首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The solubilities of synthetic, natural and biogenic aragonite and calcite, in natural seawater of 35%. salinity at 25°C and 1 atm pressure, were measured using a closed system technique. Equilibration times ranged up to several months. The apparent solubility constant determined for calcite of 4.39(±0.20) × 10?7 mol2 kg?2 is in good agreement with other recent solubility measurements and is constant after 5 days equilibration. When we measured aragonite solubility we observed that it decreased with increasing time of equilibration. The value of 6.65(±0.12) × 10?7 mol2 kg?2, determined for equilibration times in excess of 2 months, is significantly less than that found in other recent measurements, which employed equilibration times of only a few hours to days. No statistically significant difference was found among the synthetic, natural and biogenic material. Solid to solution ratio, contamination of aragonite with up to 10 wt% calcite and recycling of the aragonite made no statistically significant difference in solubility when long equilibration times were used.Measured apparent solubility constants of aragonite and calcite are respectively 22( ± 3)% and 20( ± 2)% less than apparent solubility constants calculated from thermodynamic equilibrium constants and seawater total activity coefficients. These large differences in measured and calculated apparent solubility constants may be the result of the formation of surface layers of lower solubility than the bulk solid.  相似文献   

2.
The state of Punjab—a part of the Indus basin of the Indian subcontinent has an excellent net work of irrigation facilities. However, due to intensive cultivation it is facing a major problem with respect to quality of groundwater for irrigation. In the present investigation, geo-referenced groundwater samples were analysed to map water quality using geographical information system. Electrical conductivity varied from 0.418 to 5.754 dS m?1 with an average of 1.365 dS m?1. The carbonate ranged between 0 and 120 mg L?1, whereas bicarbonate ranged from 5 to 1,000 mg L?1. Chloride varied from 7 to 2,347 mg L?1. Calcium plus magnesium ranged from 12 to 1,216 mg L?1 with a mean value of 169 mg L?1. Sodium adsorption ratio ranged between 0.0 and 34.78 with an average of 2.66 meq L?1/2. Residual sodium carbonate varied from 0 to 21.30 meq L?1 with a standard deviation of 2.24. The Geographic Information System (GIS)-based mapping indicated that water in suitable category spatially covered 45.7 % of the state which is located mostly in the sub-mountain (Siwalik Hills), north-eastern undulating and piedmont and alluvial plain agro-eco-subregions. Marginally suitable groundwater spatially covered 46.1 % in the central alluvial plain and south-western alluvial plain agro-eco-subregions. Unsuitable groundwater covered 8.2 % of the state, mostly in the erstwhile sodic soils areas in the central alluvial plain and south-western alluvial plain agro-eco-subregions. GIS-based maps are effective in identifying hot spots which need immediate attention and call for strategic planning for sustainable management.  相似文献   

3.
The solubility product of rhodochrosite (MnCO3) was measured in seawater, deionized water and dilute NaCl solutions. The solubility product extrapolated to infinite dilution at 25.0 C was (2.60 ± 0.07)× 10?11. The stoichiometric solubility product measured in seawater of 34.27%. salinity was (3.24 ± 0.23) × 10?9 at 25.0 C and (2.28 ± 0.24) × 10?9 at 3.3 C. The stoichiometric solubility product is in good agreement with the value calculated from an ion association model. The enthalpy of the reaction is in fair agreement with the estimated value.  相似文献   

4.
Great quantities of fine-sized aragonite needles are produced in the shallow waters that cover the tops of the Bahama Banks and then exported to the bank margins where they accumulate with shells of pelagic organisms. To better understand these processes, we investigated Holocene-aged sediments in a core from the southwestern margin of Little Bahama Bank. The aragonite content of the sediments, ??18O of planktonic foraminifera shells, and radiocarbon ages of aragonite-rich <63 ??m sediments and coexisting planktonic foraminifera shells were determined. Sediment deposition was rapid overall, and a significant increase in deposition rate occurred 3,500?C4,000 years ago, shortly after rising sea level flooded the bank top with seawater and caused a dramatic increase in the shallow water area where aragonite production occurred. During the latest Holocene when high deposition rates minimize effects of bioturbation, aragonite-rich <63 ??m sediments are 400?C600 years older than coexisting foraminifera. This difference indicates the net age of aragonite when it was exported from the bank top. It is consistent with expectations of the ??hip-hop??n?? model (Morse et al. in Geochimica et Cosmochimica Acta 67: 2819?C2826, 2003) whereby aragonite needles on the bank top, formed initially by biologic or other processes, continue to grow for hundreds of years via precipitation of epitaxial carbonate cement from seawater. Earlier in the Holocene, when sea level was lower and the top of Little Bahama Bank was subaerially exposed, the deposition rate and aragonite content of the sediments were less, and the aragonite-rich <63 ??m sediments are about 1,000 years younger than coexisting foraminifera. This age difference can be explained by downward mixing of latest-Holocene <63 ??m material into older early-Holocene sediments.  相似文献   

5.
The Petrova and Trgovska Gora Mts. (Gora=Mountain) are Variscan basement units incorporated into the northwestern Dinarides during the Alpine orogeny. They host numerous siderite-quartz-polysulphide, siderite-chalcopyrite, siderite-galena and barite veins, as well as stratabound hydrothermal-replacement ankerite bodies within carbonates in non-metamorphosed, flysch-like Permo-Carboniferous sequences. The deposits have been mined for Cu, Pb, Ag and Fe ores since Medieval times. Fluid inclusion studies of quartz from siderite-polysulphide-quartz and barite veins of both regions have shown the presence of primary aqueous NaCl?CaCl2±MgCl2?H2O±CO2 inclusions. The quartz-sulphide stage of both regions show variable salinities; 2.7–26.2 wt% NaCl eq. for the Trgovska Gora region and 3.4–23.4 wt% NaCl eq. for the Petrova gora region, and similar homogenisation temperatures (100–230°C). Finally, barite is precipitated from low salinity-low temperature solutions (3.7–15.8 wt % NaCl equ. and 115–145°C). P-t conditions estimated via isochore construction yield formation temperatures between 180–250°C for the quartz-sulphide stage and 160–180°C for the barite stage, using a maximum lithostatic pressure of 1 kbar (cc. 3 km of overburden). The sulphur isotope composition of barite from both deposits indicates the involvement of Permian seawater in ore fluids. This is supported by the elevated bromium content of the fluid inclusion leachates (120–660 ppm in quartz, 420–960 ppm in barite) with respect to the seawater, indicating evaporated seawater as the major portion of the ore-forming fluids. Variable sulphur isotope compositions of galena, pyrite and chalcopyrite, between ?3.2 and +2.7‰, are interpreted as a product of incomplete thermal reduction of the Permian marine sulphate mixed with organically- and pyrite-bound sulphur from the host sedimentary rocks. Ore-forming fluids are interpreted as deep-circulating fluids derived primarily from evaporated Permian seawater and later modified by interaction with the Variscan basement rocks. 40Ar/39Ar data of the detrital mica from the host rocks yielded the Variscan age overprinted by an Early Permian tectonothermal event dated at 266–274 Ma. These ages are interpreted as those reflecting hydrothermal activity correlated with an incipient intracontinental rifting in the Tethyan domain. Nevertheless, 75 Ma recorded at a fine-grained sericite sample from the alteration zone is interpreted as a result of later resetting of white mica during Campanian opening/closure of the Sava back arc in the neighbouring Sava suture zone (Ustaszewski et al. 2008).  相似文献   

6.
The Beypazar? granitoid has been studied with respect to multi-radiometric dating and oxygen isotopic geothermometry. Radiometric dating of the granitoid yields zircon U-Pb isochron ages ranging from 72.5 ± 12.6 to 78.6 ± 4.7, and K-Ar ages of 71.4 ± 2.8 to 74.9 ± 2.9 and 59.5 ± 2.2 to 75.4 ± 2.9 Ma for hornblende and biotite, respectively. Oxygen isotope thermometry for the granitoid gives temperatures of 550 ± 25°C to 605 ± 30, 390 ± 15 to 540 ± 25°C, and 481 ± 5 to 675 ± 10°C, for hornblende, biotite, and K-feldspar, respectively, when paired with quartz. The systematic differences among ages according to different techniques used on different minerals are used to reconstruct the cooling history of the granite. The results yield rapid cooling rates of 33.3°C/Ma from 800°C to 550°C, and slow cooling rates of about 15 ± 0.5°C/Ma from 550 to 300°C. Rapid subsolidus cooling between 600°C and 550°C is documented by 40Ar/39Ar ages on amphibole and biotite between 71.4 ± 2.8 and 75.4 ± 2.9 Ma. Younger ages on biotites from two samples (59.5 ± 2.2 and 64.4 ± 2.5) are probably caused by loss of Ar. The reason for this possible Ar loss can be interpreted as slower subsolidus cooling (~375°C) ages. There is an apparent spatial and temporal relationship between the intrusion-cooling of the Beypazar? granitoid and the evolution of the ?zmir–Ankara–Erzincan ocean belonging to the northern Neo-Tethyan ocean domain.  相似文献   

7.
Pectin–cerium (IV) tungstate composite (Pc/CT) has been prepared by sol gel method at room temperature. The composite ion exchanger has been characterized using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier infrared spectroscopy. The ion exchange capacity, pH titrations, thermal stability and distribution coefficient of composite ion exchanger were investigated. The Na+ ions exchange capacity of the Pc/CT has been observed higher (1.4 meq g?1) as compared to its inorganic counterpart (0.8 meq g?1). Pc/CT composite ion exchanger was thermally stable and retained about 60 % of its ion exchange capacity up to 400 °C. The distribution study has inferred more selective the Pc/CT for Zn2+ as compared to other metal ions. The adsorption efficiency of Pc/CT was tested for methylene blue removal dye from aqueous phase. The removal of dye followed pseudo-second-order kinetics.  相似文献   

8.
World-class deposits of magnesite and siderite occur in Riphean strata of the Southern Urals, Russia. Field evidence, inclusion fluid chemistry, and stable isotope data presented in this study clearly proof that the replacement and precipitation processes leading to the formation of the epigenetic dolomite, magnesite and hydrothermal siderite were genetically related to evaporitic fluids affecting already lithified rocks. There is, however, a systematic succession of events leading to the formation of magnesite in a first stage. After burial and diagenesis the same brines were modified to hot and reducing hydrothermal fluids and were the source for the formation of hydrothermal siderite. The magnesites of the Satka Formation as well as the magnesites and the siderites of the Bakal Formation exhibit low Na/Br (106 to 222) and Cl/Br (162 to 280) ratios plotting on the seawater evaporation trend, indicating that the fluids acquired their salinity by evaporation processes of seawater. Temperature calculations based on cation exchange thermometers indicate a formation temperature of the magnesites of?~?130 °C. Considering the fractionation at this temperature stable isotope evidence shows that the magnesite forming brines had δ18OSMOW values of?~?+1 ‰ thus indicating a seawater origin of the original fluid. Furthermore it proves that these fluids were not yet affected by appreciable fluid-rock interaction, which again implies magnesite formation in relatively high crustal levels. In contrast to the magnesites, the siderite mineralization was caused by hydrothermal fluids that underwent more intense reactions with their host rocks in deeper crustal levels compared to the magnesite. The values of 87Sr /86Sr in the siderites are substantially higher compared to the host rock slates. They also exceed the 87Sr /86Sr ratios of the magnesites and the host rock limestones indicating these slates as the source of iron as a consequence of water-rock interaction. The siderites were formed at temperatures of?~?250 °C indicating a relatively heavy fluid in equilibrium with siderite of 13 ‰ δ18OSMOW, which is in the range of diagenetic/metamorphic fluids and reflects the?±?complete equilibration with the host rocks. Carbon isotope evidence shows that the fluid forming the siderites underwent a much higher interaction with the host rocks resulting in a lowering of the δ13C numbers (?3,3 to ?3,7 ‰). The light carbon was most probably derived from decaying hydrocarbons in the Riphean sediments. In a very early stage after sedimentation of the Satka Formation (~1,550 Ma) magnesite was formed by seepage reflux of evaporitic bittern brines at the stage of riftogenic activity in the region (1,380–1,350 Ma). Sedimentation of the Bakal Formation (~1,430 Ma) and intrusion of diabase dykes (1,386?±?1,4 Ma) followed. Diagenetic/epigenetic mobilization of these buried fluids at?~?1,100 Ma resulted in the formation of hydrothermal siderite bodies.  相似文献   

9.
Sewage sludge usually contains significant amount of Zinc (Zn) and is widely used in agricultural lands. A laboratory experiment was performed to determine Zn desorption characteristics in unamended and amended soils with sewage sludge. Ten calcareous soils were amended with 1 % (w/w) sewage sludge. Amended and unamended soils were incubated at field capacity at 25 ± 1 °C for 1 month. After incubation, the kinetics of Zn desorption in amended and unamended soils were determined by successive extraction with DTPA-TEA (diethylenetriaminepentaacetic acid-triethanolamine) in a period of 1–504 h at 25 ± 1 °C. The results of kinetics study showed that extracted Zn and desorption rate constants in the amended soils were significantly (p < 0.01) higher than in the unamended soils. The results showed that Zn desorption increased from 201 to 343 % in amended soil with respect to unamended soils. The amounts of desorbed Zn in the unamended soils ranged from 3.73 to 8.79 mg kg?1, while the amounts of desorbed Zn in amended soils ranged from 11.47 to 17.66 mg kg?1. Desorption kinetics of Zn in two soils conformed fairly well to first-order, parabolic diffusion and power function equations. The results of stepwise regression analysis indicated that calcium carbonate equivalent and clay could be used to estimate Zn desorption characteristics in DTPA-TEA solution in the amended and unamended calcareous soils. It can be concluded that sewage sludge applied to calcareous soils may enhance the source of Zn for the plants.  相似文献   

10.
In order to examine the fluxes of methane (CH4) from the Indian estuaries, measurements were carried out by collecting samples from 26 estuaries along the Indian coast during high discharge (wet) and low water discharge (dry) periods. The CH4 concentrations in the estuaries located along the west coast of India were significantly higher (113?±?40 nM) compared to the east coast of India (27?±?6 nM) during wet and dry periods (88?±?15 and 63?±?12 nM, respectively). Supersaturation of CH4 was observed in the Indian estuaries during both periods ((0.18 to 22.3?×?103 %). The concentrations of CH4 showed inverse relation with salinity indicating that freshwater is a significant source. Spatial variations in CH4 saturation were associated with the organic matter load suggesting that its decomposition may be another source in the Indian estuaries. Fluxes of CH4 ranged from 0.01 to 298 μmol m?2 day?1 (mean 13.4?±?5 μmol m?2 day?1) which is ~30 times lower compared to European estuaries (414 μmol m?2 day?1). The annual emission from Indian estuaries, including Pulicat and Adyar, amounted to 0.39?×?1010 g CH4?year?1 with the surface area of 0.027?×?106 km2 which is significantly lower than that in European estuaries (2.7?±?6.8?×?1010 g CH4?year?1 with the surface area of 0.03?×?106 km2). This study suggests that Indian estuaries are a weak source for atmospheric CH4 than European estuaries and such low fluxes were attributed to low residence time of water and low decomposition of organic matter within the estuary. The CH4 fluxes from the Indian estuaries are higher than those from Indian mangroves (0.01?×?1010 g CH4?year?1) but lower than those from Indian inland waters (210?×?1010 g CH4?year?1).  相似文献   

11.
The thermodynamic properties of monohydrocalcite, CaCO3 · H2O, have been obtained using a well-characterized natural specimen. Equilibration of the solid with water at 25°C under 0.97 atm CO2 led to an activity product [Ca2+][CO32?] = 10?7.60±0.03 and a free energy of formation ΔGfo = ?325,430 ± 270 calmol?. The enthalpy of solution of monohydrocalcite in 0.1 N HCl at 25°C led to a standard enthalpy of formation ΔHfo = ?358,100 ± 280 cal mol?1. Estimates of the variation of ΔGf with temperature and pressure showed monohydrocalcite to be metastable with respect to calcite and aragonite.  相似文献   

12.
Cobalt, like Mg, may cause the precipitation of aragonite rather than calcite in aqueous solutions due to the adsorption and crystal poisoning of calcite by a hydrated ion. Solutions containing NaCl and CaCl2, having the ionic strength and Ca content of seawater (35‰ salinity), were spiked with known amounts of CoCl2. Calcium carbonate was precipitated by the addition of 0.7 ml of 1 M Na2CO3. All experimental runs were made at 25°C, and all products were examined by X-ray diffraction. At low concentrations of Co (< 5·?4M) calcite and vaterite formed. At concentrations from 5·10?4 M to 2·10?3M, the products consisted of combinations of calcite and vaterite; aragonite and calcite; aragonite and vaterite; calcite, vaterite and aragonite. In solutions of 3·10?3M CoCl2, most precipitates were aragonite with only one sample containing a small amount of calcite. All precipitates from 5·10?3M CoCl2 solutions either contained aragonite or were amorphous. Solutions with concentrations of 1 · 10?2M CoCl2 produced only amorphous precipitates. All precipitates contained an amorphous violet phase, assumed to be basic cobaltous carbonate (2CoCO3·Co(OH)2·H2O).  相似文献   

13.
Pseudohexagonal aragonite crystals are common components in some hot-spring travertines at Chemurkeu on the western shore of Lake Bogoria, Kenya. Beds, lenses and pods of aragonite crystals are intercalated with beds of white non-crystallographic calcite dendrites. The pseudohexagonal aragonite crystals, which are up to 4 cm long and 4 mm wide, are formed of nested skeletal crystals. Each skeletal crystal is formed of cyclical twinned crystals that are constructed of stacked subcrystals. The latter are inclined at a consistent angle of 40° to the long axis of the pseudohexagonal aragonite crystal. Intense competition for space during growth modified the crystal morphology with the result that many of the pseudohexagonal crystals are distorted. Intercrystalline and intracrystalline pores are filled or partly filled by epitaxial aragonite overgrowths and/or reticulate microbial coatings that have a high concentration of Si and Mg. In places, this extracellular mucus induced etching of the underlying aragonite crystal. Today the hot (T>95 °C) Na-HCO3-Cl spring waters at Chemurkeu have a salinity of 5–6 g L?1 TDS, a pH of 8·1–9·1, Ca2+ concentrations of <2 mg L?1 and Mg2+ concentrations of <0·7 mg L?1, The springs of the Lake Bogoria Geothermal Field are fed by a shallow aquifer (T~100 °C) and a deeper aquifer (T~170 °C). Springs at Chemurkeu derive from meteoric groundwater, lake water and condensed steam, and are fed mainly from the shallow thermal aquifer. Much of the aragonite may have formed when the spring waters contained more dissolved Ca2+ than today, possibly under more humid conditions during the Holocene.  相似文献   

14.
Rice cultivation in the Ebro Delta (Catalonia, Spain) has inverted the natural hydrological cycles of coastal lagoons and decreased water salinities for over 150 years. Adjustments in the water management practices—in terms of source and amount of freshwater inputs—have resulted in changes in the diversity, distribution and productivity of submerged angiosperms. Between the 1970s and late 1980s, a massive decline of the aquatic vegetation occurred in the Encanyissada–Clot and Tancada lagoons, but little information on the status is available after the recovery of macrophytes in the 1990s. Here, we evaluate the influence of salinity regimes resulting from current water management practices on the composition, distribution, seasonal abundance and flowering rates of submersed macrophytes, as well as on the occurrence of epiphyte and drift macroalgae blooms in three coastal lagoons. Our results show that Ruppia cirrhosa is the dominant species in the Encanyissada lagoon (185.97?±?29.74 g?DW?m?2?year?1; 12–27?‰ salinity) and the only plant species found in the Tancada lagoon (53.26?±?10.94 g?DW?m2?year?1; 16–28?‰ salinity). Flowering of R. cirrhosa (up to 1,011?±?121 flowers?m?2) was only observed within the Encanyissada and suggests that mesohaline summer conditions may favor these events. In contrast, low salinities in Clot lagoon (~3–12?‰) favor the development of Potamogeton pectinatus (130.53?±?13.79 g?DW?m2?year?1) with intersperse R. cirrhosa (8.58?±?1.71 g?DW?m?2) and mixed stands of P. pectinatus and Najas marina (up to ~57 g?DW?m?2?year?1) in some reduced areas. The peak biomasses observed during the study are 88 to 95 % lower than maximum values reported in the literature at similar salinities, and there is also little or no recovery in some areas compared to last reports more than 20 years ago. The main management actions to restore the natural diversity and productivity of submersed angiosperms, such as the recovering of the seagrass Zostera noltii, should be the increase of salinity during the period of rice cultivation, by reducing freshwater inputs and increasing flushing connections with the bays.  相似文献   

15.
Estuaries located in the northern Gulf of Mexico are expected to experience reduced river discharge due to increasing demand for freshwater and predicted periods of declining precipitation. Changes in freshwater and nutrient input might impact estuarine higher trophic level productivity through changes in phytoplankton quantity and quality. Phytoplankton biomass and composition were examined in Apalachicola Bay, Florida during two summers of contrasting river discharge. The <20 μm autotrophs were the main component (92?±?3 %; n?=?14) of phytoplankton biomass in lower (<25 psu) salinity waters. In these lower salinity waters containing higher dissolved inorganic nutrients, phycocyanin containing cyanobacteria made the greatest contribution to phytoplankton biomass (69?±?3 %; n?=?14) followed by <20 μm eukaryotes (19?±?1 %; n?=?14), and phycoerythrin containing cyanobacteria (4?±?1 %; n?=?14). In waters with salinity from 25 to 35 psu that were located within or in close proximity to the estuary, >20 μm diatoms were an increasingly (20 to 70 %) larger component of phytoplankton biomass. Lower summer river discharges that lead to an areal contraction of lower (5–25 psu) salinity waters composed of higher phytoplankton biomass dominated by small (<20 μm) autotrophs will lead to a concomitant areal expansion of higher (>25 psu) salinity waters composed of relatively lower phytoplankton biomass and a higher percent contribution by >20 μm diatoms. A reduction in summer river discharge that leads to such a change in quantity and quality of estuarine phytoplankton available will result in a reduction in estuarine zooplankton productivity and possibly the productivity of higher trophic levels.  相似文献   

16.
This study measures the reaction rate of dolomite and aragonite (calcite) into Mg-calcite at 800, 850, and 900°C and 1.6 GPa. The dry synthetic dolomite-aragonite aggregate transformed very rapidly into dolomite-calcite polycrystalline aggregate while Mg-calcites formed at a relatively slow rate, becoming progressively richer in Mg with run time. We modeled the reaction progress semi-empirically by the first-order rate law. The temperature dependence of the overall transport rate of MgCO3 into calcite can be described by the kinetic parameters (E?=?231.7 kJ/mol and A o ?=?22.69 h?1). Extrapolation using the Arrhenius equation to the conditions during exhumation of UHPM rocks indicates that the reaction of dolomite with aragonite into Mg-saturated calcite can be completed as the P-T path enters the Mg-calcite stability field in a geologically short time period (<1 Ky). On the other hand, the extrapolation of the rate to prograde metamorphic conditions reveals that the Mg-calcite formed from dolomitic marble in the absence of metamorphic fluid may not reach Mg-saturation until temperatures corresponding to high-grade metamorphism (e.g., >340°C and >10 My). SEM-EDS analysis of individual calcite grains shows compositional gradients of Mg in the calcite grains. The Mg-Ca inter-diffusion coefficient at 850°C is around 1.68?×?10?14 m2/sec if diffusion is the major control of the reaction. The calculated closure temperatures for Ca-Mg inter-diffusion as a function of cooling rate and grain size reveal that Ca/Mg resetting in calcite in a dry polycrystalline carbonate aggregate (with grain size around 1 mm) may not occur at temperatures below 480°C at a geological cooling rate around 10°C/My, unless other processes, such as short-circuit interdiffusion along grain boundaries and dislocations, are involved.  相似文献   

17.
An 118-cm-long, well-preserved sediment profile was collected from a paleo-notch formed by ocean wave action before rising to the terrace on Ny-Ålesund, Svalbard, Norway. A large number of mollusk shell fragments, predominantly Mya truncata, were found in the sediment profile. AMS 14C dating and stable oxygen and carbon isotope analyses were performed on the shell fragments samples. The reservoir-corrected radiocarbon ages averaged ~9,400 yr B.P., which accurately dates the raised terrace and the upper marine limit after Kongsfjorden was completely deglaciated. The calibrated aragonite isotopic temperature equation was established for Ny-Ålesund by comparing the δ18O profiles of modern mollusks as follows: T (°C) = 16.26 ? 3.68(δ18Oaragonite–PDB ? δ18Owater–VSMOW). The reconstructed paleotemperature range was ?0.52 to +4.78°C, warmer than today by about 1°C, which was further confirmed by reconstructed sea surface temperature (SST) in west Svalbard. Moreover, the mortality of mollusks was very likely caused by an abrupt cooling event at about 9,400 yr B.P., which was triggered by reduced insolation, weakened thermohaline circulation, and abruptly decreased SST. More evidences for this distinct but short cooling event centered at about 9,400 yr B.P. were found in Northern Siberia, North Atlantic, Alps, and Eastern Europe.  相似文献   

18.
The concentrations of dissolved boron have been measured during different seasons in three estuaries, the Tapi, Narmada and the Mandovi situated on the western coast of India, to investigate its geochemical behavior and inputs from the localized anthropogenic pressures of industrial effluents and sewage discharge. The measured boron concentrations in these estuaries (except the Tapi during non-monsoon) at salinity ≤0.1 fall in a narrow range?~?2–4 μmol/kg (average B?~?2.4?±?0.8 μmol/kg) within the reported wide range?~?0.1–18.6 μmol/kg for global rivers. The much higher estimate of boron concentration in the Tapi River during non-monsoon is attributed to its possible additional supply from the sewage and/or industrial effluents discharged along the river course. During monsoon, the rains seem to be a significant source of dissolved boron to all the three rivers. The distribution of dissolved boron in each estuary exhibits a conservative behavior during the seasons sampled suggestive of no measurable addition or removal of boron in the estuarine region. The orders of magnitude differences in boron concentration between the river waters and seawater, and the conservative behavior of dissolved boron indicate that its major contributor to the estuaries sampled is seawater.  相似文献   

19.
Assessing nitrogen dynamics in the estuarine landscape is challenging given the unique effects of individual habitats on nitrogen dynamics. We measured net N2 fluxes, sediment oxygen demand, and fluxes of ammonium and nitrate seasonally from five major estuarine habitats: salt marshes, seagrass beds (SAV), oyster reefs, and intertidal and subtidal flats. Net N2 fluxes ranged from 332?±?116 μmol?N-N2?m?2?h?1 from oyster reef sediments in the summer to ?67?±?4 μmol?N-N2?m?2?h?1 from SAV in the winter. Oyster reef sediments had the highest rate of N2 production of all habitats. Dissimilatory nitrate reduction to ammonium (DNRA) was measured during the summer and winter. DNRA was low during the winter and ranged from 4.5?±?3.0 in subtidal flats to 104?±?34 μmol?15NH 4 + ?m?2?h?1 in oyster reefs during the summer. Annual denitrification, accounting for seasonal differences in inundation and light, ranged from 161.1?±?19.2 mmol?N-N2?m?2?year?1 for marsh sediments to 509.9?±?122.7 mmol?N-N2?m?2?year?1 for SAV sediments. Given the current habitat distribution in our study system, an estimated 28.3?×?106?mol of N are removed per year or 76 % of estimated watershed nitrogen load. These results indicate that changes in the area and distribution of habitats in the estuarine landscape will impact ecosystem function and services.  相似文献   

20.
The results of experiments on the hydrothermal dolomitization of calcite (between 252 and 295°C) and aragonite (at 252°C) by a 2 M CaCl2-MgCl2 aqueous solution are reported and discussed. Dolomitization of calcite proceeds via an intermediate high (ca. 35 mole %) magnesian calcite, whereas that of aragonite is carried out through the conversion of the reactant into a low (5.6 mole %) magnesian calcite which in turn transforms into a high (39.6 mole %) magnesian calcite. Both the intermediate phases and dolomite crystallize through a dissolution-precipitation reaction. The intermediate phases form under local equilibrium within a reaction zone surrounding the dissolving reactant grains. The volume of the reaction zone solution can be estimated from Sr2+ and Mg2+ partitioning equations. In the case of low magnesian calcite growing at the expense of aragonite at 252°C, the total volume of these zones is in the range of 2 × 10?5 to 2 × 10?4 1., out of 5 × 10?3 1., the volume of the bulk solution.The apparent activation energies for the initial crystallization of high magnesian calcite and dolomite are 48 and 49 kcal/mole, respectively.Calcite transforms completely into dolomite within 100 hr at 252°C. The overall reaction time is reduced to approximately 4 hr at 295°C. The transformation of aragonite to dolomite at 252°C occurs within 24 hr. The nature of the reactant dictates the relative rates of crystallization of the intermediate phases and dolomite. With calcite as reactant, dolomite growth is faster than that of magnesian calcite; this situation is reversed when aragonite is dolomitized.Coprecipitation of Sr2+ with dolomite is independent of temperature (within analytical error) between 252 and 295°C. Its partitioning, with respect to calcium, between dolomite and solution results in distribution coefficients in the range of 2.31 × 10?2 to 2.78 × 10?2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号