首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
We investigated the shear strain field ahead of a supershear rupture. The strain array data along the sliding fault surfaces were obtained during the large-scale biaxial friction experiments at the National Research Institute for Earth Science and Disaster Resilience. These friction experiments were done using a pair of meter-scale metagabbro rock specimens whose simulated fault area was 1.5 m?×?0.1 m. A 2.6-MPa normal stress was applied with loading velocity of 0.1 mm/s. Near-fault strain was measured by 32 two-component semiconductor strain gauges installed at an interval of 50 mm and 10 mm off the fault and recorded at an interval of 1 MHz. Many stick-slip events were observed in the experiments. We chose ten unilateral rupture events that propagated with supershear rupture velocity without preceding foreshocks. Focusing on the rupture front, stress concentration was observed and sharp stress drop occurred immediately inside the ruptured area. The temporal variation of strain array data is converted to the spatial variation of strain assuming a constant rupture velocity. We picked up the peak strain and zero-crossing strain locations to measure the cohesive zone length. By compiling the stick-slip event data, the cohesive zone length is about 50 mm although it scattered among the events. We could not see any systematic variation at the location but some dependence on the rupture velocity. The cohesive zone length decreases as the rupture velocity increases, especially larger than \( \sqrt{2} \) times the shear wave velocity. This feature is consistent with the theoretical prediction.  相似文献   

2.
Seismicity simulation with a rate- and state-dependent friction law   总被引:3,自引:0,他引:3  
The dynamic motions and stabilities of a single-degree-of-freedom elastic system controlled by different friction laws are compared. The system consists of a sliding block connected to an elastic spring, driven at a constant velocity. The friction laws are a laboratory-inferred friction law called the rate-and-state-dependent friction law, proposed by Dieterich and Ruina, and a simple friction law described by dynamic and static frictions. We further extend the solution to a one-dimensional mass-spring model which is an analog of a fault controlled by the rate-and-state-dependent friction law. This model predicts non uniform slip and stress drop along the rupture length of a heterogeneous fault. This result is very different from some earlier modelings based on the simple friction law and a slip weakening friction law. In those earlier modelings the stress and slip functions become smoother with time along the length of the fault rupture, owing to the interactions between fault segments during slip. Because of this smoothing process the number of small events will decrease with time, and the universilly observed stationary magnitude-frequency relation cannot be explained. The interaction between a fault segment and its neighboring segments can be measured when the post-slip stress on this segment is compared with the stress on an identical segment (represented by a block in this modeling) without neighboring segments. If the post-slip stress of the former is much higher than that of the latter, strong interaction exists; if the two are close, only weak interaction exists. The interaction is determined by the relative motion between fault segments and the time duration of interaction. Our new modeling with the rate-and-state-dependent friction law appears to show no such smoothing effect and provides a physical mechanism for the roughening process in the difference between the fault strength and stress that is necessary to explain the observed stationary magnitude-frequency relation. The noninstantaneous healing predicted by the rate-and-state-dependent friction law may be repsonsible for the recurring nonuniform slip and stress drop, and may be explained by the reduction of interaction among fault segments due to the low frictional strength during the fault stopping. The very low friction during slip stopping allows much longer times than does the higher friction due to instantaneous healing for the fault segments to adjust their motions from an upper-limit slip velocity to almost rest. According to newton's second law, a process with fixed masses and constant velocity changes involves low forces and weak interactions if it is accomplished in a long time period, and vice versa. Our modeling also indicates that the existence of strong patches with higher effective stress on a fault is needed for the occurrence of major events. The creeping section of a fault, such as the one along the San Andreas fault in central California, on the other hand, can be simulated with the rate-and-state-dependent friction law by certain model parameters, which, however, must not include strong patches. In this case small earthquakes and aseismic creep relieve the accumulating strain without any large events.  相似文献   

3.
断层带摩擦稳定性转换及其对应的微破裂特征对于地震成核条件和慢地震机理研究具有重要的意义.本文利用双轴实验装置研究了硬石膏断层带摩擦稳定性的转换及其对应的应变变化、微破裂特征,并分析了实验标本的微观结构.实验结果表明,σ2和加载点速度对断层滑动稳定性具有显著影响.在低σ2条件下,硬石膏断层带出现不稳定滑动,变形以局部化的脆性破裂和摩擦为主;随σ2的增加,断层由不稳定滑动向稳定滑动转换,断层带变形方式逐渐转变为分布式的破裂.在低σ2条件下,硬石膏断层带在较低加载点速度下表现为速度强化且滑动稳定,在中等加载点速度下表现为速度弱化并伴有准周期性的黏滑,在较高加载点速度下又有转向速度强化的趋势,σ2的提高使得速度弱化的范围逐渐减少,滑动趋于稳定.上述两次转换对应不同的微破裂特征,在较高速度下从速度弱化转换为速度强化时,断层滑动伴有能量较小但频度很高的微破裂活动,而在较低速度下从速度弱化转换为速度强化时,断层滑动伴有间歇性的微破裂,这与断层带的微观结构特征有较好的对应关系,表明其转换机制是不同的.  相似文献   

4.
野外地质调查结果显示,断层带常富集碳质.断层带中碳的分布结构是影响断层带电导率特征的一种重要参数.本文在室温、室内湿度和2MPa正应力条件下,对不同石墨含量(3,5,6和7wt%)的石英-石墨混合断层泥模拟样品开展了滑动速率介于500μm·s-1~1m·s-1的摩擦实验及相应的电导率测量,以期研究断层运动对碳分布结构的影响以及断层带电性特征对碳含量及分布的响应情况.结果显示,摩擦滑动能够显著地改变样品的电性特征(电导率大小及其各向异性).在平行滑动面方向(径向),样品电导率随着滑动位移的增加快速增加,在滑动约数十厘米之后,其电导率基本达到稳定状态;在垂直滑动面方向(轴向),样品电导率基本不随摩擦滑动速率和滑动距离而变化.SEM显微结构观测显示,摩擦滑动所引起的电导率各向异性直接反映了石墨分布结构的变化.该研究结果深化了对地震断裂带浅部电性特征的认识,为野外断层带大地电磁测深资料的解释提供了约束,同时对于了解含碳断层的力学性质和弱矿物相在剪切变形中的分布特征及其演化过程等方面也具有重要意义.  相似文献   

5.
A simple cyclic process is proposed to explain why major strike-slip fault zones, including the San Andreas, are weak. Field and laboratory studies suggest that the fluid within fault zones is often mostly sealed from that in the surrounding country rock. Ductile creep driven by the difference between fluid pressure and lithostatic pressure within a fault zone leads to compaction that increases fluid pressure. The increased fluid pressure allows frictional failure in earthquakes at shear tractions far below those required when fluid pressure is hydrostatic. The frictional slip associated with earthquakes creates porosity in the fault zone. The cycle adjusts so that no net porosity is created (if the fault zone remains constant width). The fluid pressure within the fault zone reaches long-term dynamic equilibrium with the (hydrostatic) pressure in the country rock. One-dimensional models of this process lead to repeatable and predictable earthquake cycles. However, even modest complexity, such as two parallel fault splays with different pressure histories, will lead to complicated earthquake cycles. Two-dimensional calculations allowed computation of stress and fluid pressure as a function of depth but had complicated behavior with the unacceptable feature that numerical nodes failed one at a time rather than in large earthquakes. A possible way to remove this unphysical feature from the models would be to include a failure law in which the coefficient of friction increases at first with frictional slip, stabilizing the fault, and then decreases with further slip, destabilizing it.  相似文献   

6.
本文用三维非连续变形与有限元相结合(DDA+FEM)的方法,在青藏川滇地区三维构造块体相互制约的大背景中,通过用GPS资料做位移速率边界约束和震源机制约束,计算得到研究区的初始位移场和应力场与该地区GPS测量结果和震源机制分布结果基本一致.在此基础上进一步数值模拟1997年玛尼7.9级大震的发生过程,研究大震引起研究区各块体边界断层应力状态变化的特征.(1)发震断层两侧发生左旋走滑错动,最大水平位错大约7 m;(2)深部位错面上位错分布与用地震波资料震源反演的结果类似;(3)最大差应力变化等值线图与由星载D\|INSAR技术获取的地表形变场图像相似;(4)地表垂直位移表明地震断层面略向北逆冲.计算模拟得到了玛尼地震发生引起青藏川滇地区构造块体系统各边界断层上库仑破裂应力变化的分布,表明玛尼大震的发生除了使其发震断层的两端库仑破裂应力增大,应力进一步集中外,位于上地壳层上东昆仑断裂中段的2001年昆仑山8.1大震(H=11 km)发震断层段的库仑破裂应力增加约2 MPa,位于中地壳层上喀拉昆仑断裂带中的2008年改则6.9级地震(H=30 km)发震断层段的库仑破裂应力也增加约0.7 MPa,可见这两个已接近破裂强度地段的失稳对发生大震起了一定促进作用.研究结果也表明:作者发展的三维DDA+FEM方法能有效地用于大震活动与各构造块体相互作用关系的研究.  相似文献   

7.
热水条件下黑云母断层泥的摩擦强度与稳定性   总被引:1,自引:0,他引:1       下载免费PDF全文
路珍  何昌荣 《地球物理学报》2014,57(4):1123-1132
黑云母是自然界常见的层状硅酸盐矿物,其摩擦系数不高且化学稳定性好,对其摩擦性质的关注可能会对弱断层的研究有所帮助.本次工作选取的实验温度条件对应于典型地壳强度模型中脆塑性转化带的范围,为300 ℃和400 ℃.有效正应力为200 MPa,孔隙水压包括10 MPa和30 MPa,在此条件下对黑云母模拟断层泥进行摩擦实验研究.实验得出黑云母的摩擦系数平均在0.36左右.速度依赖性随温度升高速度弱化的程度增强,表现为300 ℃为十分微弱的速度弱化,而在400 ℃出现了黏滑行为,代表了更强的速度弱化.显微结构中同时出现了脆性剪切变形和塑性扭折变形,但决定宏观力学性质的显然是脆性剪切变形.在黑云母存在的情况下,本研究的实验结果有助于理解大陆地壳脆塑性转化带中地震的可能性和弱断层深部的变形机制、宏观力学行为以及地震活动.  相似文献   

8.
Effect of fault jogs on frictional behavior: An experimental study   总被引:1,自引:0,他引:1  
Studying the effect of geometrically irregular bodies on the mechanical behavior of fault activity is of significance in understanding the seismic activity along a fault zone. By using rock mechanics ex- periment with medium-scale samples, we have studied the effect of fault jogs, the most common irregularity along fault zones, on frictional behavior. The research indicates that extensional fault jog can be easily fractured because of its low strength and the fractured jog has no obvious resistance to fault sliding, and the micro-fractures occurring in the jog are indicative of stick-slip along the faults. The fault zone containing extensional jogs is characterized by velocity weakening and can be described by rate and state friction law. Compressional fault jog makes fault sliding more difficult because of its high fracturing strength, but the micro-fractures occurring in the tensile areas around fault ends at higher stress level can provide necessary condition for occurrence of stick-slip along the faults before the jog is fractured and thus act as precursors of fault instability. Compression jog can be taken as a stable indicator of fault segmentation until the jog is completely fractured and two faults are linked.  相似文献   

9.
Using Particle Flow Code, a discrete element model is presented in this paper that allows direct modeling of stick-slip behavior in pre-existing weak planes such as joints, beddings, and faults. The model is used to simulate a biaxial sliding experiment from literature on a saw-cut specimen of Sierra granite with a single fault. The fault is represented by the smooth-joint contact model. Also, an algorithm is developed to record the stick-slip induced microseismic events along the fault. Once the results compared well with laboratory data, a parametric study was conducted to investigate the evolution of the model’s behavior due to varying factors such as resolution of the model, particle elasticity, fault coefficient of friction, fault stiffness, and normal stress. The results show a decrease in shear strength of the fault in the models with smaller particles, smaller coefficient of friction of the fault, harder fault surroundings, softer faults, and smaller normal stress on the fault. Also, a higher rate of displacement was observed for conditions resulting in smaller shear strength. An increase in b-values was observed by increasing the resolution or decreasing the normal stress on the fault, while b-values were not sensitive to changes in elasticity of the fault or its surrounding region. A larger number of recorded events were observed for the models with finer particles, smaller coefficient of friction of the fault, harder fault surroundings, harder fault, and smaller normal stress on the fault. The results suggest that it is possible for the two ends of a fault to be still while there are patches along the fault undergoing stick-slips. Such local stick-slips seem to provide a softer surrounding for their neighbor patches facilitating their subsequent stick-slips.  相似文献   

10.
It is a long-standing question whether granular fault material such as gouge plays a major role in controlling fault dynamics such as seismicity and slip-periodicity. In both natural and experimental faults, granular materials resist shear and accommodate strain via interparticle friction, fracture toughness, fluid pressure, dilation, and interparticle rearrangements. Here, we isolate the effects of particle rearrangements on granular deformation through laboratory experiments. Within a sheared photoelastic granular aggregate at constant volume, we simultaneously visualize both particle-scale kinematics and interparticle forces, the latter taking the form of force-chains. We observe stick-slip deformation and associated force drops during an overall strengthening of the shear zone. This strengthening regime provides insight into granular rheology and conditions of stick-slip periodicity, and may be qualitatively analogous to slip that accompanies longer term interseismic strengthening of natural faults. Of particular note is the observation that increasing the packing density increases the stiffness of the granular aggregate and decreases the damping (increases time-scales) during slip events. At relatively loose packing density, the slip displacements during the events follow an approximately power-law distribution, as opposed to an exponential distribution at higher packing density. The system exhibits switching between quasi-periodic and aperiodic slip behavior at all packing densities. Higher packing densities favor quasi-periodic behavior, with a longer time interval between aperiodic events than between quasi-periodic events. This difference in the time-scale of aperiodic stick-slip deformation is reflected in both the kinematics of interparticle slip and the force-chain dynamics: all major force-chain reorganizations are associated with aperiodic events. Our experiments conceptually link observations of natural fault dynamics with current models for granular stick-slip dynamics. We find that the stick-slip dynamics are consistent with a driven harmonic oscillator model with damping provided by an effective viscosity, and that shear-transformation-zone, jamming, and crackling noise theories provide insight into the effective stiffness and patterns of shear localization during deformation.  相似文献   

11.
—Measurements indicate that stress magnitudes in the crust are normally limited by the frictional equilibrium on pre-existing, optimally oriented faults. Fault zones where these limitations are frequently reached are referred to as seismic zones. Fault zones in the crust concentrate stresses because their material properties are different from those of the host rock. Most fault zones are spatially relatively stable structures, however the associated seismicity in these zones is quite variable in space and time. Here we propose that this variability is attributable to stress-concentration zones that migrate and expand through the fault zone. We suggest that following a large earthquake and the associated stress relaxation, shear stresses of a magnitude sufficient to produce earthquakes occur only in those small parts of the seismic zone that, because of material properties and boundary conditions, encourage concentration of shear stress. During the earthquake cycle, the conditions for seismogenic fault slip migrate from these stress-concentration regions throughout the entire seismic zone. Thus, while the stress-concentration regions continue to produce small slips and small earthquakes throughout the seismic cycle, the conditions for slip and earthquakes are gradually reached in larger parts of, and eventually the whole, seismogenic layer of the seismic zone. Prior to the propagation of an earthquake fracture that gives rise to a large earthquake, the stress conditions in the zone along the whole potential rupture plane must be essentially similar. This follows because if they were not, then, on entering crustal parts where the state of stress was unfavourable to this type of faulting, the fault propagation would be arrested. The proposed necessary homogenisation of the stress field in a seismic zone as a precursor to large earthquakes implies that by monitoring the state of stress in a seismic zone, its large earthquakes may possibly be forecasted. We test the model on data from Iceland and demonstrate that it broadly explains the historical, as well as the current, patterns of seismogenic faulting in the South Iceland Seismic Zone.  相似文献   

12.
鲜水河断裂带是四川西部一条晚第四纪强烈左旋走滑活动的构造带,历史上发生多次强震. 它与西北侧的甘孜—玉树断裂带一起,构成青藏高原东部的侧向滑移构造系统中的川滇活动地块的北边界——羌塘地块的东北边界. 鲜水河断裂带北西段可以分成4个段落,每一段落均可作为一个独立的基本破裂单元而发生地震破裂,亦有可能发生不同尺度的多段联合瞧裂. 对鲜水河断裂带北西段不同尺度破裂的震级及复发间隔进行研究. 根据该地区的地质、地球物理、测量及地震等方面的资料,结合我国强震复发的特点,分析了拉分盆地内部的滑动速率分布,以确定各段落的等效长度和倾向宽度,从而建立适合我国大陆走滑断裂的面波震级与断裂发震面积的关系式;进而运用地震矩方法,考虑断层之间的相互作用,结合专家意见建立了该段的矩平衡断裂破裂模型;最后,给出了鲜水河断裂带北西段各破裂源特征化地震的复发间隔、震级大小和不确定性,以及他与中小地震的联合震级分布. 结果表明,鲜水河断裂带北西段较易发生单段破裂,复发间隔在100~150年左右.  相似文献   

13.
Strike–slip faults are a defining feature of plate tectonics, yet many aspects of their development and evolution remain unresolved. For intact materials and/or regions, a standard sequence of shear development is predicted from physical models and field studies, commencing with the formation of Riedel shears and culminating with the development of a throughgoing fault. However, for materials and/or regions that contain crustal heterogeneities (normal and/or thrust faults, joints, etc.) that predate shear deformation, kinematic evolution of strike–slip faulting is poorly constrained. We present a new plane-stress finite-strain physical analog model developed to investigate primary deformation zone evolution in simple shear, pure strike–slip fault systems in which faults or joints are present before shear initiation. Experimental results suggest that preexisting mechanical discontinuities (faults and/or joints) have a marked effect on the geometry of such systems, causing deflection, lateral distribution, and suppression of shears. A lower limit is placed on shear offset necessary to produce a throughgoing fault in systems containing preexisting structures. Fault zone development observed in these experiments provides new insight for kinematic interpretation of structural data from strike–slip fault zones on Earth, Venus, and other terrestrial bodies.  相似文献   

14.
为研究不同应力状态(包括主应力相对大小)和摩擦系数对大量地震P波初动辐射花样(综合P波辐射花样)的影响,首先给出了不同应力状态下的剪应力、摩擦应力和库仑破裂应力在断层面法向上的三维分布.表明即使在不考虑摩擦的情况下,剪应力在不同取向断层面上的分布也有很大差别,摩擦应力也在不同取向断层面上造成一定影响.其次,根据库仑破裂...  相似文献   

15.
Variations of shear wave splitting in the 2008 Wenchuan earthquake region   总被引:4,自引:0,他引:4  
Through the analysis of S-wave particle motion of local events in the shear wave window, the polariza-tion directions of the faster shear wave and the delay times between the faster and the slower shear waves were derived from seismic recordings at the stations near the fault zones. The shear wave split-ting results of seven stations in the area of Longmenshan fault zone reveal spatial variation of the po-larization directions of the fast shear wave. The directions at stations in the southeastern side of the Longmenshan fault zone (in the Sichuan Basin area) are in the NE direction, whereas the direction at station PWU (in the Plateau), which is in the northwestern side of the faults, is in the EW direction. Systematic changes of the time delays between two split shear waves were also observed. At station L5501 in the southern end of the aftershock zone, the delay times of the slower shear wave decrease systematically after the main shock. After the main shock, the delay times at station PWU were longer than those before the earthquake. Seismic shear wave splitting is caused mostly by stress-aligned microcracks in the rock below the stations. The results demonstrate changes of local stress field dur-ing the main-shock and the aftershocks. The stress in the southern part of Wenchuan seismogenic zone was released by the main-shock and the aftershocks. The crustal stresses were transferred to the northeastern part of the zone, resulting in stress increase at station PWU after the main-shock.  相似文献   

16.
The Zuccale fault is a regional, low-angle, normal fault, exposed on the Isle of Elba in central Italy that accommodated a total shear displacement of 6–8 km. The fault zone structure and fault rocks formed at <8 km crustal depth. The present-day fault structure is the final product of several deformation processes superposed during the fault history. In this study, we report results from a series of rotary shear experiments performed on 1-mm thick powdered gouges made from several fault rock types obtained from the Zuccale fault. The tests were done under conditions ranging from room temperature to in situ conditions (i.e., at temperatures up to 300 °C, applied normal stresses up to 150 MPa, and fluid-saturated.) The ratio of fluid pressure to normal stress was held constant at either λ = 0.4 or λ = 0.8 to simulate an overpressurized fault. The samples were sheared at a constant sliding velocity of 10 μm/s for at least 5 mm, after which a velocity-stepping sequence from 1 to 300 μm/s was started to determine the velocity dependence of friction. This can be represented by the rate-and-state parameter (a–b), which was determined by an inversion of the data to the rate-and-state equations. Friction of the various fault rocks varies between 0.3 and 0.8, similar to values obtained in previous studies, and decreases with increasing phyllosilicate content. Friction decreases mildly with temperature, whereas normal stress and fluid pressure do not affect friction values systematically. All samples exhibited velocity strengthening, conditionally stable behavior under room temperature conditions and (ab) increased with increasing sliding velocity. In contrast, velocity weakening, accompanied by stick–slips, was observed for the strongest samples at 300 °C and sliding velocities below 10 μm/s. An increase in fluid pressure under these conditions led to a further reduction in (a–b) for all samples, so that they exhibited unstable, stick–slip behavior at low sliding velocity. The results suggest that phyllosilicate-bearing fault rocks can deform by stable, aseismic creep at low, resolved shear stress and low shear rate conditions. An increase in fluid pressure or loading of stronger portions could lead to a runaway instability. The runaway instability might be limited in size because of (1) the fault heterogeneity, (2) the observed strengthening at higher sliding velocities, and (3) a co-seismic drop in pore-fluid pressure.  相似文献   

17.
断层泥的再生显微结构特征及其地震地质意义   总被引:3,自引:1,他引:3  
张秉良  李建国 《地震地质》1995,17(3):204-206
三轴剪切摩擦实验后的断层泥与天然断层泥的再生显微结构特征研究表明,断层泥的显微结构特征与断层滑动方式之间有一定的关系,稳滑使断层泥变形均匀,产生低角度剪切(<14°)、布丁构造和颗粒碎裂流动。粘滑使断层泥局部发生强烈变形、高角度剪切(>14°)和碎粒出现随机裂纹等。断层泥的再生显微结构特征可用作鉴别古地震的存在  相似文献   

18.
Fracture and frictional sliding are considered as phenomena involving brittle failure. Brittle failure is preceded by the formation of small (subcritical) cracks. In non-water-saturated rock, the distribution, shape and size of these suberitical cracks determine the change in the physical properties prior to failure. A model is proposed which suggests that the spatial and temporal distribution, shape and size of subcritical cracks within a stressed rock depend upon the rate of deformation and the volatile content.As a rock is stressed beyond about 50 percent of its ultimate failure stress, dilatancy is initiated. With increasing stress a broad zone of cracks develops within the dilatant region. The seismic velocities through this zone decrease markedly and the cracks grow more numerous., changing in size and shape. Before brittle failure of the rock occurs, the subcritical cracks interact, leading to a concentration of the zone. During the stage when the zone narrows, the seismic velocities in crease in the surrounding volume due to local rotation of stresses and consequent closure of some cracks. In most laboratory experiments the stage during which the velocity increases and the now intense deformation zone becomes narrow is very short and difficult to observe experimentally. At very low strain rates and with volatiles present, the crack growth and subsequent interaction lead to the narrowing of the intense deformation zone and therefore to an observable increase in velocity.The above is based upon an interpretation of a number of experiments. Using optical holography we have observed the development and subsequent intensification of a deformation zone. Ultrasonic velocity measurements showed a distinct anomaly (decrease followed by an increase) before failure. The anomaly was only detectable at our lowest experimental strain rates (3×10–8/sec).  相似文献   

19.
—A numerical study is conducted to simulate complicated sliding behavior and earthquake activity on a subducting plate boundary. A 2-D model of a uniform elastic half-space with a semi-infinite thrust fault is set up, and the frictional stress prescribed by a rate- and state-dependent friction law is assumed to act on the plate boundary fault. Spatial nonuniformity of friction parameters representing rate-dependence of friction and of slip-dependence of friction are introduced in the model to obtain complicated sliding behavior in the numerical simulation. Analogs of great earthquakes that break the entire seismogenic plate boundary repeatedly occur at a constant time interval. Smaller events of seismic or aseismic sliding occur during a great earthquake cycle. Regions of rate-strengthening of friction and of a large characteristic distance in slip-dependence of friction behave as barriers or asperities. Rupture propagation is often arrested in such a region and a great earthquake occurs later when the region is broken. The variety of earthquake activity observed in many regions along real plate boundaries may be explained by similar nonuniformity in friction parameters. Conversely, the friction parameters on plate boundaries might be estimated from comparison of theoretical simulations with observations of earthquake activity. Simulation results indicate that spatiotemporal variation in stress due to aseismic sliding may play an important part in generating earthquakes.  相似文献   

20.
We use preseismic, coseismic, and postseismic GPS data of the 1999 Chi-Chi earthquake to infer spatio-temporal variation of fault slip and frictional behavior on the Chelungpu fault. The geodetic data shows that coseismic slip during the Chi-Chi earthquake occurred within a patch that was locked in the period preceding the earthquake, and that afterslip occurred dominantly downdip from the ruptured area. To first-order, the observed pattern and the temporal evolution of afterslip is consistent with models of the seismic cycle based on rate-and-state friction. Comparison with the distribution of temperature on the fault derived from thermo-kinematic modeling shows that aseismic slip becomes dominant where temperature is estimated to exceed 200° at depth. This inference is consistent with the temperature induced transition from velocity-weakening to velocity-strengthening friction that is observed in laboratory experiments on quartzo-feldspathic rocks. The time evolution of afterslip is consistent with afterslip being governed by velocity-strengthening frictional sliding. The dependency of friction, μ, on the sliding velocity, V, is estimated to be ${{\partial \mu }/{\partial \, {\rm ln}\, V}} = 8 \times 10^{ - 3}$ . We report an azimuthal difference of about 10–20° between preseismic and postseismic GPS velocities, which we interpret to reflect the very low shear stress on the creeping portion of the décollement beneath the Central Range, of the order of 1–3 MPa, implying a very low friction of about 0.01. This study highlights the importance of temperature and pore pressure in determining fault frictional sliding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号