首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The Ethiopian continental flood basalt (CFB) province (∼30 Ma, > 3 × 105 km3) was formed as the result of the impingement of the Afar mantle plume beneath the Ethiopian lithosphere. This province includes major sequences of rhyolitic ignimbrites generally found on top of the flood basalt sequence. Their volume is estimated to be at least 6 × 104km3, which represents 20% of that of the trap basalts. Their phenocryst assemblage (alkali feldspar, quartz, aegyrine-augite, ilmenite ± Ti-magnetite, richterite, and eckermanite) suggests temperatures in the range of 740 to 900°C. Four units were recognized in the field (Wegel Tena, Jima, Lima Limo, and Debre Birhan areas), each with its own geochemical specificity. Zr/Nb ratios remain constant between basalt and rhyolite in each area, and rhyolites associated with high-Ti or low-Ti basalts are, respectively, enriched or depleted in titanium. Their trace element and isotope (Sr, Nd, O) signatures (high 143Nd/144Nd and low 87Sr/86Sr ratios, compared to those of rhyolites from other CFB provinces) are clearly different from those of typical crustal melts and indicate that the Ethiopian rhyolites are among the most isotopically primitive rhyolites. Their major and trace element patterns suggest that they are likely to be derived from fractional crystallization of basaltic magmas similar in composition to the exposed flood basalts with only limited crustal contribution. Since Ethiopian high-Ti basalts have been shown to form from melting of a mantle plume, it is likely that Ethiopian ignimbrites, at least those that are Ti-rich, also incorporated material from the deep mantle.Rb-Sr isochrons on whole rocks and mineral separates (30.1 ± 0.4 Ma for Wegel Tena and 30.5 ± 0.4 Ma for Jima ignimbrites) show that most of the silicic volcanism occurred within < 2 Ma during the Oligocene. Ignimbritic eruptions resumed in the Miocene during two episodes dated at 15.4 ± 0.2 Ma and 8.0 ± 0.2 Ma for the Debre Birhan area. The Rb-Sr isochron ages of ignimbrites (both Oligocene and Miocene rhyolites) are indistinguishable within uncertainties from the 40Ar/39Ar ages of the underlying flood basalts. The Oligocene ignimbrites and the underlying trap basalts are synchronous with a shift in the oxygen composition of foraminifera recorded in Indian and Atlantic Ocean cores. The temporal coincidence of Ethiopian Oligocene volcanism, which released immense volumes of S (> 1.4 × 1015 mol) and Cl (6.4 × 1015 mol) into the atmosphere over a short time span, with the global cooling event at 30.3 Ma suggests that this volcanism might have accelerated the climate change that was already underway.  相似文献   

2.
The Sierra Madre Occidental of northwestern Mexico is the biggest silicic large igneous province of the Cenozoic, yet very little is known about its geology due to difficulties of access to much of this region. This study presents geologic maps and two new U-Pb zircon laser ablation inductively coupled plasma mass spectrometry ages from the Cerocahui basin, a previously unmapped and undated ~25 km-long by ~12 km-wide half-graben along the western edge of the relatively unextended core of the northern Sierra Madre Occidental silicic large igneous province. Five stratigraphic units are defined in the study area: (1) undated welded to non-welded silicic ignimbrites that underlie the rocks of the Cerocahui basin, likely correlative to Oligocene-age ignimbrites to the east and west; (2) the ca. 27.5–26 Ma Bahuichivo volcanics, comprising mafic-intermediate lavas and subvolcanic intrusions in the Cerocahui basin; (3) alluvial fan deposits and interbedded distal non-welded silicic ignimbrites of the Cerocahui clastic unit; (4) basalt lavas erupted into the Cerocahui basin following alluvial deposition; and (5) silicic hypabyssal intrusions emplaced along the eastern margin of the basin and to a lesser degree within the basin deposits.

The main geologic structures in the Cerocahui basin and surrounding region are NNW-trending normal faults, with the basin bounded on the east by the syndepositional W-dipping Bahuichivo–Bachamichi and Pañales faults. Evidence of syndepositional extension in the half-graben (e.g. fanning dips, unconformities, coarsening of clastic deposits toward basin-bounding faults) indicates that normal faulting was active during deposition in the Cerocahui basin (Bahuichivo volcanics, Cerocahui clastic unit, and basalt lavas), and may have been active earlier based on regional correlations.

The rocks in the Cerocahui basin and adjacent areas record: (1) the eruption of silicic outflow ignimbrite sheets, likely erupted from caldera sources to the east during the early Oligocene pulse of the mid-Cenozoic ignimbrite flare-up, mostly prior to synextensional deposition in the Cerocahui basin (pre-27.5 Ma); (2) synextensional late Oligocene mafic-intermediate composition magmatism and alluvial fan sedimentation (ca. 27.5–24.5 Ma), which occurred during the lull between the Early Oligocene and early Miocene pulses of the ignimbrite flare-up; and (3) post-extensional emplacement of silicic hypabyssal intrusions along pre-existing normal faults, likely during the early Miocene pulse of the ignimbrite flare-up (younger than ca. 24.5 Ma). The timing of extensional faulting and magmatism in the Cerocahui basin and surrounding area generally coincides with previous models of regional-scale middle Eocene to early Miocene southwestward migration of active volcanism and crustal extension in the northern Sierra Madre Occidental controlled by post-late Eocene (ca. 40 Ma) rollback/fallback of the subducted Farallon slab.  相似文献   

3.
Basic volcanic rocks from Tafresh, west Kashan, and west Nain volcanic successions in the central part of Urumieh-Dokhtar Magmatic Assemblage (UDMA) of Iran yield K–Ar ages ranging from 26.8 to 18.2 Ma. These ages indicate significant Late Oligocene–Early Miocene basic volcanism in the UDMA. These ages, combined with K–Ar ages of 26.0 and 14.1 Ma, respectively, for associated low-silica and high-silica adakites, help constrain reconstructions of the UDMA geodynamic evolution. Late Oligocene–Early Miocene slab roll-back associated with an asthenospheric mantle influx are suggested as the major processes responsible for concurrent volcanism showing Nb–Ta-depleted, Nb–Ta-enriched and low-silica adakite signatures. Slab roll-back, the likely consequence of a decrease in subduction velocity, led to partial melting of the subducted slab and produced Early–Middle Miocene high-silica (dacitic) adakites. Oligocene to Miocene volcanic rocks do not conform to the Oligocene continental collisional model for the UDMA, rather they suggest a decrease in the subduction rate that prompted the asthenospheric mantle influx.  相似文献   

4.
塔里木溢流玄武岩的喷发特征   总被引:5,自引:3,他引:2  
上官时迈  田伟  徐义刚  关平  潘路 《岩石学报》2012,28(4):1261-1272
通过对柯坪地区二叠系野外火山岩露头剖面和英买力、哈拉哈塘井区二叠系火山岩钻井剖面的对比,将塔里木早二叠世溢流玄武岩划分为三个旋回,从老到新依次是:库普库兹满溢流玄武岩旋回(KP),长英质火山碎屑岩旋回(FP)和开派兹雷克溢流玄武岩旋回(KZ)。KP旋回以巨厚溢流玄武岩夹凝灰岩为特征,在柯坪露头区和英买力井区均可划分出三层巨厚玄武质熔岩流,至哈拉哈塘井区减少为一层玄武岩流,但长英质火山碎屑岩和熔岩厚度增加。FP旋回在柯坪露头区自下而上包括空落相凝灰岩,熔结凝灰岩,再沉积火山碎屑岩和正常碎屑岩夹火山灰层,该层可与英买力及哈拉哈塘井区的凝灰岩层对比,表明在塔北存在一期面积广泛的长英质火山喷发。KZ旋回以溢流玄武岩为主,在开派兹雷克剖面识别出四期喷发共8层溢流玄武岩和一期安山质玄武岩,每期喷发之间夹少量碎屑岩,但未见长英质火山碎屑岩夹层,该特征与英买力和哈拉哈塘井区的火山层序组合不同,而与塔中溢流玄武岩类似。三个火山旋回的划分表明塔里木大火成岩省经历了"基性溢流玄武岩-酸性火山碎屑岩-基性溢流玄武岩"的演变过程,与Afro-Arabian溢流玄武岩省相似,可进行对比研究。  相似文献   

5.
Precise time constraints of the main extrusive phase of the Emeishan large igneous province (ELIP) remain unresolved because basalts commonly do not contain suitable minerals for U–Pb dating, whereas previous 40Ar/39Ar studies on basalts yielded tectonothermal overprint ages. The timing for the ELIP was deduced from indirect dating of minor intrusions of ultramafic/mafic and felsic compositions by geochronological methods and geological correlations. The extrusive part of the ELIP consists of an older low-Ti and younger high-Ti basalt phases. We have found fresh samples of plagioclase-phyric rocks at the lower Qiaojia extrusive section (the Yunnan province of China), which belong to the ELIP unit of the high-Ti basalt series. 40Ar/39Ar dating on plagioclase from two samples conducted at two different laboratories using different age standards yielded statistically indistinguishable results with the weighted mean age of 260.1 ± 1.2 Ma for five individual measurements. This provides the direct constraints on the onset of the ELIP high-Ti basalt extrusive phase. The obtained age is within the error or slightly older than the age of the Guadalupian–Lopingian boundary and felsic ignimbrite capping the ELIP lava succession (both dated at 259.1 ± 0.5 Ma). Our new data are strengthening the short duration of the, at least, high-Ti phase of the ELIP volcanism and its temporal link with the end-Guadalupian mass extinction. Estimation of the total duration of the ELIP volcanism awaits finding of suitable for dating low-Ti basalts.  相似文献   

6.
The latest Carboniferous to lower Permian volcanism of the southern Variscides in Sardinia developed in a regional continental transpressive and subsequent transtensile tectonic regime.Volcanism produced a wide range of intermediate-silicic magmas including medium-to high-K calc-alkaline andesites,dacites,and rhyolites.A thick late Palaeozoic succession is well exposed in the four most representative Sardinian continental basins(Nurra,Perdasdefogu,Escalaplano,and Seui-Seulo),and contains substantial stratigraphic,geochemical,and geochronological evidence of the area's complex geological evolution from the latest Carboniferous to the beginning of the Triassic.Based on major and trace element data and LA-ICP-MS U-Pb zircon dating,it is possible to reconstruct the timing of postVariscan volcanism.This volcanism records active tectonism between the latest Carboniferous and Permian,and post-dates the unroofing and erosion of nappes in this segment of the southern Variscides.In particular,igneous zircon grains from calc-alkaline silicic volcanic rocks yielded ages between299±1 and 288±3 Ma,thereby constraining the development of continental strike-slip faulting from south(Escalaplano Basin)to north(Nurra Basin).Notably,andesites emplaced in medium-grade metamorphic basement(Mt.Cobingius,Ogliastra)show a cluster of older ages at 332±12 Ma.Despite the large uncertainty,this age constrains the onset of igneous activity in the mid-crust.These new radiometric ages constitute:(1)a consistent dataset for different volcanic events;(2)a precise chronostratigraphic constraint which fits well with the biostratigraphic data and(3)insights into the plate reorganization between Laurussia and Gondwana during the late Palaeozoic evolution of the Variscan chain.  相似文献   

7.
The Onega plateau constitutes part of a vast continental flood basalt province in the SE Baltic Shield. It consists of Jatulian-Ludikovian submarine volcanic, volcaniclastic and sedimentary sequences attaining in places 4.5?km in thickness. The parental magmas of the lavas contained ~10% MgO and were derived from melts generated in the garnet stability field at depths 80–100?km. The Sm-Nd mineral and Pb-Pb whole-rock isochron ages of 1975?±?24 and 1980?±?57 Ma for the upper part of the plateau and a SHRIMP U-Pb zircon age of 1976?±?9 Ma for its lower part imply the formation of the entire sequence within a short time span. These ages coincide with those of picrites in the Pechenga-Imandra belt (the Kola Peninsula) and komatiites and basalts in the Karasjok-Kittilä belt (Norway and Finnmark). Together with lithostratigraphic, chemical and isotope evidence, these ages suggest the derivation of the three provinces from a single large (~2000?km in diameter) mantle plume. These plume-generated magmas covered ~600,000?km2 of the Baltic Shield and represent a major contribution of juvenile material to the existing continental crust at 2.0 Ga. The uppermost Onega plateau lavas have high (Nb/Th)N?=?1.4–2.4, (Nb/La)N= 1.1–1.3, positive ?Nd(T) of +3.2 and unradiogenic Pb-isotope composition (μ1?= 8.57), comparable with those of modern oceanic plume-derived magmas (oceanic flood basalt and ocean island basalt). These parameters are regarded as source characteristics. The lower sequences have (Nb/Th)N= 0.58–1.2, (Nb/La)N= 0.52–0.88 and ?Nd(T) =?2.6. They have experienced mixing with 10–30% of continental crust and resemble contaminated lavas from other continental flood basalt provinces. The estimated Nb/U ratios of 53?±?4 in the uncontaminated rocks are similar to those found in the modern mantle (~47) suggesting that by 2.0 Ga a volume of continental crust similar to the present-day value already existed.  相似文献   

8.
The Huautla volcanic field (HVF), in the Sierra Madre del Sur (SMS), is part of an extensive record of Palaeogene magmatism reflecting subduction of the Farallon plate along the western edge of North America. Igneous activity resulting from Farallon subduction is also exposed to the north, in the Sierra Madre Occidental (SMO) and Mesa Central (MC) provinces. We present the results of a stratigraphic and K–Ar, Ar–Ar, and U–Pb geochronological study of the Huautla volcanic successions, in order to refine our knowledge on the petrologic and temporal evolution of the northern SMS and gain insights on magmatic–tectonic contrasts between the SMS and the SMO–MC provinces. The HVF is made up of lava flows and pyroclastic successions that overlie marine Cretaceous sequences and post-orogenic continental deposits of Palaeogene age. In the study area, the main Oligocene succession is pre-dated by the 36.7 million years its caldera west of the Sierra de Huautla. The HVF succession ranges in age from ~33.6 to 28.1 Ma and comprises a lower group of andesitic–dacitic lava flows, an intermediate sequence of ignimbrites and dacitic lavas, and an upper group of andesitic units. The silicic succession comprises a crystal-poor ignimbrite unit (i.e. the Maravillas ignimbrite; 31.4 ± 0.6, 32.0 ± 0.4 Ma; ~260 km3), overlain by a thick succession of dacitic lavas (i.e. the Agua Fría dacite; 30.5 ± 1.9, 31.0 ± 1.1 Ma). Integration of the new stratigraphic and geochronological data with prior information from other explosive centres of the north-central SMS allows us to constrain the temporal evolution of a silicic flare-up episode, indicating that it occurred between 37–32 Ma; it consisted of three major ignimbrite pulses at ~36.5, ~34.5, and ~33–32 Ma and probably resulted from a progressive, mantle flux-driven thermomechanical maturation of the continental crust, as suggested in the HVF by the transition from andesitic to voluminous siliceous volcanism. The information now available for the north-central sector of the SMS also allows recognition of differences between the temporal and spatial evolution of magmatism in this region, and of that documented in the southern SMO and MC provinces, suggesting that such contrasts are probably related to local differences in configuration of the subduction system. At ~28 Ma, the MC and southern SMO provinces experienced a trenchward migration of volcanism, associated with slab rollback; on the other hand, the broad, more stable distribution of Oligocene magmatism in the central and north oceanic plate was subducting at a low angle.  相似文献   

9.
Continental flood basalts (CFBs), thought to preserve the magmatic record of an impinging mantle plume head, offer spatial and temporal insights into melt generation processes in large igneous provinces (LIPs). Despite the utility of CFBs in probing mantle plume composition, these basalts typically erupt fractionated compositions, suggestive of significant residence time in the continental lithosphere. The location and duration of residence within the lithosphere provide additional insights into the flux of plume-related magmas. The NW Ethiopian plateau offers a well-preserved stratigraphic sequence from flood basalt initiation to termination, and is thus an important target for study of CFBs. This study examines modal observations within a stratigraphic framework and places these observations within the context of the magmatic evolution of the Ethiopian CFB province. Data demonstrate multiple pulses of magma recharge punctuated by brief shut-down events, with initial flows fed by magmas that experienced deeper fractionation (lower crust). Broad changes in modal mineralogy and flow cyclicity are consistent with fluctuating changes in magmatic flux through a complex plumbing system, indicating pulsed magma flux and an overall shallowing of the magmatic plumbing system over time. The composition of plagioclase megacrysts suggests a constant replenishing of new primitive magma recharging the shallow plumbing system during the main phase of volcanism, reaching an apex prior to flood basalt termination. The petrostratigraphic data sets presented in this paper provide new insight into the evolution of a magma plumbing system in a CFB province.  相似文献   

10.
The intraplate Cameroon Volcanic Line (CVL) straddles the African-South Atlantic continent-ocean boundary and is composed mainly of alkaline basic volcanic rocks. Voluminous silicic volcanics characterize the continental sector of the CVL. We present here new geochemical, isotopic (Sr-Nd-O) and 40Ar/39Ar geochronological data on the main silicic volcanic centres of the Western (Mt. Oku, Sabga and Mt. Bambouto) and Eastern (Ngaoundere plateau) Cameroon Highlands. The silicic volcanism of Mt. Oku, Sabga and Mt. Bambouto occurred between 25 and 15 Ma and is represented by voluminous quartz-normative trachytes and minor rhyolitic ignimbrites. At Mt. Bambouto central volcano about 700 m of silicic volcanics erupted in less than 2.7 million years. These silicic volcanics are associated with slightly to moderately alkaline basalts and minor basanites. In general, onset of the silicic volcanism migrated from NE (Oku: 25 Ma) to SW (Sabga: 23 Ma; Bambouto: 18 Ma; and Mt. Manengouba: 12 Ma). The silicic volcanism of the Ngaoundere plateau (eastern branch of the CVL) is instead dominated by nepheline-normative trachytes which are associated with strongly alkaline basalts and basanitic rocks. These Ne-trachytes are younger (11-9 Ma) than the Q-trachytes of the Western Highlands. The least differentiated silicic volcanics are isotopically similar (87Sr/86Sr < 0.70380; 143Nd/144Nd > 0.51278) to the associated alkaline basalts suggesting differentiation processes without appreciable interaction with crustal materials. Such interactions may, however, have played some role in the genesis of the most evolved silicic volcanics which have 87Sr/86Sr as high as 0.705–0.714. Fractional crystallization is the preferred mechanism for genesis of the silicic melts of both Western and Eastern Highlands, as shown by modeling major and trace element variations. The genesis of the least evolved Q-trachytes from the Western Highlands, starting from slightly to moderately alkaline basalts, is compatible with fractionation of dominantly plagioclase, clinopyroxene and magnetite. Crystal fractionation may have occurred at low pressure and at QFM buffer f O2conditions. Parental magmas of the Ngaoundere Ne-trachytes are likely instead to have been strongly alkaline basalts which evolved through crystal fractionation at higher P (6-2 kbar) and f O2 (QFM + 2). The migration (25 to 12 Ma) of the silicic volcanism from NE to SW in the continental sector of the CVL is reminiscent of that (31-5 Ma) of the onset of the basic volcanism in the oceanic sector (Principe to Pagalu islands) of the CVL. These ages, and that (11-9 Ma) of the silicic volcanism of the Ngaoundere plateau, indicate that the Cameroon Volcanic Line as a whole may not be easily interpreted as the surface expression of hot-spot magmatism. Received: 24 February 1998 / Accepted: 22 September 1998  相似文献   

11.
The northeast (NE) Honshu arc was formed by three major volcano-tectonic events resulting from Late Cenozoic orogenic movement: continental margin volcanism (before 21?Ma), seafloor basaltic lava flows and subsequent bimodal volcanism accompanied by back-arc rifting (21 to 14?Ma), and felsic volcanism related to island arc uplift (12 to 2?Ma). Eight petrotectonic domains, parallel to the NE Honshu arc, were formed as a result of the eastward migration of volcanic activity with time. Major Kuroko volcanogenic massive sulfide (VMS) deposits are located within the eastern marginal rift zone (Kuroko rift) that formed in the final period of back-arc rifting (16 to 14?Ma). Volcanic activity in the NE Honshu arc is divided into six volcanic stages. The eruption volumes of volcanic rocks have gradually decreased from 4,600?km3 (per 1?my for a 200-km-long section along the arc) of basaltic lava flows in the back-arc spreading stage to 1,000?C2,000?km3 of bimodal hyaloclastites in the back-arc rift stage, and about 200?km3 of felsic pumice eruptions in the island arc stage. The Kuroko VMS deposits were formed at the time of abrupt decrease in the eruption volume and change in the mode of occurrence of the volcanic rocks during the final period of back-arc rifting. In the area of the Kuroko rift, felsic volcanism changed from aphyric or weakly plagioclase phyric (before 14?Ma), to quartz and plagioclase phyric with minor clinopyroxene (12 to 8?Ma), to hornblende phyric (after 8?Ma), and hornblende and biotite phyric (after 4?Ma). The Kuroko VMS deposits are closely related to the aphyric rhyolitic activity before 14?Ma. The rhyolite was generated at a relatively high temperature from a highly differentiated part of felsic magma seated at a relatively great depth and contains higher Nb, Ce, and Y contents than the post-Kuroko felsic volcanism. The Kuroko VMS deposits were formed within a specific tectonic setting, at a specific period, and associated with a particular volcanism of the arc evolution process. Therefore, detailed study of the evolutional process from rift opening to island arc tectonics is very important for the exploration of Kuroko-type VMS deposits.  相似文献   

12.
Volcanic rocks from the Gümü?hane area in the southern part of the Eastern Pontides (NE Turkey) consist mainly of andesitic lava flows associated with tuffs, and rare basaltic dykes. The K-Ar whole-rock dating of these rocks range from 37.62?±?3.33 Ma (Middle Eocene) to 30.02?±?2.84 Ma (Early Oligocene) for the andesitic lava flows, but are 15.80?±?1.71 Ma (Middle Miocene) for the basaltic dykes. Petrochemically, the volcanic rocks are dominantly medium-K calc-alkaline in composition and show enrichment of large ion lithophile elements, as well as depletion of high field strength elements, thus revealing that volcanic rocks evolved from a parental magmas derived from an enriched mantle source. Chondrite-normalized rare-earth element patterns of the volcanic rocks are concave upwards with low- to-medium enrichment (LaCN/LuCN?=?3.39 to 12.56), thereby revealing clinopyroxene- and hornblende-dominated fractionations for andesitic-basaltic rocks and tuffs, respectively. The volcanic rocks have low initial 87Sr/86Sr ratios (0.70464 to 0.70494) and εNd(i) values (+1.11 to +3.08), with Nd-model ages (TDM) of 0.68 to 1.02 Ga, suggesting an enriched lithospheric mantle source of Proterozoic age. Trace element and isotopic data, as well as the modelling results, show that fractional crystallization and minor assimilation played an important role in the evolution of the volcanic rocks studied. The Eocene to Miocene volcanism in the region has resulted from lithospheric delamination and the associated convective thinning of the mantle, which led to the partial melting of the subduction-metasomatized lithospheric mantle.  相似文献   

13.
The fauna of the Enspel (Westerwald) and the neighbouring Kärlich (Neuwied basin) fossil deposits correspond to the Upper Oligocene Mammal Paleogene (MP) reference level 28 and 28–30, respectively. Basaltic flows and a trachyte tuff terminating and predating the fossil deposit sedimentation allow to numerically calibrate the MP reference levels by radioisotope dating. Laser fusion 40Ar/39Ar step heating on volcanic feldspars yield a time interval of 24.9–24.5 Ma for reference level MP28 at Enspel and a maximum age of 25.5 Ma for the time interval MP28–MP30 at Kärlich. Interpolation between the time intervals determined for the Enspel reference level MP28 and the age of the global Oligocene/Miocene boundary of 24.0 ± 0.1 Ma taken from literature results in time intervals of 24.5–24.2 Ma and 24.2–23.9 Ma for the younger reference levels MP29 and MP30, respectively. These intervals of ≤ 0.4 m.y. for MP reference levels of the latest Oligocene are short relative to older Oligocene MP reference levels 21–27 between 34 and 25 Ma. Since subdivision into MP reference levels essentially is based on assemblages of mammal taxa and on evolutionary changes in tooth morphology of mammals short MP time intervals during the latest Oligocene indicate a rapid evolutionary change relative to the early Oligocene.  相似文献   

14.
《International Geology Review》2012,54(11):1391-1408
ABSTRACT

Rocks of the early Neoproterozoic age of the world have remained in discussion for their unique identity and evolutionary history. The rocks are also present in Sindh province of Pakistan and have been in debate for a couple of years. Yet, these igneous rocks have been studied very poorly regarding U-Pb and Lu-Hf age dating. The early Neoproterozoic rocks located in Nagarparkar town of Sindh have been considered as shoulder of Malani Igneous Suite (MIS) discovered in Southwest of India. The Nagarparkar Igneous Complex (NPIC) rocks are low-grade metamorphosed, mafic and silicic rocks. These rocks are accompanied by felsic and mafic dikes. Two types of granite from NPIC have been identified as peraluminous I-type biotite granites (Bt-granites), of medium-K calc-alkaline rocks series and A-type potash granites (Kfs-granites) of high-K calc-alkaline rocks series. Geochemical study shows that these Kfs-granites are relatively high in K and Na contents and low MgO and CaO. The Bt-granites have positive Rb, Ba, and Sr with negative Eu anomalies rich with HFSEs Zr, Hf, and slightly depleted HREEs, whereas Kfs-granites have positive Rb with negative Ba, Sr, and Eu anomalies and have positive anomalies of Zr and Hf with HREEs. In addition, these rocks possess crustal material, which leads to the enrichment of some incompatible trace elements and depletion of Sr and Ba in Kfs-granites and relatively high Sr and Ba in Bt-granites, indicating a juvenile lower continental crust affinity. Zircon LA-ICP-MS U-Pb dating of these granites yielded weighted mean 206Pb/238U ages ranging from 812.3 ± 14.1 Ma (N = 18; MSWD = 3.7); and 810 ± 7.4 Ma (N = 16; MSDW = 0.36) for the Bt-granites, and 755.3 ± 7.1 Ma (N = 21; MSDW = 2.0); NP-GG-01 and 736.3 ± 4.3 Ma (N = 24; MSWD = 1.05) for Kfs-granites, respectively. The Bt-granites and Kfs-granites have positive zircon εHf(t) values, which specify that they are derived from a juvenile upper and lower continental crust. Based on the geochemical and geochronological data, we suggest that the Bt-granites were formed through lower continental crust earlier to the rifting time, whereas the Kfs-granites were formed via upper continental crust, during crustal thinning caused by Rodinia rifting. These zircon U-Pb ages 812 to 736 Ma, petrographic, and geochemical characteristics match with those of the adjacent Siwana, Jalore, Mount Abu, and Sirohi granites of MIS. Thus, we can suggest that NPIC granites and adjacent MIS can possibly be assumed as a missing link of the supercontinent Rodinia remnants.  相似文献   

15.
内蒙古中部发育的三条蛇绿岩带是华北板块和西伯利亚板块之间的缝合带。本文系统研究了其中的温都尔庙和巴彦敖包-交其尔两个蛇绿岩带中变质玄武岩的元素和 Sr、Nd、Pb 同位素地球化学。苏右旗温都尔庙碱性玄武岩为轻稀土富集型;岩石具有板内和大陆裂谷区玄武岩的特征,可能代表了600Ma 左右,温都尔庙地区开始发育的新洋盆。采自苏左旗的巴彦敖包-交其尔玄武岩分为两类,一类呈现轻稀土富集型,呈洋岛玄武岩特征;另一类具有明显的 Nb、Ta 负异常,显示大洋岛弧玄武岩特征,洋岛玄武岩的存在表明古亚洲洋曾经发育洋盆,大洋岛弧玄武岩的存在表明古亚洲洋内部有大洋岩石圈之间的俯冲。将本文的古亚洲洋洋岛玄武岩与中国西南地区的特提斯洋岛玄武岩进行系统的元素和同位素地球化学特征对比表明,古亚洲洋的洋岛玄武岩显示高 U/Pb(HU)和北大西洋和太平洋省的特征,而特提斯洋岛玄武岩属于印度洋省。这些说明古亚洲洋地幔域与特提斯地幔域是两个独立的构造域,它们代表了长期演化的两个不同的地幔地球化学域。  相似文献   

16.
西准噶尔萨吾尔地区二叠纪火山活动规律   总被引:3,自引:2,他引:3       下载免费PDF全文
西准噶尔萨吾尔地区位于新疆阿勒泰的吉木乃县及塔城地区和丰县。区内泥盆纪—二叠纪均有火山活动,其中二叠纪火山作用尤为强烈。二叠纪火山岩地层包括哈尔加乌组和卡拉岗组,哈尔加乌组为一套陆相中基性-中性火山岩及火山碎屑岩,卡拉岗组为一套陆相中基性-中酸性火山岩及火山碎屑岩。哈尔加乌—卡拉岗旋回火山岩主要岩性包括橄榄玄武岩、玄武岩、粗玄岩、安山岩、粗安岩、流纹岩、火山碎屑岩等。根据火山岩地层综合剖面以及火山岩的岩石学、岩相学特征,萨吾尔地区二叠纪火山活动由早至晚可分为5个阶段:中性喷发阶段、间歇性基性喷发阶段、酸性爆发及喷溢阶段、小规模中性间歇性爆发及喷溢阶段、基性喷发阶段;火山岩为陆相火山岩,具有双峰式特征,形成于伸展的构造背景下。  相似文献   

17.
滇西三江地区澜沧江南带广泛发育三叠纪火山岩。在北部云县一带,中晚三叠世火山岩出露齐全,自下而上可划分为中三叠统忙怀组(T2m),上三叠统小定西组(T3x)和上三叠统芒汇河组(T3mh)。忙怀组以酸性火山岩为主,为一套流纹岩夹火山碎屑岩组合;小定西组发育为中基性火山熔岩夹火山碎屑岩;芒汇河组具有流纹质火山碎屑岩与玄武岩共存的"双峰式"火山岩特征。地球化学特征表明,南澜沧江带三叠纪火山岩具有弧火山岩与大陆板内火山岩的双重属性,推测其形成环境为过渡型的大陆边缘造山带环境。对南澜沧江带南部景洪附近采集到的石英安山岩样品进行Ar-Ar年龄测试,得到的坪年龄为236.7±2.2Ma,为中三叠世。结合火山岩年代学结果,推测澜沧江洋主碰撞期为早三叠世,中三叠世与晚三叠世早期分别为碰撞后的应力松弛阶段与洋盆继续俯冲期,到晚三叠世末期,俯冲作用结束,澜沧江洋关闭。  相似文献   

18.
The late Aptian(118-115 Ma) continental flood basalts of the Rajmahal Volcanic Province(RVP) are part of the Kerguelen Large Igneous Province,and constitute the uppermost part of the Gondwana Supergroup on the eastern Indian shield margin.The lower one-third of the Rajmahal volcanic succession contains thin layers of plant fossil-rich inter-trappean sedimentary rocks with pyroclasts,bentonite,grey and black shale/mudstone and oolite,whereas the upper two-thirds consist of sub-aerial fine-grained aphyric basalts with no inter-trappean material.At the eastern margin and the north-central sector of the RVP,the volcanics in the lower part include rhyolites and dacites overlain by enstatite-bearing basalts and enstatite-andesites.The pyroclastic rocks are largely felsic in composition,and comprise ignimbrite as well as coarse-grained tuff with lithic clasts,and tuff breccia with bombs,lapilli and ash that indicate explosive eruption of viscous rhyolitic magma.The rhyolites/dacites(68 wt.%) are separated from the andesites( 60 wt.%) by a gap in silica content indicating their formation through upper crustal anatexis with only heat supplied by the basaltic magma.On the other hand,partially melted siltstone xenoliths in enstatite-bearing basalts suggest that the enstatite-andesites originated through mixing of the upper crust with basaltic magma,crystallizing orthopyroxene at a pressure-temperature of ~3 kb/1150℃.In contrast,the northwestern sector of the RVP is devoid of felsic-intermediate rocks,and the volcaniclastic rocks are predominantly mafic(basaltic) in composition.Here,the presence of fine-grained tuffs,tuff breccia containing sideromelane shards and quenched texture,welded tuff breccia,peperite,shale/mudstone and oolite substantiates a subaqueous environment.Based on these observations,we conclude that the early phase of Rajmahal volcanism occurred under predominantly subaqueous conditions.The presence of grey and black shale/mudstone in the lower one-third of the succession across the entire Rajmahal basin provides unequivocal evidence of a shallow-marine continental shelf-type environment.Alignment of the Rajmahal eruptive centers with a major N—S mid-Neoproterozoic lineament and the presence of a gravity high on the RVP suggest a tectonic control for the eruption of melts associated with the Kerguelen plume that was active in a post-Gondwana rift between India and Australia-Antarctica.  相似文献   

19.
Volcanic rocks of the Afyon province (eastern part of western Anatolia) make up a multistage potassic and ultrapotassic alkaline series dated from 14 to 12 Ma. The early-stage Si-oversaturated volcanic rocks around the Afyon city and further southward are trachyandesitic volcanic activity (14.23 ± 0.09 Ma). Late-stage Si-undersaturated volcanism in the southernmost part of the Afyon volcanic province took place in three episodes inferred from their stratigraphic relationships and ages. Melilite–leucitites (11.50 ± 0.03 Ma), spotted trachyandesites, tephryphonolites and lamproites (11.91 ± 0.13 Ma) formed in the first episode; trachyandesites in the second episode and finally phonotephrites, phonolite, basaltic trachyandesites and nosean-bearing trachyandesites during the last episode. The parameter Q [normative q-(ne + lc + kls + ol)] of western Anatolia volcanism clearly decreased southward with time becoming zero in the time interval 10–15 Ma. The magmatism experienced a sudden change in the extent of Si saturation after 14 Ma, during late-stage volcanic activity of Afyon volcanic province at around 12 Ma, though there was some coexistence of Si-oversaturated and Si-undersaturated magmas during the whole life of Afyon volcanic province.  相似文献   

20.
The Axum–Adwa igneous complex consists of a basalt–trachyte (syenite) suite emplaced at the northern periphery of the Ethiopian plateau, after the paroxysmal eruption of the Oligocene (ca 30 Ma) continental flood basalts (CFB), which is related to the Afar plume activity. 40Ar/39Ar and K–Ar ages, carried out for the first time on felsic and basaltic rocks, constrain the magmatic age of the greater part of the complex around Axum to 19–15 Ma, whereas trachytic lavas from volcanic centres NE of Adwa are dated ca 27 Ma. The felsic compositions straddle the critical SiO2-saturation boundary, ranging from normative quartz trachyte lavas east of Adwa to normative (and modal) nepheline syenite subvolcanic domes (the obelisks stones of ancient axumites) around Axum. Petrogenetic modelling based on rock chemical data and phase equilibria calculations by PELE (Boudreau 1999) shows that low-pressure fractional crystallization processes, starting from mildly alkaline- and alkaline basalts comparable to those present in the complex, could generate SiO2-saturated trachytes and SiO2-undersaturated syenites, respectively, which correspond to residual liquid fractions of 17 and 10 %. The observed differentiation processes are consistent with the development of rifting events and formation of shallow magma chambers plausibly located between displaced (tilted) crustal blocks that favoured trapping of basaltic parental magmas and their fractionation to felsic differentiates. In syenitic domes, late- to post-magmatic processes are sometimes evidenced by secondary mineral associations (e.g. Bete Giorgis dome) which overprint the magmatic parageneses, and mainly induce additional nepheline and sodic pyroxene neo-crystallization. These metasomatic reactions were promoted by the circulation of Na–Cl-rich deuteric fluids (600–400 °C), as indicated by mineral and bulk rock chemical budgets as well as by δ18O analyses on mineral separates. The occurrence of this magmatism post-dating the CFB event, characterized by comparatively lower volume of more alkaline products, conforms to the progressive vanishing of the Afar plume thermal effects and the parallel decrease of the partial melting degrees of the related mantle sources. This evolution is also concomitant with the variation of the tectono-magmatic regime from regional lithospheric extension (CFB eruption) to localized rifting processes that favoured magmatic differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号