriving from foreign and domestic ports, largely from Western Europe, the Mediterranean region, and the US East and Gulf coasts. All habitats contained bacteria and viruses. By extrapolating the measured concentration of a microbial metric to the estimated volume of ballast water, biofilm, or residual sediment and water within an average vessel, we calculated the potential total number of microorganisms contained by each habitat, thus creating a hierarchy of risk of delivery. The estimated concentration of microorganisms was greatest in ballast water>sediment and water residuals>biofilms. From these results, it is clear microorganisms may be transported within ships in a variety of ways. Using temperature tolerance as a measure of survivability and the temperature difference between ballast-water samples and the water into which the ballast water was discharged, we estimated 56% of microorganisms could survive in the lower Bay. Extrapolated delivery and survival of microorganisms to the Port of Hampton Roads in lower Chesapeake Bay shows on the order of 10(20) microorganisms (6.8 x 10(19) viruses and 3.9 x 10(18) bacteria cells) are discharged annually to the region.  相似文献   

7.
The biohydrochemical features of the Caspian Sea ecosystem were estimated for its ten water areas with the use of a mathematical model describing the transformation of compounds of organogenic elements (C, Si, N, and P) and taking into account the morphometric characteristics of the water areas and long-term mean monthly values of the major characteristics of the aquatic environment. Variations in the estimated concentrations of mineral and aggregated biogenic substance fractions, microorganism biomasses (heterotrophic bacteria, three phytoplankton groups and two zooplankton groups) in different water areas of the sea were analyzed. The formation conditions of microorganism biomasses in different water areas are characterized by the analysis of their bioproductivity estimates based on evaluated internal biogenic substance fluxes.  相似文献   

8.
The available observational data on variations of oil hydrocarbon concentrations in White Sea tributaries and in individual parts of the sea are analyzed, and the contributions of different external sources to marine environment pollution are evaluated. The results of calculations are used to determine the possible total input of hydrocarbons from additional potential sources—internal natural (production by microorganisms) and external anthropogenic (navigation and sea shipping), which are most active in the summer and autumn. The hydroecological CNPSi-model is used to reproduce the processes of pollution of nine areas in the White Sea by oil hydrocarbons and their subsequent biodegradation in the marine environment. The annual dynamics of hydrocarbon concentrations was calculated using the long-term annual observations of monthly variations of the temperature, light intensity, and transparency of water, data on the morphometry of sea areas (the squares, mean depths, and water volumes) and water exchange between the chosen areas, calculated by a hydrodynamic model. For large bays (Dvina, Kandalaksha), the calculated concentrations of oil hydrocarbons are shown to be in agreement with the available estimates (the mean and maximal concentrations). The annual variations of oil hydrocarbon concentrations; the biomasses, oxidation activity and bioproduction characteristics of oil hydrocarbon-oxidizing bacteria are characterized. The calculated internal fluxes of oil hydrocarbons (the inputs from different sources, horizontal transport, and biotransformation) were used to calculate their annual balances for individual areas and the sea as a whole, showing the balanced character of their fluxes with the total balance discrepancies for individual areas varying within 0.3–4.1%.  相似文献   

9.
Langevin CD 《Ground water》2003,41(6):758-771
Variable density ground water flow models are rarely used to estimate submarine ground water discharge because of limitations in computer speed, data availability, and availability of a simulation tool that can minimize numerical dispersion. This paper presents an application of the SEAWAT code, which is a combined version of MODFLOW and MT3D, to estimate rates of submarine ground water discharge to a coastal marine estuary. Discharge rates were estimated for Biscayne Bay, Florida, for the period from January 1989 to September 1998 using a three-dimensional, variable density ground water flow and transport model. Hydrologic stresses in the 10-layer model include recharge, evapotranspiration, ground water withdrawals from municipal wellfields, interactions with surface water (canals in urban areas and wetlands in the Everglades), boundary fluxes, and submarine ground water discharge to Biscayne Bay. The model was calibrated by matching ground water levels in monitoring wells, baseflow to canals, and the position of the 1995 salt water intrusion line. Results suggest that fresh submarine ground water discharge to Biscayne Bay may have exceeded surface water discharge during the 1989, 1990, and 1991 dry seasons, but the average discharge for the entire simulation period was only approximately 10% of the surface water discharge to the bay. Results from the model also suggest that tidal canals intercept fresh ground water that might otherwise have discharged directly to Biscayne Bay. This application demonstrates that regional scale variable density models are potentially useful tools for estimating rates of submarine ground water discharge.  相似文献   

10.
Abstract

The Samborombón Bay area (Argentina) is a coastal plain environment that contains groundwater resources with high salinity. In addition, there are local freshwater lenses associated with shell ridges and sand sheets in the region. In this work, the groundwater travel time in these freshwater lenses is estimated based on their geological conditions, which include hydraulic conductivity, recharge, morphology and discharge to surface freshwater or to saline groundwater. Groundwater travel times in the freshwater lenses were calculated from the equations developed by Chesnaux and Allen. The travel times estimated for the different scenarios were relatively short. The results indicate that the groundwater flow tends to be strongly dependent on the recharge conditions, with an excess of water in the water balance. The results can be applied to help design sustainable management methods to exploit this water resource system and also to assess the impact of contaminant plumes on this groundwater resource.

Citation Carol, E., Kruse, E. & Roig, A. (2010) Groundwater travel time in the freshwater lenses of Samborombón Bay, Argentina. Hydrol. Sci. J. 55(5), 754–762.  相似文献   

11.
青海湖是青藏高原的重要组成部分,它是维系青藏高原东北部生态安全的重要水体.其沿岸地下水的排放直接影响了青海湖的水文生物地球化学过程,然而对该问题的研究仍然不充分.本研究于2014年对青海湖泉湾湖水、河水和地下水进行223Ra和224Ra活度的测定分析,并对泉湾湖水水平向和垂直向的Ra活度分布进行深入分析,最后估算并探讨了泉湾水体的停留时间和布哈河口沿岸地下水的排放通量.表层湖水、河水、地下水不同端元的水体223Ra和224Ra活度值分别为0.441和0.026 dpm/100 L、0.22和0.016 dpm/100 L以及0.061和1.30 dpm/100 L,最高值为地下水,其次湖水,河水最小;总体上泉湾湖水223Ra和224Ra活度随离岸距离增加分别由0.047到0.011 dpm/100 L和1.4到0.2 dpm/100 L的减小,垂向上Ra活度呈楔形分布,Ra活度在不同方向上的非保守性分布主要受到悬浮颗粒物解析的影响;通过水体滞留时间模型计算获得青海湖泉湾水体的平均停留时间为1.8天,进一步分析泉湾水体Ra的源汇项,应用镭同位素质量平衡模型获得泉湾布哈河口沿岸地下水排放通量为0.054~0.109 m3/(m2·d).  相似文献   

12.
Evaluation of volatilization as a natural attenuation pathway for MTBE   总被引:2,自引:0,他引:2  
Lahvis MA  Baehr AL  Baker RJ 《Ground water》2004,42(2):258-267
Volatilization and diffusion through the unsaturated zone can be an important pathway for natural attenuation remediation of methyl tert-butyl ether (MTBE) at gasoline spill sites. The significance of this pathway depends primarily on the distribution of immiscible product within the unsaturated zone and the relative magnitude of aqueous-phase advection (ground water recharge) to gaseous-phase diffusion. At a gasoline spill site in Laurel Bay, South Carolina, rates of MTBE volatilization from ground water downgradient from the source are estimated by analyzing the distribution of MTBE in the unsaturated zone above a solute plume. Volatilization rates of MTBE from ground water determined by transport modeling ranged from 0.0020 to 0.0042 g m(-2)/year, depending on the assumed rate of ground water recharge. Although diffusive conditions at the Laurel Bay site are favorable for volatilization, mass loss of MTBE is insignificant over the length (230 m) of the solute plume. Based on this analysis, significant volatilization of MTBE from ground water downgradient from source areas at other sites is not likely. In contrast, model results indicate that volatilization coupled with diffusion to the atmosphere could be a significant mass loss pathway for MTBE in source areas where residual product resides above the capillary zone. Although not documented, mass loss of MTBE at the Laurel Bay site due to volatilization and diffusion to the atmosphere are predicted to be two to three times greater than mass loading of MTBE to ground water due to dissolution and recharge. This result would imply that volatilization in the source zone may be the critical natural attenuation pathway for MTBE at gasoline spill sites, especially when considering capillary zone limitations on volatilization of MTBE from ground water and the relative recalcitrance of MTBE to biodegradation.  相似文献   

13.
An objective classification analysis was performed on a water quality data set from 25 sites collected monthly during 1994-2003. The water quality parameters measured included: TN, TON, DIN, NH4+, NO3-, NO2-, TP, SRP, TN:TP ratio, TOC, DO, CHL A, turbidity, salinity and temperature. Based on this spatial analysis, Biscayne Bay was divided into five zones having similar water quality characteristics. A robust nutrient gradient, driven mostly by dissolved inorganic nitrogen, from alongshore to offshore in the main Bay, was a large determinant in the spatial clustering. Two of these zones (Alongshore and Inshore) were heavily influenced by freshwater input from four canals which drain the South Dade agricultural area, Black Point Landfill, and sewage treatment plant. The North Bay zone, with high turbidity, phytoplankton biomass, total phosphorus, and low DO, was affected by runoff from five canals, the Munisport Landfill, and the urban landscape. The South Bay zone, an embayment surrounded by mangrove wetlands with little urban development, was high in dissolved organic constituents but low in inorganic nutrients. The Main Bay was the area most influenced by water exchange with the Atlantic Ocean and showed the lowest nutrient concentrations. The water quality in Biscayne Bay is therefore highly dependent of the land use and influence from the watershed.  相似文献   

14.
Sea surface temperature satellite imagery and a regional hydrodynamic model are used to investigate the variability and structure of the Liverpool Bay thermohaline front. A statistically based water mass classification technique is used to locate the front in both data sets. The front moves between 5 and 35 km in response to spring–neap changes in tidal mixing, an adjustment that is much greater than at other shelf-sea fronts. Superimposed on top of this fortnightly cycle are semi-diurnal movements of 5–10 km driven by flood and ebb tidal currents. Seasonal variability in the freshwater discharge and the density difference between buoyant inflow and more saline Irish Sea water give rise to two different dynamical regimes. During winter, when cold inflow reduces the buoyancy of the plume, a bottom-advected front develops. Over the summer, when warm river water provides additional buoyancy, a surface-advected plume detaches from the bottom and propagates much larger distances across the bay. Decoupled from near-bed processes, the position of the surface front is more variable. Fortnightly stratification and re-mixing over large areas of Liverpool Bay is a potentially important mechanism by which freshwater, and its nutrient and pollutant loads, are exported from the coastal plume system. Based on length scales estimated from model and satellite data, the erosion of post-neap stratification is estimated to be responsible for exporting approximately 19% of the fresh estuarine discharge annually entering the system. Although the baroclinic residual circulation makes a more significant contribution to freshwater fluxes, the episodic nature of the spring–neap cycle may have important implications for biogeochemical cycles within the bay.  相似文献   

15.
A hydrodynamic model of the Bay of Toulon has been developed for use as a post-accident radionuclide dispersion simulation tool. Located in a Mediterranean urban area, the Bay of Toulon is separated into two basins by a 1.4-km long seawall. The Little Bay is semi-enclosed and connected to the Large Bay by a fairway channel. This channel is the site of significant water mass exchange as a result of both wind-driven currents and bathymetry. It is therefore a focal point for marine contamination. As part of the model calibration and validation process, the first step consisted of studying the water mass exchange between the two basins. An Acoustic Doppler Current Profiler was moored in the channel for 1 year. The present study analyses in situ data to determine the current intensity and direction, and also to better understand the vertical current profile, which is highly correlated with meteorological forcing. Comparisons of model-generated and measured data are presented, and various atmospheric forcing datasets are used to enhance computed results. It appears that accurate meteorological forcing data is needed to enhance the accuracy of the hydrodynamic model. This channel is an important location for water mass renewal in the Bay of Toulon, and model results are used to quantify these exchanges. The mean calculated annual water exchange time is approximately 3.4 days. However, this duration is strongly wind dependent and shortens during windy winter months. It ranges from 1.5 days during strong wind periods to 7.5 days during calm weather. Residence time values calculated through tracer dispersion modelling after release at the back of the Little Bay are found to be comparable to the mean exchange time values, especially for windy conditions.  相似文献   

16.
Quantitative relationships between groundwater runoff and other water balance components are obtained. These relationships enable the prediction of changes in groundwater nourishment in different natural-geographic zones on the Earth because of global climatic changes and intense anthropogenic impact on the water regime of different areas. Groundwater runoff values (natural groundwater resources) in individual river basins are estimated. Digital maps (grid-models) of the space and time distribution of water balance elements (based on GIS-technology) are constructed for major river basins in European Russia, and river runoff is calculated in each grid node in river basins with a step of 0.1° in geographic coordinates. The values of major water balance components, thus related with one another, serve as the basis for their spatial and temporal analysis and cartographic representation. The proposed method was tested against data on Volga basin where long-term observational data on water balance elements are available in a number of hydrometric sections.  相似文献   

17.
A three-dimensional model was established to investigate water exchange in coastal waters, and applied to Qinzhou Bay(QZB) in the South China Sea. Given the strong tidal current in QZB, a half-life time was calculated for water exchange by filtering the tidal signal from the concentrations of a conservative substance. In a control run driven by the tide, without external inputs and an open boundary concentration of zero, it was estimated that the average half-life time in QZB was 54.8 d. Numerical experiments showed that wind accounted for an 11.9% reduction in the half-life time to 48.3 d. When rivers were included in the model, the half-life time decreased by 74.6% to 13.9 d. Sensitivity experiments showed that the half-life time for water exchange was greatly affected by the concentration of the conservative substance which was used at the open boundary. In response to 10,20, 30, and 40% increases in the boundary concentration, the half-life time increased to 91.5, 168.3, 186.2, and 229.1 d,respectively. Results also suggested that for coastal bays with large intertidal areas such as QZB, consideration of the wet and dry processes produced more accurate simulations of the hydrodynamics and the half-life times. Simulations, which did not incorporate wet and dry processes, were more than likely to have overestimated or underestimated the half-life times for water exchange.  相似文献   

18.
Current bathymetric and limnologic data on natural polar lakes of the World is discussed. The principal limnologic data on the largest polar lakes and also on the saline, cold amictic, and meromictic polar lakes are generalized. The geographic, “national”, and “administrative” distributions of polar lakes and also their distribution by the genesis of lake basins are analyzed. The distribution functions of polar lake areas and the regressions relating the water areas of lakes and the storages of lakes are calculated. The total water area and storage of polar lakes are estimated. The study is based on published data for 1432 Arctic and 174 Antarctic lakes, which are collected in the authors’ WORLDLAKE database. Attention is called to the inadequate knowledge of polar lakes.  相似文献   

19.
There are abundant PAH-degrading bacteria in mangrove sediments, and it is very important to screen the high efficiency degraders in order to perform bioremediation of PAH polluted environments. In order to obtain the more highly efficient PAH-degrading bacteria from a mangrove swamp, we first obtained 62 strains of PAH-degrading bacteria using traditional culture methods and based on their morphological characteristics. We then used the modern molecular biological technology of PCR-RFLP, in which the 16S rDNA of these strains were digested by different enzymes. Based on differences in the PCR-RFLP profiles, we obtained five strains of phenanthrene-degrading bacteria, five strains of pyrene-degrading bacteria, four strains of fluoranthene-degrading bacteria, five strains of benzo[a]pyrene-degrading bacteria and two strains of mixed PAH-degrading bacteria (including phenanthrene, pyrene, fluoranthene and benzo[a]pyrene). Finally, a total of 14 different PAH-degrading bacteria were obtained. The 16S rDNA sequences of these strains were aligned with the BLAST program on the NCBI website and it was found that they belonged to the α-proteobacteria and γ-proteobacteria, including four strains, where the similarities were no more than 97% and which were suspected therefore to be new species. This study indicated that PCR-RFLP was a very important method to screen degrading-bacteria, and also a significant molecular biological tool for the rapid classification and accurate identification of many different strains. On the other hand, it also showed that rich bacterial resources existed in mangrove areas, and that exploring and developing the functional microorganism from these mangrove areas would have wide use in the study of bioremediation of contaminated environments in the future.  相似文献   

20.
Surveys of stranded marine debris around Motupore Island, a small island in Bootless Bay, Papua New Guinea, revealed exceptionally high loads (up to 78.3itemsm(-2)), with major concentrations in mangrove-dominated, depositional areas. The worst affected, 50-m stretch of shore was estimated to contain >37.000 items with a combined weight of 889kg. Consistent with studies elsewhere, plastics comprised by far the majority of debris across all sites (89.7%). The lack of centralised waste collection and limited village-based resources, coupled with an increasing population, suggests that this issue is a long way from solution. High debris loads thwart attempts to rehabilitate depleted mangrove forests through smothering of seedlings, perpetuating run-off and water quality issues in the bay. Addressing marine debris is thus of fundamental importance for the sustainability of Bootless Bay and its resources, and a critical step in promoting ecosystem resilience.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号