首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
基于数值预报技术的日本新一代海啸预警系统   总被引:7,自引:2,他引:7  
日本是世界上地震海啸发生最频繁的国家之一。从1941年开始,日本气象厅就建立了自己的海啸预警系统。自1993年又一次遭受海啸灾害后,这些经历促使日本气象厅(JMA)开始研制基于数值预报技术的新一代海啸预警系统。该海啸预警系统包括地震监测网、基于数据库技术的快速数值预报以及基于卫星通讯的海啸预警产品快速分发系统这三部分。  相似文献   

4.
The highly vulnerable Pacific southwest coast of Mexico has been repeatedly affected by local, regional and remote source tsunamis. Mexico presently has no national tsunami warning system in operation. The implementation of key elements of a National Program on Tsunami Detection, Monitoring, Warning and Mitigation is in progress. For local and regional events detection and monitoring, a prototype of a robust and low cost high frequency sea-level tsunami gauge, sampling every minute and equipped with 24 hours real time transmission to the Internet, was developed and is currently in operation. Statistics allow identification of low, medium and extreme hazard categories of arriving tsunamis. These categories are used as prototypes for computer simulations of coastal flooding. A finite-difference numerical model with linear wave theory for the deep ocean propagation, and shallow water nonlinear one for the near shore and interaction with the coast, and non-fixed boundaries for flooding and recession at the coast, is used. For prevention purposes, tsunami inundation maps for several coastal communities, are being produced in this way. The case of the heavily industrialized port of Lázaro Cárdenas, located on the sand shoals of a river delta, is illustrated; including a detailed vulnerability assessment study. For public education on preparedness and awareness, printed material for children and adults has been developed and published. It is intended to extend future coverage of this program to the Mexican Caribbean and Gulf of Mexico coastal areas.  相似文献   

5.
葡萄牙破坏性地震和海啸预警系统(DETWS)   总被引:3,自引:0,他引:3  
本文介绍了葡萄牙破坏性地震和海啸预警系统(Destructive Earthquakes and Tsunami Warning System)的构成、地震与海啸信息的检测、海啸预警信息的发布。  相似文献   

6.
— The July 17, 1998 tsunami killed over 2,100 people, injured at least 800 severely enough to require hospitalization, permanently displaced over 10,000 and disrupted the social and economic framework of the coastal communities of eastern Saundaun Province, Papua New Guinea. Initial response to the disaster was delayed 16 hours because of the failure to communicate the magnitude of the impact outside the affected area. Once the scope of the disaster was known, international assistance was rapid and substantial. Medical teams, supplies, air transport and mobile field hospitals were provided to assist national medical personnel and facilities. Seven care centers were established for the displaced survivors. Nineteen countries and 17 NGOs (Non-Governmental Organizations) donated money, relief and rebuilding supplies valued at over 6 million US$ in addition to substantial contributions from national recovery funds and the Catholic Diocese. The three Malol villages, two Arop, four Sissano and the Warupu village were permanently abandoned and new villages established inland. Closure of the lagoon and restriction of coastal fishing impacted adjacent villages as well as tsunami survivors. By the second anniversary of the tsunami construction of schools, water and sanitation systems and some roads had been completed. Survivors were provided tools and building supplies to construct new homes, canoes and fishing equipment. Relief and recovery efforts were complicated by coordination difficulties among the many responding agencies and organizations, the disruption of daily routines for both survivors and villages hosting the care centers, and the intrusion of outside aid workers in a region that had been isolated before the disaster. Adaptation to the new village sites has been difficult due to their inland locations that are hotter, more insect-infested and have water and sanitation difficulties. The high number of casualties from the tsunami was the result of several factors: Population concentrated in the area of maximum tsunami impact. Date and time of occurrence. Siting of villages on vulnerable sand spits. Failure of residents to self-evacuate after feeling the earthquake. Substantial delay in mobilizing response. However, further losses were likely reduced because of the rapid deployment of air transport and medical teams, and massive international relief support. The tsunami has affected long-term tsunami mitigation in the Sissano region through the relocation of villages, heightened awareness and education programs. It has also had a significant effect on mitigation in other countries by illuminating the potential dangers of landslide-generated tsunamis and in media coverage of tsunami hazards.  相似文献   

7.
8.
黄永德  李健威 《华南地震》2008,28(2):118-124
地震监测、海啸数值模拟和海平面监测是监测和预报海啸的主要工具。为了有效监测南海北部可能发生的地震海啸,香港天文台(HKO)正在香港筹建一个宽频地震站,同时通过太平洋海啸警报及减灾系统(PTWS)的框架取得美国加州综合地震网(CISN)显示系统的实时地震信息,并通过世界气象组织(WM0)的全球通信系统(GTS)接收南海和西北太平洋的验潮站和海啸浮标数据以监测海面的波动情况。香港天文台通过联合国教科文组织(UNESCO)政府间海洋学委员会(IOC)取得海啸漫滩模式交换计划(TIME)下的海啸数值模式,把香港本地的高分辨率水深和地形数据融合在模式之内,并利用这个模式计算南海多处地区在不同地震情景下的海啸传播,为海啸预报提供重要的参考数据。  相似文献   

9.
The Alaska Tsunami Warning Center has the responsibility of providing timely tsunami warning services for Alaska and the west coasts of Canada and the United States. Recently, the ATWC implemented a new microcomputer system which is used for both automatic and interactive earthquake processing, and for disseminating critical information to the Tsunami Warning System recipients.Real-time seismic wave form data from 23 short-period and 9 long-period sites in Alaska, the lower 48 States, and Hawaii, are continually computer-monitored for the occurrence of an earthquake. Once detected from the short-period wave form data, pre- and post-earthquake data are displayed on a graphics terminal along with an indicator to identify the time of the onset of theP waves (P-picks). TheP-picks can easily be changed during or after data collection via a mouse. Magnitudes (M b ,M l ,M B ,M S ) are automatically computed from appropriate short- and long-period wave form data concurrently with the above processing. A second graphics terminal displays cycle-by-cycle long-period wave form data that was used to compute an earthquake'sM B andM S magnitudes.An earthquake's parametric data and other information are available and printed within tens of seconds after theP wave arrivals are recorded at the first 5 sites, then 7 sites, 9 sites, and a final parametric computation using all collected data. Three video display monitors are used for displaying the parameters, procedural aids, and a map showing the epicenter. Additionally, selected event parameters are immediately transmitted by VHF radio to alphanumeric beepers which are carried by standby duty personnel during those times that the Center is not manned.Using a dedicated video display terminal and printer, the interactive system can use data and parameters resulting from the automatic processes for concurrent parameter recomputations; perform additional computations; disseminate critical information; and generate procedural aids for duty geophysicists to facilitate an earthquake/tsunami investigation.  相似文献   

10.
Centroid moment tensor solutions for the 2011 Tohoku earthquake are determined by W phase inversions using 5 and 10 min data recorded by the Full Range Seismograph Network of Japan (F-net). By a scaling relation of moment magnitude to rupture area and an assumption of rigidity of 4 × 1010 N m?2, simple rectangular earthquake fault models are estimated from the solutions. Tsunami inundations in the Sendai Plain, Minamisanriku, Rikuzentakata, and Taro are simulated using the estimated fault models. Then the simulated tsunami inundation area and heights are compared with the observations. Even the simulated tsunami heights and inundations from the W phase solution that used only 5 min data are considerably similar to the observations. The results are improved when using 10 min of W phase data. These show that the W phase solutions are reliable to be used for tsunami inundation modeling. Furthermore, the technique that combines W phase inversion and tsunami inundation modeling can produce results that have sufficient accuracy for tsunami early warning purposes.  相似文献   

11.
12.
印度洋大海啸与实时地震数据   总被引:1,自引:0,他引:1  
2004年12月26日印尼苏门答腊岛发生的大海啸是人类的悲剧。目前发布海啸警报主要是依靠地震台网记录的实时地震数据。  相似文献   

13.
橡胶隔震支座建筑结构脉动观测与减震性能分析   总被引:1,自引:0,他引:1  
通过对两幢结构相同、彼此相邻,而其中一幢采用了橡胶隔震支座减展措施的建筑物进行地脉动观测,对比地基基础和结构上的脉动时程曲线和相应功率谱曲线,利用两幢建筑结构脉动特征的差异分析研究橡胶隔震支座的减震效果。  相似文献   

14.
海南省南海地震监测和海啸预警服务   总被引:2,自引:1,他引:2  
2004年底发生在印度洋的地震海啸造成的巨大灾难引起了人们广泛的关注。根据海南岛有仪器记录到地震海啸的事实,从构造角度讨论了海南岛未来遭受地震海啸袭击的可能性,强调了建立海南省南海地震监测和海啸预警系统的必要性和重要性,并提出了预警系统建设的初步设想。  相似文献   

15.
The tsunamigenic earthquake (Mw?=?8.1) that occurred on 29 September 2009 at 17:48 UTC offshore of the Samoa archipelago east of the Tonga trench represents an example of the so-called ??outer-rise?? earthquakes. The areas most affected were the south coasts of Western and American Samoa, where almost 200 people were killed and run-up heights were measured in excess of 5?m at several locations along the coast. Moreover, tide gauge records showed a maximum peak-to-peak height of about 3.5?m near Pago Pago (American Samoa) and of 1.5?m offshore of Apia (Western Samoa). In this work, different fault models based on the focal mechanism solutions proposed by Global CMT and by USGS immediately after the 2009 Samoan earthquake are tested by comparing the near-field recorded signals (three offshore DART buoys and two coastal tide gauges) and the synthetic signals provided by the numerical simulations. The analysis points out that there are lights and shadows, in the sense that none of the computed tsunamis agrees satisfactorily with all the considered signals, although some of them reproduce some of the records quite well. This ??partial agreement?? and ??partial disagreement?? are analysed in the perspective of tsunami forecast and of Tsunami Early Warning System strategy.  相似文献   

16.
17.
陈建涛  叶春明 《华南地震》2010,30(Z1):145-152
南海东南边缘的马尼拉海沟是国际上公认具有发生破坏性地震海啸条件的危险地区,由于南海没有大面积的岛屿阻隔海啸传播,如果在马尼拉海沟发生大地震引发海啸,那么将对广东省漫长的海岸线造成严重破坏。广东省南海地震海啸监测预警系统建设在广东省地震速报系统和国家地震自动速报备份系统的基础上,由地震速报、震源机制快速计算、海啸数值模拟计算等模块组成,对南海地震海啸进行实时监测,提供海啸波浪到达海岸线的估计时刻和最大海浪高度,提供预警信息等社会公共服务。  相似文献   

18.
广东省地震海啸危险分析与监测预警系统构想   总被引:1,自引:0,他引:1  
杨马陵 《华南地震》2005,25(4):25-33
对广东省地震海啸的潜在危险进行了分析,认为广东省可能面临的海啸威胁主要来自南海东部。一旦发生地震海啸,将出现重大的灾害,并对广东省的社会和经济产生巨大的影响。提出了建立广东省地震海啸监测预警系统的初步构想。  相似文献   

19.
In 2011, Japan was hit by a tsunami that was generated by the greatest earthquake in its history. The first tsunami warning was announced 3 min after the earthquake, as is normal, but failed to estimate the actual tsunami height. Most of the structural countermeasures were not designed for the huge tsunami that was generated by the magnitude M = 9.0 earthquake; as a result, many were destroyed and did not stop the tsunami. These structures included breakwaters, seawalls, water gates, and control forests. In this paper we discuss the performance of these countermeasures, and the mechanisms by which they were damaged; we also discuss damage to residential houses, commercial and public buildings, and evacuation buildings. Some topics regarding tsunami awareness and mitigation are discussed. The failures of structural defenses are a reminder that structural (hard) measures alone were not sufficient to protect people and buildings from a major disaster such as this. These defenses might be able to reduce the impact but should be designed so that they can survive even if the tsunami flows over them. Coastal residents should also understand the function and limit of the hard measures. For this purpose, non-structural (soft) measures, for example experience and awareness, are very important for promoting rapid evacuation in the event of a tsunami. An adequate communication system for tsunami warning messages and more evacuation shelters with evacuation routes in good condition might support a safe evacuation process. The combination of both hard and soft measures is very important for reducing the loss caused by a major tsunami. This tsunami has taught us that natural disasters can occur repeatedly and that their scale is sometimes larger than expected.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号