首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
2.
In this paper, ground motion during six past devastating earthquakes and one possible future event in the northeastern part of India is estimated by seismological approaches. Considering uncertainty in the input source parameters, a series of ground motions have been simulated. The peak ground acceleration (PGA) and response spectra at important cities and towns in the epicentral regions of these events are obtained. The PGA distribution over the entire northeastern region of India, encompassing the epicenter, is presented in the form of contours. The obtained results can be used for the seismic analysis and design of structures in this region.  相似文献   

3.
Records of the Niigata Chuetsu-Oki earthquake (July, 16, 2007, M w?=?6.6, depth ~17?km) and its aftershocks from seismic vertical arrays deployed at the territory of the Kashiwazaki-Kariwa nuclear power plant (~15?km from the fault) are used to study the soil behavior down to ~250?m during strong ground motion. Nonlinear models of soil behavior during the main shock and six aftershocks are constructed, and stresses and strains induced by the strong motion in the soil layers at various depths are estimated. The data are processed using the method developed by Pavlenko and Irikura (Bull Seismol Soc Am 96(6): 2131–2145, 2003) and previously applied for studying the soil behavior in near-fault zones during the 1995 Kobe and 2000 Tottori earthquakes. A rather good agreement between the recorded and simulated acceleration time histories testifies to the validity of the obtained vertical distributions of stresses and strains in soil layers. In the upper, softer layers (~45?m) at the territory of the plant, the shear moduli were reduced by ~30–35% during the main shock and by ~1.5–3% during the aftershocks. The constructed models of soil behavior can be used in scenario earthquake shaking maps of Japan where, based on source modeling parameters, the level of strong motion can be evaluated for the territory of the power plant in future earthquakes with various magnitudes and fault planes. Using methods of stochastic finite-fault modeling of ground motions from the Chuetsu-Oki earthquake, we estimated input motion to the soil layers during the main shock and found that it differs from the imposed motion (recorded by the deepest sensor of the vertical array) by slightly decreased (by a factor of ~1.2) low-frequency (f?<?10?Hz) spectral components.  相似文献   

4.
The Load/Unload Response Ratio (LURR) method is a proposed technique to predict earthquakes that was first put forward by Yin (1987). LURR is based on the idea that when an area enters the damage regime, the rate of seismic activity during loading of the tidal cycle increases relative to the rate of seismic activity during unloading in the months to one year preceding a large earthquake. Since earth tides generally contribute the largest temporal variations in crustal stress, it seems plausible that earth tides would trigger earthquakes in areas that are close to failure (e.g., Vidale et al., 1998). However, the vast majority of studies have shown that earth tides do not trigger earthquakes (e.g., Vidale et al., 1998; Heaton, 1982; Rydelek et al., 1992). In this study, we conduct an independent test of the LURR method, since there would be important scientific and social implications if it were proven to be a robust method of earthquake prediction. Smith and Sammis (2004) undertook a similar study and found no evidence that there was predictive significance to the LURR method. We have repeated calculations of LURR for the Northridge earthquake in California, following both the parameters of X.C. Yin (personal communication) and the somewhat different ones of Smith and Sammis (2004). Though we have followed both sets of parameters closely, we have been unable to reproduce either set of results. Our examinations have shown that the LURR method is very sensitive to certain parameters. Thus it seems likely that the discrepancies between our results and those of previous studies are due to unaccounted for differences in the calculation parameters. A general agreement was made at the 2004 ACES Workshop in China between research groups studying LURR to work cooperatively to resolve the differences in methods and results, and thus permit more definitive conclusions on the potential usefulness of the LURR method in earthquake prediction.  相似文献   

5.
Three-dimensional frequency dependent S-wave quality factor (Qβ(f)) value for the central Honshu region of Japan has been determined in this paper using an algorithm based on inversion of strong motion data. The method of inversion for determination of three-dimensional attenuation coefficients is proposed by Hashida and Shimazaki (J Phys Earth. 32, 299–316, 1984) and has been used and modified by Joshi (Curr Sci. 90, 581–585, 2006; Nat Hazards. 43, 129–146, 2007) and Joshi et al. (J. Seismol. 14, 247–272, 2010). Twenty-one earthquakes digitally recorded on strong motion stations of Kik-net network have been used in this work. The magnitude of these earthquake ranges from 3.1 to 4.2 and depth ranging from 5 to 20 km, respectively. The borehole data having high signal to noise ratio and minimum site effect is used in the present work. The attenuation structure is determined by dividing the entire area into twenty-five three-dimensional blocks of uniform thickness having different frequency-dependent shear wave quality factor. Shear wave quality factor values have been determined at frequencies of 2.5, 7.0 and 10 Hz from record in a rectangular grid defined by 35.4°N to 36.4°N and 137.2°E to 138.2°E. The obtained attenuation structure is compared with the available geological features in the region and comparison shows that the obtained structure is capable of resolving important tectonic features present in the area. The proposed attenuation structure is compared with the probabilistic seismic hazard map of the region and shows that it bears some remarkable similarity in the patterns seen in seismic hazard map.  相似文献   

6.
—The specific barrier model is used for the first time to simulate ground motion accelerations for the purpose of probabilistic seismic hazard analyses at sites near a dominant fault system. It incorporates the simulation of fault geometry and the relationship between the stress drop and seismic moment to estimate the number of cracks on the fault for the specific barrier model. Radiated direct shear waves are established following Boore’s (1983) procedure. The simulated peak ground accelerations (PGA) are then calibrated by strong-motion data. Basically, the model is of uniform source, and the directivity of the source is not taken into consideration. The results show that the calibrated PGA values are not sensitive to the relationship between the stress drop and seismic moment. However, the calibrated PGA values may increase about 20 percent for sites near the fault when the cut-off frequency,?f max?, is raised from 5 Hz to 10 Hz. The variability of the simulated ground motion is, in general, smaller than that of the empirical strong-motion data shown in the literature. This may be improved by adding randomness into the parameter of ?f max and uncertainties into the empirical relationships adopted in the model. The simulated attenuation curves may be used to judge which types of conventional attenuation equations are better at representing the attenuation of PGA for sites near the fault, especially for large earthquake events.  相似文献   

7.
Strong motion data from various regions of India have been used to study attenuation characteristics of horizontal peak acceleration and velocity. The strong ground motion data base considered in the present work consists of various earthquakes recorded in the northern part of India since 1986 with magnitudes 5.7 to 7.2. Using these data, relations for horizontal peak acceleration and velocity, which are $$\begin{gathered} log_{10} a = 1.14 + 0.31M + 0.65log_{10} R \hfill \\ log_{10} v = 0.571 + 0.41M + 0.768log_{10} R \hfill \\ \end{gathered} $$ have been proposed wherea is the peak horizontal acceleration in cm/sec2,v is the peak horizontal velocity in mm/sec,M is body wave magnitude, andR is the hypocentral distance in km. The proposed relations are in reasonable agreement with the small amount of strong ground motion data available for the northern part of India. The present results will be useful in estimating strong ground motion parameters and in the earthquake resistant design in the Himalayan region.  相似文献   

8.
We estimate the corner frequencies of 20 crustal seismic events from mainshock–aftershock sequences in different tectonic environments (mainshocks 5.7 < M W < 7.6) using the well-established seismic coda ratio technique (Mayeda et al. in Geophys Res Lett 34:L11303, 2007; Mayeda and Malagnini in Geophys Res Lett, 2010), which provides optimal stability and does not require path or site corrections. For each sequence, we assumed the Brune source model and estimated all the events’ corner frequencies and associated apparent stresses following the MDAC spectral formulation of Walter and Taylor (A revised magnitude and distance amplitude correction (MDAC2) procedure for regional seismic discriminants, 2001), which allows for the possibility of non-self-similar source scaling. Within each sequence, we observe a systematic deviation from the self-similar \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - 3} \) line, all data being rather compatible with \( M_{0} \propto \mathop f\nolimits_{\text{c}}^{ - (3 + \varepsilon )} \) , where ε > 0 (Kanamori and Rivera in Bull Seismol Soc Am 94:314–319, 2004). The deviation from a strict self-similar behavior within each earthquake sequence of our collection is indicated by a systematic increase in the estimated average static stress drop and apparent stress with increasing seismic moment (moment magnitude). Our favored physical interpretation for the increased apparent stress with earthquake size is a progressive frictional weakening for increasing seismic slip, in agreement with recent results obtained in laboratory experiments performed on state-of-the-art apparatuses at slip rates of the order of 1 m/s or larger. At smaller magnitudes (M W < 5.5), the overall data set is characterized by a variability in apparent stress of almost three orders of magnitude, mostly from the scatter observed in strike-slip sequences. Larger events (M W > 5.5) show much less variability: about one order of magnitude. It appears that the apparent stress (and static stress drop) does not grow indefinitely at larger magnitudes: for example, in the case of the Chi–Chi sequence (the best sampled sequence between M W 5 and 6.5), some roughly constant stress parameters characterize earthquakes larger than M W ~ 5.5. A representative fault slip for M W 5.5 is a few tens of centimeters (e.g., Ide and Takeo in J Geophys Res 102:27379–27391, 1997), which corresponds to the slip amount at which effective lubrication is observed, according to recent laboratory friction experiments performed at seismic slip velocities (V ~ 1 m/s) and normal stresses representative of crustal depths (Di Toro et al. in Nature in press, 2011, and references therein). If the observed deviation from self-similar scaling is explained in terms of an asymptotic increase in apparent stress (Malagnini et al. in Pure Appl Geophys, 2014, this volume), which is directly related to dynamic stress drop on the fault, one interpretation is that for a seismic slip of a few tens of centimeters (M W ~ 5.5) or larger, a fully lubricated frictional state may be asymptotically approached.  相似文献   

9.
We applied the maximum likelihood method produced by Kijko and Sellevoll (Bull Seismol Soc Am 79:645–654, 1989; Bull Seismol Soc Am 82:120–134, 1992) to study the spatial distributions of seismicity and earthquake hazard parameters for the different regions in western Anatolia (WA). Since the historical earthquake data are very important for examining regional earthquake hazard parameters, a procedure that allows the use of either historical or instrumental data, or even a combination of the two has been applied in this study. By using this method, we estimated the earthquake hazard parameters, which include the maximum regional magnitude $ \hat{M}_{\max } , $ the activity rate of seismic events and the well-known $ \hat{b} $ value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship. The whole examined area is divided into 15 different seismic regions based on their tectonic and seismotectonic regimes. The probabilities, return periods of earthquakes with a magnitude M?≥?m and the relative earthquake hazard level (defined as the index K) are also evaluated for each seismic region. Each of the computed earthquake hazard parameters is mapped on the different seismic regions to represent regional variation of these parameters. Furthermore, the investigated regions are classified into different seismic hazard level groups considering the K index. According to these maps and the classification of seismic hazard, the most seismically active regions in WA are 1, 8, 10 and 12 related to the Alia?a Fault and the Büyük Menderes Graben, Aegean Arc and Aegean Islands.  相似文献   

10.
Spatial variability of ground motions has significant influence on dynamic response of extended structures such as bridges and tunnels. In this study, the widely used finite-source ground motion simulation approach, the so-called Empirical Green’s Function (EGF) method, is extended to synthesize seismic motions across an array of stations located at bedrock in the epicentral region of the 1980 El-Asnam region (North-West Algeria). The target event being simulated is the October 10 1980 \( M_{s} = 7.2 \) Earthquake, and the EGF is obtained from the ground motion recorded at Sogedia Factory station during the 8 November 1980 \( M_{L} = 5.6 \) aftershock. Coherency functions are then estimated from the simulated ground accelerations. A parametric study investigating the influence of shear wave velocity, earthquake magnitude, and epicentral distance is conducted by simulating ground acceleration for different scenarios using the Hybrid Green’s Function method. The main finding of the study is that finite source effects can cause significant loss in coherency at bedrock in the near-field. In the far-field, the source effect alone does not seem to produce incoherent motion, which implies that scattering and local site effects could be dominating there. Furthermore, coherency functions are found to be more sensitive to inter-station separation in the near-field than in the far-field. Increasing shear wave velocity seems to increase coherency functions, and larger earthquakes seem to produce more incoherent motion than smaller ones. The simulation method presented here produces incoherent motion mainly due to the finite source effect, while path effects are partially accounted for through the EGF, and local site effects are not considered. In this sense, the estimated coherency functions represent that of plane waves. A parametric model of plane wave coherency is calibrated and presented based on the simulation results. The results indicate that the parametric model can be used as a first approximation, and at least an upper bound of lagged coherency in the near-field region of the El-Asnam Earthquake scenario. This model could be useful in random vibration analysis or generation of spatially variable ground motion for time history analysis of lifeline structures in the study area.  相似文献   

11.
Three periods of volcanic activity connected with tectonic events form the geological history of the Valley of Mexico (Mooser 1963, 1969). An igneous rock suite from rhyodacites to andesites (but lacking rhyolites and basalts) can be observed in each period. During the Tertiary epochs — in the Oligo-Miocene and Upper Miocene-Pliocene — we have a more dacitic volcanism, in the Quaternary epoch a more andesitic volcanism. This result was verified by calculating the average of all available and stratigraphically datable chemical analyses byGunn &Mooser (1971) andNegendank (1972). Using the average chemical composition of the Oligo-Miocene, Upper Miocene-Pliocene and Quaternary products the equivalent igneous rocks were computed using theRittmann-norms in theStreckeisen-Q-A-P-F double triangle with the following result (names in parenthesis are those using the classification ofMiddlemost (1973): Quaternary : quartz-latite-andesite (andesite) Upper Miocene-Pliocene : leuco-quartz-latite-andesite (high lime dacite) Oligo-Miocene : leuco-quartz-latite-andesite (high lime dacite) The equal average composition of the two groups of Tertiary volcanic rocks seems to support the theory of a uniform primary andesite magma apart from which of the two possible theories of petrogenesis one favors. The calculated average trace element abundances show high Cr- and Ni-values which suggests that mantle material was involved if we consider the Tertiary products as partial melting products of the lower crust. A more elegant hypothesis seems to be the model ofGunn &Mooser (1971), who consider these volcanic rocks as partial melting products of oceanic tholeiites or their high pressure derivatives in the sense ofRaleigh &Lee (1969).  相似文献   

12.
The earthquake occurred in Lushan County on 20 April, 2013 caused heavy casualty and economic loss. In order to understand how the seismic energy propagates during this earthquake and how it causes the seismic hazard, we simulated the strong ground motions from a representative kinematic source model by Zhang et al. (Chin J Geophys 56(4):1408–1411, 2013) for this earthquake. To include the topographic effects, we used the curved grids finite difference method by Zhang and Chen (Geophys J Int 167(1):337–353, 2006), Zhang et al. (Geophys J Int 190(1):358–378, 2012) to implement the simulations. Our results indicated that the majority of seismic energy concentrated in the epicentral area and the vicinal Sichuan Basin, causing the XI and VII degree intensity. Due to the strong topographic effects of the mountain, the seismic intensity in the border area across the northeastern of Boxing County to the Lushan County also reached IX degree. Moreover, the strong influence of topography caused the amplifications of ground shaking at the mountain ridge, which is easy to cause landslides. These results are quite similar to those observed in the Wenchuan earthquake of 2008 occurred also in a strong topographic mountain area.  相似文献   

13.
We use a viscous slide model of Jiang and LeBlond (1994) coupled with nonlinear shallow water equations to study tsunami waves in Resurrection Bay, in south-central Alaska. The town of Seward, located at the head of Resurrection Bay, was hit hard by both tectonic and local landslide-generated tsunami waves during the M W 9.2 1964 earthquake with an epicenter located about 150 km northeast of Seward. Recent studies have estimated the total volume of underwater slide material that moved in Resurrection Bay during the earthquake to be about 211 million m3. Resurrection Bay is a glacial fjord with large tidal ranges and sediments accumulating on steep underwater slopes at a high rate. Also, it is located in a seismically active region above the Aleutian megathrust. All these factors make the town vulnerable to locally generated waves produced by underwater slope failures. Therefore it is crucial to assess the tsunami hazard related to local landslide-generated tsunamis in Resurrection Bay in order to conduct comprehensive tsunami inundation mapping at Seward. We use numerical modeling to recreate the landslides and tsunami waves of the 1964 earthquake to test the hypothesis that the local tsunami in Resurrection Bay has been produced by a number of different slope failures. We find that numerical results are in good agreement with the observational data, and the model could be employed to evaluate landslide tsunami hazard in Alaska fjords for the purposes of tsunami hazard mitigation.  相似文献   

14.
We relocated the hypocentral coordinates of small to moderate-sized earthquakes reported by the National Earthquake Information Center (NEIC) between April 2002 and August 2006 in the Gulf of California region and recorded by the broadband stations of the network of autonomously recording seismographs (NARS?CBaja array). The NARS?CBaja array consists of 19 stations installed in the Baja California peninsula, Sonora and Sinaloa, Mexico. The events reported by the preliminary determinations of epicenters (PDE) catalog within the period of interest have moment magnitudes (M w) ranging between 1.1 and 6.7. We estimated the hypocentral location of these events using P and S wave arrivals recorded by the regional broadband stations of the NARS?CBaja and the RESBAN (Red Sismológica de Banda Ancha) arrays and using a standard location procedure with the HYPOCENTER code (Lienert and Havskov in Seism Res Lett 66:26?C36, 1995) as a preliminary step. To refine the location of the initial hypocenters, we used the shrinking box source-specific station term method of Lin and Shearer (J Geophys Res 110, B04304, 2005). We found that most of the seismicity is distributed in the NW?CSE direction along the axis of the Gulf of California, following a linear trend that, from north to south, steps southward near the main basins (Wagner, Delfin, Guaymas, Carmen, Farallon, Pescadero and Alarcon) and spreading centers. We compared the epicentral locations reported in the PDE with the locations obtained using regional arrival times, and we found that earthquakes with magnitudes in the range 3.2?C5.0?mb differ on the average by as much as 43?km. For the M w magnitude range between 5 and 6.7 the discrepancy is less, differing on the average by about 25?km. We found that the relocated epicenters correlate well with the main bathymetric features of the Gulf.  相似文献   

15.
近断层强地震动场预测   总被引:6,自引:2,他引:4       下载免费PDF全文
以1997年4月11日新疆伽师地震(Mw6.1)为例,详细介绍了近断层强地震动场的预测方法.首先,用有限断层震源建模方法建立了该次地震的震源模型;然后,基于动力学拐角频率的地震动随机模拟方法,模拟了该次地震仅有主震加速度记录、且位于巨厚土层上的三个台站的加速度时程,并用实际地震记录进行了验证.在此基础上,基于预测的近断层77个节点的加速度时程的峰值绘制了该次地震的加速度场.结果表明,上述方法模拟的加速度时程在0.5 Hz以上的高频段是可行的、实用的;预测的近断层加速度场具有非常明显的上盘效应.地表最大加速度的范围与断层面上最大凹凸体位置相对应,说明与断层面上凹凸体相对应的地面上的建(构)筑物将会遭受到较为严重的震害.  相似文献   

16.
In this study, the 11 August 2012 M w 6.4 Ahar earthquake is investigated using the ground motion simulation based on the stochastic finite-fault model. The earthquake occurred in northwestern Iran and causing extensive damage in the city of Ahar and surrounding areas. A network consisting of 58 acceleration stations recorded the earthquake within 8–217 km of the epicenter. Strong ground motion records from six significant well-recorded stations close to the epicenter have been simulated. These stations are installed in areas which experienced significant structural damage and humanity loss during the earthquake. The simulation is carried out using the dynamic corner frequency model of rupture propagation by extended fault simulation program (EXSIM). For this purpose, the propagation features of shear-wave including \( {Q}_s \) value, kappa value \( {k}_0 \), and soil amplification coefficients at each site are required. The kappa values are obtained from the slope of smoothed amplitude of Fourier spectra of acceleration at higher frequencies. The determined kappa values for vertical and horizontal components are 0.02 and 0.05 s, respectively. Furthermore, an anelastic attenuation parameter is derived from energy decay of a seismic wave by using continuous wavelet transform (CWT) for each station. The average frequency-dependent relation estimated for the region is \( Q=\left(122\pm 38\right){f}^{\left(1.40\pm 0.16\right)}. \) Moreover, the horizontal to vertical spectral ratio \( H/V \) is applied to estimate the site effects at stations. Spectral analysis of the data indicates that the best match between the observed and simulated spectra occurs for an average stress drop of 70 bars. Finally, the simulated and observed results are compared with pseudo acceleration spectra and peak ground motions. The comparison of time series spectra shows good agreement between the observed and the simulated waveforms at frequencies of engineering interest.  相似文献   

17.
The Lorca 2011 seismic series was recorded by an unprecedented set of high quality on scale broadband seismograms and strong motion accelerograms. The waveforms from permanent and temporary broadband seismic networks deployed in the region by different institutions allowed to invert regional moment tensor for the fore, main and largest aftershock of the complete seismic sequence. Using double-difference algorithm we have performed a precise relocation of the seismic series, where body wave travel times from strong ground motion accelerograms were included in the data set. Regional moment tensor inversion for the three main events show similar oblique-reverse faulting regime with a northeast-southwest fault orientation. The scalar seismic moment, moment magnitude and focal depth retrieved from the inversion yield the following values for each event: \(\hbox {Mo}=6.5\times 10^{16}\) Nm (Mw = 5.2) for the mainshock, \(\hbox {Mo}= 9.6 \times 10^{15}\) Nm (Mw = 4.6) for the foreshock and \(\hbox {Mo}=7.3\times 10^{14}\) Nm (Mw = 3.9) for the large aftershock. The centroid depths range between 4 and 6 km. The double-difference relocation of the seismic series shows significant epicentral differences with the preliminary routine location. The epicentral solutions given by this relocation show a seismic sequence distributed following a NE–SW strike, subparallel to the Alhama de Murcia fault and compatible with the faulting parameters inverted from the moment tensor analysis. The hypocenters of the series generate a subvertical trend in depth distribution, being concentrated between 2 and 6 km. The depth distribution of the main events, which range from 4.6 to 5.5 km, is in good relationship with the faulting and depth parameters deduced from the moment tensor inversion technique. The regional moment tensor solutions for the three largest earthquakes, the epicentral distribution and the focal depths show good relationship with the surface geometry and tectonic regime of the Alhama de Murcia fault. The stress drop deduced for the mainshock gives a value ranging between 58 and 85 bars, which does not support the idea of a high stress drop release as a main factor contributing to the high ground acceleration recorded at Lorca. The PGA values observed at Lorca, which contributed to the high damage independently of structural deficiencies, could be generated mainly by shallowness and proximity to the seismic source together with a directivity effect in the seismic radiation.  相似文献   

18.
The Son-Narmada-Tapti lineament and its surroundings of Central India (CI) is the second most important tectonic regime following the converging margin along Himalayas-Myanmar-Andaman of the Indian sub-continent, which attracted several geoscientists to assess its seismic hazard potential. Our study area, a part of CI, is bounded between latitudes 18°–26°N and longitudes 73°–83°E, representing a stable part of Peninsular India. Past damaging moderate magnitude earthquakes as well as continuing microseismicity in the area provided enough data for seismological study. Our estimates based on regional Gutenberg–Richter relationship showed lower b values (i.e., between 0.68 and 0.76) from the average for the study area. The Probabilistic Seismic Hazard Analysis carried out over the area with a radius of ~300 km encircling Bhopal yielded a conspicuous relationship between earthquake return period (T) and peak ground acceleration (PGA). Analyses of T and PGA shows that PGA value at bedrock varies from 0.08 to 0.15 g for 10 % (T = 475 years) and 2 % (T = 2,475 years) probabilities exceeding 50 years, respectively. We establish the empirical relationships $ {\text{ZPA}}_{(T = 475)} = 0.1146\;[V_{\text{s}} (30)]^{ - 0.2924}, $ and $ {\text{ZPA}}_{(T = 2475)} = 0.2053\;[V_{\text{s}} (30)]^{ - 0.2426} $ between zero period acceleration (ZPA) and shear wave velocity up to a depth of 30 m [V s (30)] for the two different return periods. These demonstrate that the ZPA values decrease with increasing shear wave velocity, suggesting a diagnostic indicator for designing the structures at a specific site of interest. The predictive designed response spectra generated at a site for periods up to 4.0 s at 10 and 2 % probability of exceedance of ground motion for 50 years can be used for designing duration dependent structures of variable vertical dimension. We infer that this concept of assimilating uniform hazard response spectra and predictive design at 10 and 2 % probability of exceedance in 50 years at 5 % damping at bedrocks of different categories may offer potential inputs for designing earthquake resistant structures of variable dimensions for the CI region under the National Earthquake Hazard Reduction Program for India.  相似文献   

19.
A complex seismic sequence characterised by two thrust earthquakes of magnitudes M \(_\mathrm{L}\) 5.9 and M \(_\mathrm{L}\) 5.8 occurred on May 20 and 29, 2012, respectively, and activated the central portion of the Ferrara Arc structure beneath the Po Plain in northern Italy. The sequence, referred to as Emilia 2012, was recorded by the Italian Strong Motion Network, the Irpinia Network, the Friuli Venezia Giulia Network and 15 temporary stations installed by the Civil Protection Department. In this study, we compile and analyse a large dataset that contains 3,273 waveforms from 37 \(M_\mathrm{L} \ge 4.0\) seismic events. The main aim of this paper is to characterise the ground motion induced by the Emilia 2012 seismic sequence and compare it with other data in the Italian strong motion database and to the recent Ground Motion Prediction Equations (GMPEs) developed for northern Italy, all of Italy and Europe. This is achieved by (1) the computation and analysis of the strong motion parameters of the entire Emilia Strong Motion Dataset (ESMD) and (2) a comprehensive investigation of the May 29 event recordings in terms of time–frequency analysis, the ground motion parameters and the response spectra. This detailed analysis was made possible by the temporary Civil Protection Department stations that were installed soon after the May 20 event at several municipalities in the epicentral area. Most of the recordings are characterised by low-frequency content and long durations, which is a result of the thick sedimentary cover that is typical of the Po Plain. The distributions of the observed horizontal peak ground accelerations and velocities (PGAs and PGVs) with distance are generally consistent with the GMPEs. This is particularly true for the data from M \(_\mathrm{L} \ge \) 5.0 (M \(_\mathrm{W}\ge \) 5.0) events, though the data are scattered at distances beyond approximately 60–70 km and show faster attenuation than the European GMPEs. The horizontal components for the May 29 event at two near-fault stations (Mirandola and San Felice sul Panaro) are overestimated by all of the analysed GMPEs. In contrast, the vertical components, which played an important role in the shaking near the source, are underestimated. The May 29 event produced intense velocity pulses on the horizontal components and the highest peak ground acceleration ever recorded in Italy on the vertical component of the Mirandola near-fault station. The ground motion recordings contained in the ESMD significantly enrich the Italian strong motion database. They contribute new information about (1) the possibility of exceeding the largest recorded PGA in Italy, (2) the development of a spectral design that takes into account the role of the vertical component and the extreme variability of the near-fault ground shaking, and (3) the characterisation of the ground motions in deep sedimentary basins.  相似文献   

20.
Strong ground motion parameters for Shillong plateau of northeastern India are examined. Empirical relations are obtained for main parameters of ground motions as a function of earthquake magnitude, fault type, source depth, velocity characterization of medium and distance. Correlation between ground motion parameters and characteristics of seismogenic zones are established. A new attenuation relation for peak ground acceleration is developed, which predicts higher expected PGA in the region. Parameters of ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号