首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We summarize recent results of quantitative spectral analyses using NLTE and metal line-blanketed LTE model atmospheres. Temperatures and gravities derived for hundreds of sdB stars are now available and allow us to investigate systematic uncertainties of T e ff, log g scales and to test the theory of stellar evolution and pulsations. Surface abundance patterns of about two dozen sdB stars are surprisingly homogenous. In particular the iron abundance is almost solar for most sdBs. We highlight one iron-deficient and three super metal-rich sdBs, a challenge to diffusion theory. sdB stars are slowly rotating stars unless they are in close binary systems, which is hard to understand if the sdB stars were formed in merger events. The only exception is the pulsator PG 1605+072 rotating at vsin i= 39 km/s. Signatures of stellar winds from sdB stars may have been found.  相似文献   

2.
Equilibrium models of differentially rotating nascent neutron stars are constructed, which represent the result of the accretion-induced collapse of rapidly rotating white dwarfs. The models are built in a two-step procedure: (1) a rapidly rotating pre-collapse white dwarf model is constructed; (2) a stationary axisymmetric neutron star having the same total mass and angular momentum distribution as the white dwarf is constructed. The resulting collapsed objects consist of a high-density central core of size roughly 20 km, surrounded by a massive accretion torus extending over 1000 km from the rotation axis. The ratio of the rotational kinetic energy to the gravitational potential energy of these neutron stars ranges from 0.13 to 0.26, suggesting that some of these objects may have a non-axisymmetric dynamical instability that could emit a significant amount of gravitational radiation.  相似文献   

3.
Hot cluster horizontal branch (HB) stars and field subdwarf B (sdB) stars are core helium burning stars that exhibit abundance anomalies that are believed to be due to atomic diffusion. Diffusion can be effective in these stars because they are slowly rotating. In particular, the slow rotation of the hot HB stars (Teff > 11000 K), which show abundance anomalies, contrasts with the fast rotation of the cool HB stars, where the observed abundances are consistent with those of red giants belonging to the same cluster. The reason why sdB stars and hot HB stars are rotating slowly is unknown. In order to assess the possible role of magnetic fields on abundances and rotation, we investigated the occurrence of such fields in sdB stars with Teff < 30 000 K, whose temperatures overlap with those of the hot HB stars. We conclude that large‐scale organised magnetic fields of kG order are not generally present in these stars but at the achieved accuracy, the possibility that they have fields of a few hundred Gauss remains open. We report the marginal detection of such a field in SB 290; further observations are needed to confirm it (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Stellar radiation zones are the seat of meridional currents. This circulation has a strong impact on the transport of angular momentum and the mixing of chemicals that modify the evolution of stars. First, we recall in details the dynamical processes that are taking place in differentially rotating stellar radiation zones and the assumptions which are adopted for their modelling in stellar evolution. Then, we present our new results of numerical simulations which allow us to follow in 2D the secular hydrodynamics of rotating stars, assuming that anisotropic turbulence enforces a shellular rotation law and taking into account the transport of angular momentum by internal gravity waves. The different behaviors of the meridional circulation in function of the type of stars which is studied are discussed with their physical origin and their consequences on the transport of angular momentum and of chemicals. Finally, we show how this work is leading to a dynamical vision of the evolution of rotating stars from their birth to their death. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Subsequent to Paper I, the evolution and fragmentation of a rotating magnetized cloud are studied with use of three-dimensional magnetohydrodynamic nested grid simulations. After the isothermal runaway collapse, an adiabatic gas forms a protostellar first core at the centre of the cloud. When the isothermal gas is stable for fragmentation in a contracting disc, the adiabatic core often breaks into several fragments. Conditions for fragmentation and binary formation are studied. All the cores which show fragmentation are geometrically thin, as the diameter-to-thickness ratio is larger than 3. Two patterns of fragmentation are found. (1) When a thin disc is supported by centrifugal force, the disc fragments into a ring configuration (ring fragmentation). This is realized in a rapidly rotating adiabatic core as  Ω > 0.2τ−1ff  , where Ω and  τff  represent the angular rotation speed and the free-fall time of the core, respectively. (2) On the other hand, the disc is deformed to an elongated bar in the isothermal stage for a strongly magnetized or rapidly rotating cloud. The bar breaks into 2–4 fragments (bar fragmentation). Even if a disc is thin, the disc dominated by the magnetic force or thermal pressure is stable and forms a single compact body. In either ring or bar fragmentation mode, the fragments contract and a pair of outflows is ejected from the vicinities of the compact cores. The orbital angular momentum is larger than the spin angular momentum in the ring fragmentation. On the other hand, fragments often quickly merge in the bar fragmentation, since the orbital angular momentum is smaller than the spin angular momentum in this case. Comparison with observations is also shown.  相似文献   

6.
We briefly review the recent advances that have been made on the front of pulsating subdwarf B (sdB) stars. The first family of sdB pulsators, the EC 14026 stars, was discovered a few years ago and consists of short-period (~100?200 s) p-mode variables. The second type of pulsating sdB’s consists of the PG 1716+426 stars, a group of variables showing long-period (~1 h) g-mode pulsations. The existence of the latter was first reported less than a year ago. While the two types of sdB pulsators differ markedly in their observational characteristics, we recently found a unifying property in the sense that the observed modes in these objects are excited through the same driving process, a classic kappa mechanism associated with the radiative levitation of iron in the stellar envelope.  相似文献   

7.
We investigate the rotation profile of solar-like stars with magnetic fields. A diffu-sion coefficient of magnetic angular momentum transport is deduced. Rotating stellar models with different mass incorporating the coefficient are computed to give the rotation profiles. The total angular momentum of a solar model with only hydrodynamic instabilities is about 13 times larger than that of the Sun at the age of the Sun, and this model can not reproduce quasi-solid rotation in the radiative region. However, the solar model with magnetic fields not only can reproduce an almost uniform rotation in the radiative region, but also a total angular momentum that is consistent with the helioseismic result at the 3 σ level at the age of the Sun. The rotation of solar-like stars with magnetic fields is almost uniform in the radiative region, but for models of 1.2-1.5 M⊙, there is an obvious transition region between the convective core and the radiative region, where angular velocity has a sharp radial gradient, which is different from the rotation profile of the Sun and of massive stars with magnetic fields. The change of angular velocity in the transition region increases with increasing age and mass.  相似文献   

8.
We present the results of Monte Carlo mass-loss computations for hot low-mass stars, specifically for subdwarf B (sdB) stars. It is shown that the mass-loss rates on the Horizontal Branch (HB) computed from radiative line-driven wind models are not high enough to create sdB stars. We argue, however, that mass loss plays a role in the chemical abundance patterns observed both in field sdB stars, as well as in cluster HB stars. The derived mass loss recipe for these (extremely) hot HB stars may also be applied to other groups of hot low-mass stars, such as post-HB (AGB-manqué, UV-bright) stars, over a range in effective temperatures between ?10 000 and 50 000 K. Finally, we present preliminary spectral synthesis on the more luminous sdB stars for which emission cores in Hα have been detected (Heber, U., et al.: 2003, in:Stellar Atmosphere Modeling, ASP Conference Proceedings, p. 251). We find that these line profiles can indeed be interpreted as the presence of a stellar wind with mass loss on the order of 10?11?M yr ?1.  相似文献   

9.
Chi Yuan  Patrick Cassen 《Icarus》1985,64(3):435-447
The gravitational collapse of molecular clouds or cloud cores is expected to lead to the formation of stars that begin their lives in a state of rapid rotation. It is known that, in at least some specific cases, rapidly rotating, slf-gravitating bodies are subject to instabilities that cause them to assume ellipsoidal shapes. In this paper we investigate the consequences of such instabilities on the angular momentum evolution of a star in the process of formation from a collapsing cloud, and surrounded by a protostellar disk, with a view toward applications to the formation of the Solar System. We use a specific model of star formation to demonstrate the possibility that such a star would become unstable, that the resulting distortion of the star would generate spiral density waves in the circumstellar disk, and that the torque associated with these waves would regulate the angular momentum of the star as it feeds angular momentum to the disk. We conclude that the angular momentum so transported to the disk would not spread the disk to, say, Solar System dimensions, by the action of the spiral density waves alone. However, a viscous disk could effectively extract stellar angular momentum and attain Solar System size. Our results also indicate that viscous disks could feed mass and angular momentum to a growing protostar in such a manner that distortions of the star would occur before gravitational torques could balance the influx of angular momentum. In other situations (in which the viscosity was small), a gap could be cleared between the disk and star.  相似文献   

10.
We present three-dimensional numerical simulations on binary formation through fragmentation. The simulations follow gravitational collapse of a molecular cloud core up to growth of the first core by accretion. At the initial stage, the gravity is only slightly dominant over the gas pressure. We made various models by changing initial velocity distribution (rotation speed, rotation law, and bar-mode perturbation). The cloud fragments whenever the cloud rotates sufficiently slowly to allow collapse but faster enough to form a disk before first-core formation. The latter condition is equivalent to Ω0 t ff ? 0.05, where Ω0 and t ff f denote the initial central angular velocity and the freefall time measured from the central density, and the condition is independent of the initial rotation law and bar-mode perturbation. Fragmentation is classified into six types. When the initial cloud rotates rigidly the cloud collapses to form a adiabatic disk supported by rotation. When the bar-mode perturbation is very minor, the disk deforms to a rotating bar, and the bar fragments. Otherwise, the adiabatic disk evolves into a central core surrounded by a circumstellar disk, and the the circumstellar disk fragments. When the initial cloud rotates differentially, the cloud deforms to a ring or bar in the isothermal collapse phase. The ring fragments into free or more cores, while the bar fragments into only two cores. In the latter case, the core merges due to low orbital angular momentum and new satellite cores form in the later stages.  相似文献   

11.
We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.  相似文献   

12.
The acoustic energy-generation rate from the convective zone was calculated for various models. Results show that chromosphere and corona can be expected around stars with temperature lower than 8000K at the main sequence, and lower than 6500K at logg=2.When a star is rotating rapidly, mass loss from its corona is large, and can be an effective mechanism of braking the stellar rotation. If this mechanism is effective, we can explain the slow rotation of stars later than F2 to be the result of the loss of the angular momentum through a stellar wind that is effective in their main sequence phase. Stars with massM>1.5M lose mass through a stellar wind during their contraction phase. The mass-loss rate is larger than the solar value because of the larger energy input into the chromosphere-corona system and because of the smaller gravitational potential at the surface. T Tauri stars may be the observational counterparts for such stars. As the duration of contraction phase is very short (less than 107 years), the braking mechanism works only in the presence of a strong magnetic field (Ap) or in the presence of a companion (Am).Presented at the Trieste Colloquium on Mass Loss from Stars, September 12–16, 1968.  相似文献   

13.
Sequences of Doppler images of the young, rapidly rotating late-type stars AB Dor and LQ Hya show that their equatorial angular velocity and the amplitude of their surface differential rotation vary versus time. Such variations can be modelled to obtain information on the intensity of the azimuthal magnetic stresses within stellar convection zones. We introduce a simple model in the framework of the mean-field theory and discuss briefly the results of its application to those solar-like stars. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
The evolutionary behaviour of rotating solar models with different initial angular-momentum distributions has been investigated through the pre-Main-Sequence and Main-Sequence phases. The angular momentum was removed from the convective evelope of the solar models according to the Kawaler's model of magnetic stellar wind (Kawaler, 1988). The models show that (i) the surface rotational velocities of the solar mass stars are independent of initial angular momentum for ages greater than 108 years and (ii) it is not possible to explain the neutrino problem and the sufficient depletion of lithium in the Sun.  相似文献   

15.
We analyse the angular momentum evolution from the red giant branch (RGB) to the horizontal branch (HB) and along the HB. Using rotation velocities for stars in the globular cluster M13, we find that the required angular momentum for the fast rotators is up to 1–3 orders of magnitude (depending on some assumptions) larger than that of the Sun. Planets of masses up to 5 times Jupiter's mass and up to an initial orbital separation of ~2 au are sufficient to spin-up the RGB progenitors of most of these fast rotators. Other stars have been spun-up by brown dwarfs or low-mass main-sequence stars. Our results show that the fast rotating HB stars have been probably spun-up by planets, brown dwarfs or low-mass main-sequence stars while they evolved on the RGB. We argue that the angular momentum considerations presented in this paper further support the 'planet second parameter' model. In this model, the 'second parameter' process, which determines the distribution of stars on the HB, is interaction with low-mass companions, in most cases with gas-giant planets, and in a minority of cases with brown dwarfs or low-mass main-sequence stars. The masses and initial orbital separations of the planets (or brown dwarfs or low-mass main-sequence stars) form a rich spectrum of different physical parameters, which manifests itself in the rich varieties of HB morphologies observed in the different globular clusters.  相似文献   

16.
The observed association of Long Gamma-Ray Bursts (LGRBs) with peculiar Type Ic supernovae gives support to Woosley‘s collapsar/hypernova model, in which the GRB is produced by the collapse of the rapidly rotating core of a massive star to a black hole. The association of LGRBs with small star-forming galaxies suggests low-metallicity to be a condition for a massive star to evolve to the collapsar stage. Both completely-mixed single star models and binary star models are possible. In binary models the progenitor of the GRB is a massive helium star with a close companion. We find that tidal synchronization during core-helium burning is reached on a short timescale (less than a few millennia). However, the strong core-envelope coupling in the subsequent evolutionary stages is likely to rule out helium stars with main-sequence companions as progenitors of hypernovae/GRBs. On the other hand, helium stars in close binaries with a neutron-star or black-hole companion can, despite the strong core-envelope coupling in the post-helium burning phase, retain sufficient core angular momentum to produce a hypernova/GRB.  相似文献   

17.
Axisymmetric pulsations of rotating neutron stars can be excited in several scenarios, such as core collapse, crust- and core-quakes or binary mergers, and could become detectable in either gravitational waves or high-energy radiation. Here, we present a comprehensive study of all low-order axisymmetric modes of uniformly and rapidly rotating relativistic stars. Initial stationary configurations are appropriately perturbed and are numerically evolved using an axisymmetric, non-linear relativistic hydrodynamics code, assuming time-independence of the gravitational field (Cowling approximation). The simulations are performed using a high-resolution shock-capturing finite-difference scheme accurate enough to maintain the initial rotation law for a large number of rotational periods, even for stars at the mass-shedding limit. Through Fourier transforms of the time evolution of selected fluid variables, we compute the frequencies of quasi-radial and non-radial modes with spherical harmonic indices l =0 , 1, 2 and 3, for a sequence of rotating stars from the non-rotating limit to the mass-shedding limit. The frequencies of the axisymmetric modes are affected significantly by rotation only when the rotation rate exceeds about 50 per cent of the maximum allowed. As expected, at large rotation rates, apparent mode crossings between different modes appear. In addition to the above modes, several axisymmetric inertial modes are also excited in our numerical evolutions.  相似文献   

18.
The evolutionary behaviour of rotating low-mass stars in the mass range 0.2 and 0.9M has been investigated during the pre-Main-Sequence phase. The angular momentum is conserved locally in radiative regions and totally in convective regions, according to a predetermined angular velocity distribution depending on the structure of the star. As the stars contract toward the zero-age Main Sequence, they spin up under the assumption that the angular momentum is conserved during the evolution of the stars. When the stars have differential rotations, their inner regions rotate faster than the outer regions. The effective temperatures and luminosities of rotating low-mass stars are obtained lower than those of non-rotating stars. They have lower central temperature and density values compared to those of non-rotating stars.  相似文献   

19.
During the course of an ongoing CCD monitoring program to investigate low-level light variations in subdwarf B (sdB) stars, weserendipitously discovered a new class of multimode pulsators withperiods of the order of an hour. These periods are a factor of tenlonger than those of previously known multimode sdB pulsators (EC14026 stars), implying the new pulsations are due to gravity modes rather than pressure modes. The iron opacity instability that drives the short period EC 14026 stars is effective in hot sdB's. Thelong period pulsators are found only among cooler sdB stars, wherethey are surprisingly common. The mechanism responsible for excitingthe deeper g-modes in cool sdB's is currently unknown, but thetemperature and gravity range in which these stars occur must be animportant clue. We present the first observational results for thisnew class of pulsating sdB stars, and discuss some possible implications.  相似文献   

20.
Recent observational efforts and theoretical breakthroughs have encouraged the development of detailed asteroseismic analyses of rapidly oscillating sdB stars (the so-called EC14026 stars). This led to the first seismic determinations of the fundamental parameters that define the structure of EHB stars. We briefly review the current status of these analyses, discussing some of the properties of acoustic modes in EHB models that affect the asteroseismology of these stars. We then recall the basic ideas behind the method we developed in an attempt to objectively extract, from models, asteroseismic solutions suitable to any given sdB pulsator. A preliminary application of this method to the pulsating sdB star Feige 48 is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号