首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dispersion properties of the sausage eigenmodes of oscillations in a thin magnetic flux tube are numerically analyzed in terms of ideal magnetohydrodynamics (MHD). The period of the modes accompanied by the emission of MHD waves into the surrounding medium, which leads to acoustic damping of oscillations, is determined by the radius of the tube, not by its length. The dissipation of the sausage oscillations in comparatively high (?0.7R ) and tenuous (?6 × 108 cm?3) coronal loops is considered. Their Q factor has bound found to be determined by the acoustic damping mechanism. The ratio of the plasma densities outside and inside the loop and the characteristic height of the emission source have been estimated by assuming the quasi-periodic pulsations of meter-wavelength radio emission to be related to the sausage oscillations.  相似文献   

2.
We consider the modulation of nonthermal gyrosynchrotron emission from solar flares by the ballooning and radial oscillations of coronal loops. The damping mechanisms for fast magnetoacoustic modes are analyzed. We suggest a method for diagnosing the plasma of flare loops that allows their main parameters to be estimated from peculiarities of the microwave pulsations. Based on observational data obtained with the Nobeyama Radioheliograph (17 GHz) and using a technique developed for the event of May 8, 1998, we determined the particle density n≈3.7×1010 cm?3, the temperature T≈4×107 K, and the magnetic field strength B≈220 G in the region of flare energy release. A wavelet analysis for the solar flare of August 28, 1999, has revealed two main types of microwave oscillations with periods P1≈7, 14 s and P2≈2.4 s, which we attribute to the ballooning and radial oscillations of compact and extended flare loops, respectively. An analysis of the time profile for microwave emission shows evidence of coronal loop interaction. We determined flare plasma parameters for the compact (T≈5.3×107 K, n≈4.8≈1010 cm?3, B≈280 G) and extended (T≈2.1≈107 K, n≈1.2≈1010 cm?3, B≈160 G) loops. The results of the soft X-ray observations are consistent with the adopted model.  相似文献   

3.
We consider the damping mechanisms for the radial oscillations of solar coronal loops in the approximation of a thin magnetic flux tube. We show that the free tube oscillations can have a high Q if the plasma density inside the magnetic flux tube is much higher than the density outside. We analyze the effect of radial coronal-loop magnetic-field oscillations on the modulation of the microwave radiation from solar flares. In the case of a nonthermal gyrosynchrotron mechanism, the fluxes from optically thin and optically thick sources are modulated in antiphase. Based on our model, we diagnose the flare plasma. For the event of May 23, 1990, we estimate the spectral index for accelerated electrons, α≈4.4, and the magnetic-field strength in the region of energy release, B≈190 G.  相似文献   

4.
The influence of coronal streamer background with nested and closed magnetic fields on the of the triggering of coronal mass ejections (CMEs) is investigated in the meridian plane. In the coronal streamers’ background magnetic structure there are three small-scale closed magnetic fields, of which the middle one has a direction opposite to that of the global dipolar field of coronal streamers. The trigger model of CMEs emerges from beneath this small-scale closed magnetic field and possesses a concentric circular structure with radius of a = 0.1Rs (Rs being the solar radius). The direction of the magnetic field in the front half of the CME trigger model is opposite to that of the small-scale closed field and is the same as that of the streamers’ global dipolar field. As revealed by numerical simulation, when the ratio of the plasma pressure at the center of the CME trigger model to the boundary pressure is m  2, then the emerging model can trigger CMEs. When m < 2, then it cannot. The error in this critical value of 2 is less than 1%.  相似文献   

5.
We consider the plasma mechanism of sub-terahertz emission from solar flares and determine the conditions for its realization in the solar atmosphere. The source is assumed to be localized at the chromospheric footpoints of coronal magnetic loops, where the electron density should reach n ≈ 1015 cm?3. This requires chromospheric heating at heights h ? 500 km to coronal temperatures, which provides a high degree of ionization needed for Langmuir frequencies ν p ≈ 200–400 GHz and reduces the bremsstrahlung absorption of the sub-THz emission as it escapes from the source. The plasma wave excitation threshold for electron-ion collisions imposes a constraint on the lower density limit for energetic electrons in the source, n 1 > 4 × 109 cm?3. The generation of emission at the plasma frequency harmonic ν ≈ 2ν p rather than the fundamental tone turns out to be preferred. We show that the electron acceleration and plasma heating in the sub-THz emission source can be realized when the ballooning mode of the flute instability develops at the chromospheric footpoints of a flare loop. The flute instability leads to the penetration of external chromospheric plasma into the loop and causes the generation of an inductive electric field that efficiently accelerates the electrons and heats the chromosphere in situ. We show that the ultraviolet radiation from the heated chromosphere emerging in this case does not exceed the level observed during flares.  相似文献   

6.
7.
Dynamic spectra of low-frequency modulation of microwave emission from solar flares are obtained. Data of 15 bursts observed in 1989–2000 with Metsähovi radio telescope at 37 GHz have been used. During 13 bursts a 5-min modulation of the microwave emission intensity was detected with the frequency of ν I = 3.2± 0.24 (1σ) mHz. Five bursts revealed a 5-min wave superimposed on a ~1 Hz, linear frequency modulated signal generated, presumably, by coronal magnetic loop, this wave frequency is νfm = 3.38± 0.37 (1σ) mHz. Both intensity and frequency modulations detected are in good agreement with the data on 5-min global oscillations of photosphere and with the data on the umbral velocity oscillations observed in the vicinity of sunspots. Possible role of p-mode photospheric oscillations in modulation of microwave burst emission is discussed.  相似文献   

8.
Zaitsev  V. V.  Stepanov  A. V. 《Solar physics》1983,82(1-2):297-321
We survey the mathematics of non-linear Hamiltonian oscillations with emphasis being laid on the more recently discovered Kolmogorov instability. In the context of radial adiabatic oscillations of stars this formalism predicts a Kolmogorov instability even at low oscillation energies, provided that sufficiently high linear asymptotic modes have been excited. Numerical analysis confirms the occurrence of this instability. It is found to show up already among the lowest order modes, although high surface amplitudes are then required (¦δr¦/R ~ 0.5 for an unstable fundamental mode - first harmonic coupling). On the basis of numerical evidence we conjecture that in the Kolmogorov unstable regime the enhanced coupling due to internal resonance effects leads to an equipartition of energy over all interacting degrees of freedom. We also indicate that the power spectrum of such oscillations is expected to display two components: A very broad band of overlapping pseudo-linear frequency peaks spread out over the asymptotic range, and a strictly non-linear l/f-noise type component close to the frequency origin. It is finally argued that the Kolmogorov instability is likely to occur among non-linearly coupled non-radial stellar modes at a surface amplitude much lower than in the radial case. This lends support to the view that this instability might be operative among the solar oscillations.  相似文献   

9.
The line intensity of the green coronal line and the continuum intensity are derived from the filter and white light photographs of the solar corona obtained during the 1980 total solar eclipse. Ratio of the line to continuum intensity is plotted against the radial distancer(=R/R0,R 0 is the solar radius), in various position angles. A simple model assuming an electron density dependence of the line and continuum intensities suggests a dominant collisional mechanism for the excitation of the line in the innermost regions (~ 1.4R 0). The measured line to continuum ratio tends to a constant value at different radial distances in different position angles. The constancy of the measured line to continuum ratio indicates significant radiative excitation beyond 1.4 R0, in some of the position angles.  相似文献   

10.
The 5 July 2012 solar flare SOL2012-07-05T11:44 (11:39?–?11:49 UT) with an increasing millimeter spectrum between 93 and 140 GHz is considered. We use space and ground-based observations in X-ray, extreme ultraviolet, microwave, and millimeter wave ranges obtained with the Reuven Ramaty High-Energy Solar Spectroscopic Imager, Solar Dynamics Observatory (SDO), Geostationary Operational Environmental Satellite, Radio Solar Telescope Network, and Bauman Moscow State Technical University millimeter radio telescope RT-7.5. The main parameters of thermal and accelerated electrons were determined through X-ray spectral fitting assuming the homogeneous thermal source and thick-target model. From the data of the Atmospheric Imaging Assembly/SDO and differential-emission-measure calculations it is shown that the thermal coronal plasma gives a negligible contribution to the millimeter flare emission. Model calculations suggest that the observed increase of millimeter spectral flux with frequency is determined by gyrosynchrotron emission of high-energy (\(\gtrsim 300\) keV) electrons in the chromosphere. The consequences of the results are discussed in the light of the flare-energy-release mechanisms.  相似文献   

11.
A number of fundamental questions as regards the physical nature of sunspots are formulated. In order to answer these questions, we apply the model of a round-shaped unipolar sunspot with a lower boundary consisting of cool plasma and with strong magnetic field at the depth of about 4 Mm beneath the photosphere, in accordance with the data of local helioseismology and with certain physically sound arguments (the shallow sunspot model). The magnetic configuration of a sunspot is assumed to be close to the observed one and similar to the magnetic field of a round solenoid of the appropriate size. The transverse (horizontal) and longitudinal (vertical) equilibria of a sunspot were calculated based on the thermodynamic approach and taking into account the magnetic, gravitational, and thermal energy of the spot and the pressure of the environment. The dependence of the magnetic field strength in the sunspot center, B 0, on the radius of the sunspot umbra a is derived theoretically for the first time in the history of sunspot studies. It shows that the magnetic field strength in small spots is about 700 Gauss (G) and then increases monotonically with a, tending asymptotically to a limit value of about 4000 G. This dependence, B 0(a) includes, as parameters, the gravity acceleration on the solar surface, the density of gas in the photosphere, and the ratio of the radius of the spot (including penumbra), a p, to the radius of its umbra a. It is shown that large-scale subsurface flows of gas in the sunspot vicinity, being the consequence but not the cause of sunspot formation, are too weak to contribute significantly to the pressure balance of the sunspot. Stability of the sunspot is provided by cooling of the sunspot plasma and decreasing of its gravitational energy due to the vertical redistribution of the gas density when the geometric Wilson depression of the sunspot is formed. The depth of a depression grows linearly with B 0, in contrast to the quadratic law for the magnetic energy. Therefore, the range of stable equilibria turns out to be limited: large spots, with radius a larger than some limit value (about 12–18 Mm, depending on the magnetic field configuration), are unstable. It explains the absence of very large spots on the Sun and the appearance of light bridges in big spots that divide the spot into a few parts. The sunspots with B 0≈2.6÷2.7 kilogauss (kG) and a≈5 Mm are most stable. For these spots, taken as a single magnetic structure, the period of their vertical eigen oscillations is minimal and amounts, according to the model, to 10–12 hours. It corresponds well to the period derived from the study of long-term oscillations of sunspots using SOHO/MDI data.  相似文献   

12.
We analyze multiwavelength observations of an M2.9/1N flare that occurred in AR NOAA 11112 on 16 October 2010. AIA 211 Å EUV images reveal the presence of a faster coronal wave (decelerating from ≈?1390 to ≈?830 km?s?1) propagating ahead of a slower wave (decelerating from ≈?416 to ≈?166 km?s?1) towards the western limb. The dynamic radio spectrum from Sagamore Hill radio telescope shows the presence of a metric type II radio burst, which reveals the presence of a coronal shock wave (speed ≈?800 km?s?1). The speed of the faster coronal wave, derived from AIA 211 Å images, is found to be comparable to the coronal shock speed. AIA 171 Å high-cadence observations showed that a coronal loop, which was located at a distance of ≈?0.32R to the west of the flaring region, started to oscillate by the end of the impulsive phase of the flare. The results indicate that the faster coronal wave may be the first driver of the transversal oscillations of coronal loop. As the slower wave passed through the coronal loop, the oscillations became even stronger. There was a plasmoid eruption observed in EUV and a white-light CME was recorded, having velocity of ≈?340?–?350 km?s?1. STEREO 195 Å images show an EIT wave, propagating in the same direction as the lower-speed coronal wave observed in AIA, but decelerating from ≈?320 to ≈?254 km?s?1. These observations reveal the co-existence of both waves (i.e. coronal Moreton and EIT waves), and the type II radio burst seems to be associated with the coronal Moreton wave.  相似文献   

13.
The intensity of the green coronal Fe XIV λ530.3-nm line is correlated with sunspot areas and the magnetic field strength calculated for a distance of 1.1R . The relation of the green line emission to large-scale and local magnetic fields is shown to change differently with cycle phase. Large-scale coronal magnetic fields play a decisive role at the ascending phase, while a slightly higher correlation of the green line intensity with the local magnetic fields of sunspots is observed at the descending phase. Our results can be used to construct and test various solar coronal heating models.  相似文献   

14.
Ideal and resistive ballooning modes are investigated for different ratios of a two-layer stratified density region representing a model for the photospheric/coronal boundary. Construction of the ballooning equations using a WKB approach is justified by comparison between the values of the growth rate obtained using Hain-Lüst and ballooning equations together with a WKB integral relation. Different values of the density ratio, radius, and resistivity are considered. Sausage-type and kink-type instabilities are found. One of these, depending on the value of r remained unstable for large density ratios. The other instability tended to marginal stability as the density ratio was increased, and allowed parallel and perpendicular flows across the boundary. This is contrary to the predictions of both the rigid-wall and flow-through conditions.  相似文献   

15.
Based on the methods of coronal seismology, we have investigated the ten-second quasi-periodic pulsations of the optical flare emission from the active red dwarf EQ Peg B detected with the William Herschel Telescope on La Palma. We propose and analyze a model in which they could be produced by sausage oscillations of a coronal flare loop. The amplitude and phase relations between the displacement components of the radial oscillations and the conditions for their excitation in loops with footpoints frozen into the photosphere are considered. The temperature (≈6 × 107 K), plasma density (≈2.7 × 1011 cm−3), and magnetic field strength (≈540 G) in the region of energy release have been determined. Our estimate of the flare loop length (≈0.4R ) provides evidence for the existence of extended coronae on red dwarf stars.  相似文献   

16.
Based on an analogy between stellar and solar flares, we investigate the ten-second oscillations detected in the U and B bands on the star EV Lac. The emission pulsations are associated with fast magnetoacoustic oscillations in coronal loops. We have estimated the magnetic field, B ≈ 320 G; the temperature, T ≈ 3.7 × 107 K; and the plasma density, n ≈ 1.6 × 1011 cm?3, in the region of energy release. We provide evidence suggesting that the optical emission source is localized at the loop footpoints.  相似文献   

17.
Based on observational data obtained with the RT-22 Crimean Astrophysical Observatory radio telescope at frequencies of 8.6 and 15.4 GHz, we investigate the quasi-periodic variations of microwave emission from solar active regions with periods Tp<10 min. As follows from our wavelet analysis, the oscillations with periods of 3–5 min and 10–40 s have the largest amplitudes in the dynamic power spectra, while there are virtually no oscillations with Tp<10 s. Our analysis shows that acoustic modes with Tp?1 min strongly dissipate in the lower solar corona due to thermal conduction losses. The oscillations with Tp=10–40 s are associated with Alfvén disturbances. We analyze the influence of acoustic and Alfvén oscillations on the thermal mechanisms of microwave emission in terms of the homogeneous model. We discuss the probable coronal heating sources.  相似文献   

18.
We investigate the origin of the increasing spectra observed at submillimeter wavelengths detected in the flare on 2 November 2003 starting at 17:17 UT. This flare, classified as an X8.3 and 2B event, was simultaneously detected by RHESSI and the Solar Submillimeter Telescope (SST) at 212 and 405 GHz. Comparison of the time profiles at various wavelengths shows that the submillimeter emission resembles that of the high-energy X rays observed by RHESSI whereas the microwaves observed by the Owens Valley Solar Array (OVSA) resemble that of ∼50 keV X rays. Moreover, the centroid position of the submillimeter radiation is seen to originate within the same flaring loops of the ultraviolet and X-ray sources. Nevertheless, the submillimeter spectra are distinct from the usual microwave spectra, appearing to be a distinct spectral component with peak frequency in the THz range. Three possibilities to explain this increasing radio spectra are discussed: (1) gyrosynchrotron radiation from accelerated electrons, (2) bremsstrahlung from thermal electrons, and (3) gyrosynchrotron emission from the positrons produced by pion or radioactive decay after nuclear interactions. The latter possibility is ruled out on the grounds that to explain the submillimeter observations requires 3000 to 2×105 more positrons than what is inferred from X-ray and γ-ray observations. It is possible to model the emission as thermal; however, such sources would produce too much flux in the ultraviolet and soft X-ray wavelengths. Nevertheless we are able to explain both spectral components at microwave and submillimeter wavelengths by gyrosynchrotron emission from the same population of accelerated electrons that emit hard X rays and γ rays. We find that the same 5×1035 electrons inferred from RHESSI observations are responsible for the compact submillimeter source (0.5 arcsec in radius) in a region of 4500 G low in the atmosphere, and for the traditional microwave spectral component by a more extended source (50 arcsec) in a 480 G magnetic field located higher up in the loops. The extreme values in magnetic field and source size required to account for the submillimeter emission can be relaxed if anisotropy and transport of the electrons are taken into account.  相似文献   

19.
We present the optical spectroscopic study of two classical Be stars, 59 Cyg and OT Gem obtained over a period of few months in 2009. We detected a rare triple-peak H α emission phase in 59 Cyg and a rapid decrease in the emission strength of H α in OT Gem, which are used to understand their circumstellar disks. We find that 59 Cyg is likely to be rapid rotator, rotating at a fractional critical rotation of ~0.80. The radius of the H α emission region for 59 Cyg is estimated to be R d/R ? ~ 10.0, assuming a Keplerian disk, suggesting that it has a large disk. We classify stars which have shown triple-peaks into two groups and find that the triple-peak emission in 59 Cyg is similar to ζ Tau. OT Gem is found to have a fractional critical rotation of ~0.30, suggesting that it is either a slow rotator or viewed in low inclination. In OT Gem, we observed a large reduction in the radius of the H α emission region from ~6.9 to ~1.7 in a period of three months, along with the reduction in the emission strength. Our observations suggest that the disk is lost from outside to inside during this disk loss phase in OT Gem.  相似文献   

20.
The large-scale solar velocity field has been measured over an aperture of radius 0.8 R on 121 days between April and September, 1976. Measurements are made in the line Fei 5123.730 Å, employing a velocity subtraction technique similar to that of Severny et al. (1976). Comparisons of the amplitude and frequency of the five-minute resonant oscillation with the geomagnetic C9 index and magnetic sector boundaries show no evidence of any relationship between the oscillations and coronal holes or sector structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号