首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
This paper presents a proposed integrated approach for flood hazardous evaluation in arid and semi-arid areas. Wadi Fatimah in Saudi Arabia is utilized for implementation of such an approach. The approach consists of four stages. In the first stage, a statistical analysis of rainfall data is performed to determine the design storms at specified return periods. In the second stage, geological and geomorphologic analyses are followed to estimate the geomorphic parameters. The third stage concerned with land use and land cover analyses linked with hydrological analysis to estimate the hydrographs. The fourth stage is related to the delineation of the inundation area under two scenarios: the presence and absence of the dam. The statistical analysis proved that some rainfall stations do not follow a Gumbel distribution. The presence of the dam reduces the inundation depth by about 10 %. The reduction in the inundation area due the presence of the dam is about 25 %.  相似文献   

2.
Strong wind and rainfall induced by extreme meteorological processes such as typhoons have a serious impact on the safety of bridges and offshore engineering structures. A new bivariate compound extreme value distribution is proposed to describe the probability dependency structure of annual extreme wind speed and concomitant process maximum rainfall intensity in typhoon-affected area. This probability model takes full account of the case that there may be no rainfall in a typhoon process. A case study based on the observation data of typhoon maximum wind speed and maximum rainfall intensity in Shanghai is conducted to testify the efficiency of the model. Weibull distributions with two parameters are applied to fit respective probability margins, and the joint probability distribution is constructed by Gumbel–Hougaard copula. The fitting results and K–S tests show that these models describe the original data well. The joint return periods are calculated by Poisson bivariate compound extreme value distribution we have proposed. They indicate that typhoons with no rain have smaller joint return periods, and wind speed is the main factor which impacts the change of the joint return periods.  相似文献   

3.
In the past few decades, rapid urbanization has occurred in many regions of the Kingdom of Saudi Arabia due to increasing population and urban development. Additionally, the effects of global warming on rainfall characteristics have been observed. This rapid change in urbanization and climate change has cause significant changes in the nature of land surfaces and rainfall patterns, which affect the runoff process and the amount of surface runoff during floods. This study investigated the effect of urbanization and rainfall intensity for Hafr Al-Batin watershed located in Saudi Arabia. For this purpose, a hydrologic model, HEC-HMS, was adopted to simulate the flow of different rainfall intesities and urbanization levels. Simulated results showed that for a 100-year storm, a 24-h duration, and an urbanization level of 80%, the peak flow was 213% higher than the estimated current peak and the runoff volume was 112% higher than the current runoff volume. These results show a strong linear correlation between the level of urbanization and both peak discharge and runoff volume. Furthermore, the results indicate that for short return periods, the peak flow is more sensitive to the level of urbanization compared to long periods.  相似文献   

4.
Flood hazard evaluation is an important input for Nuclear Power Plants external events safety studies. In the present study, flood hazard at various nuclear sites in India due to rainfall has been evaluated. Hazard estimation is a statistical procedure by which rainfall intensity versus occurrence frequency is estimated from historical records of rainfall data and extrapolated with asymptotic extreme value distribution. Rainfall data needed for flood hazard assessment are daily annual maximum rainfall (24?h data). The observed data points have been fitted using Gumbel, power law and exponential distribution, and return period has been estimated. To study the stationarity of rainfall data, a moving window estimate of the parameters has been performed. The rainfall pattern is stationary in both coastal and inland regions over the period of observation. The coastal regions show intense rainfall and higher variability than inland regions. Based on the plant layout, catchment area and drainage capacity, the prototype fast breeder reactor (PFBR) site is unlikely to be flooded.  相似文献   

5.
Flash floods are the most common type of natural hazards that cause loss of life and massive damage to economic activities. During the last few decades, their impact increased due to rapid urbanization and settlement in downstream areas, which are desirable place for development. Wadi Asyuti, much like other wadis in the Eastern Desert of Egypt, is prone to flash flood problems. Analysis and interpretation of microwave remotely sensed data obtained from the Shuttle Radar Topography Mission (SRTM) and Tropical Rainfall Measuring Mission (TRMM) data using GIS techniques provided information on physical characteristics of catchments and rainfall zones. These data play a crucial role in mapping flash flood potentials and predicting hydrologic conditions in space and time. In order to delineate flash flood potentials in Wadi Asyuti basin, several morphometric parameters that tend to promote higher flood peak and runoff, including drainage characteristics, basin relief, texture, and geometry were computed, ranked, and combined using several approaches. The resulting flash flood potential maps, categorized the sub-basins into five classes, ranging from very low to very high flood potentials. In addition, integrating the spatially distributed drainage density, rainfall intensity, and slope gradient further highlighted areas of potential flooding within the Wadi Asyuti basin. Processing of recent Landsat-8 imagery acquired on March 15, 2014, validated the flood potential maps and offered an opportunity to measure the extent (200–900 m in width) of the flooding zone within the flash flood event on March 9, 2014, as well as revealed vulnerable areas of social and economic activities. These results demonstrated that excessive rainfall intensity in areas of higher topographic relief, steep slope, and drainage density are the major causes of flash floods. Furthermore, integration of remote sensing data and GIS techniques allowed mapping flood-prone areas in a fast and cost-effective to help decision makers in preventing flood hazards in the future.  相似文献   

6.
Flood frequency analysis based on simulated peak discharges   总被引:2,自引:0,他引:2  
Flood frequency approaches vary from statistical methods, directly applied on the observed annual maximum flood series, to adopting rainfall–runoff simulation models that transform design rainfalls to flood discharges. Reliance on statistical flood frequency analysis depends on several factors such as the selected probability distribution function, estimation of the function parameters, possible outliers, and length of the observed flood series. Through adopting the simulation approach in this paper, watershed-average rainfalls of various occurrence probabilities were transformed into the corresponding peak discharges using a calibrated hydrological model. A Monte Carlo scheme was employed to consider the uncertainties involved in rainfall spatial patterns and antecedent soil moisture condition (AMC). For any given rainfall depth, realizations of rainfall spatial distribution and AMC conditions were entered as inputs to the model. Then, floods of different return periods were simulated by transforming rainfall to runoff. The approach was applied to Tangrah watershed in northeastern Iran. It was deduced that the spatial rainfall distribution and the AMCs exerted a varying influence on the peak discharge of different return periods. Comparing the results of the simulation approach with those of the statistical frequency analysis revealed that, for a given return period, flood quantiles based on the observed series were greater than the corresponding simulated discharges. It is also worthy to note that existence of outliers and the selection of the statistical distribution function has a major effect in increasing the differences between the results of the two approaches.  相似文献   

7.
Water management in Saudi Arabia is facing major challenges due to the limited water resources and increasing uncertainties caused by climate change. The rainfall and temperature records of the Saudi meteorological data for more than three decades were analyzed for policy suggestions in water sectors based on the changing rainfall patterns. The trends in the annual aridity and rain indices were also examined to define the changing climate conditions and for determining the dry months in different cities of the Kingdom. An increased annual and maximum rainfall was observed for six cities while a decreasing trend in both annual and maximum rainfall was observed for the same number of cities highlighting the variability of rainfall in the whole region. An increasing maximum rainfall with decreasing annual rainfall was observed for the rest of the cities signifying the more extreme rainfall evens and resulting floods of short durations. The changing rainfall trends were also observed for different months during 31 years of the recorded period in addition to the varying climate pattern for different cities within the same district. Finally, these preliminary assessments of any systematic changes in view of the increased rain intensities and extreme climate events are viewed to demonstrate the value rainwater harvesting and management as a local adaptation to the climate variability and extreme in the Kingdom.  相似文献   

8.
In Pakistan, floods are among the most devastating and recurring natural hazards. Flood hazard assessment requires flood event magnitude and probability of occurrence. Flood frequency analysis is the most common technique used for the at-site estimation of flood recurrence magnitude. This paper evaluates four most commonly used distribution methods, i.e., Generalized Extreme Value (GEV), Log Pearson 3 (LP3), Gumbel Max, and Normal for the flood frequency and estimation of flood recurrence. Different hydrological stations data namely Khwazakhela, Chakdarra, Panjkora, and Munda Headwork located at Swat river was taken from Provincial Irrigation Department, Khyber Pakhtunkhwa. The analysis is done for 5-, 10-, 25-, 50-, and 100-year return periods by using annual maximum discharge data from 1980 to 2016 (37 yr). Three goodness-of-fit tests were applied to the fitted distributions, i.e., Kolmogorov–Smirnov, Anderson–Darling, and Chi-squared at 5% significance level. Results indicate that LP3 and GEV were ranked top two distributions at all locations while Gumbel Max and Normal were the least fitted having rank 3 and 4, respectively. Based on the goodness-of-fit ranking, LP3 was selected for the estimation of flood magnitude and return periods at Khwazakhela. Designed hydrographs based on probabilistic approach and flood 2010 hydrograph are presented for flood simulation.  相似文献   

9.
10.
Flash floods are one of the major natural hazards occurring in small streams with a negative effect on the country as well as on human lives. Heavy rainfall occurred on July 20, 2014 and July 21, 2014 and caused severe surface water flooding and a flash flood in the Malá Fatra National Park (Slovakia). The most affected was Vrátna Valley with the Varínka stream. This study presents a reconstruction and post-event analysis of a flash flood on small ungauged basin located in this protected area of Slovakia. The reconstruction included hydraulic terrain measurements on estimating the flood’s culmination and documenting the flood’s development. The measurements were taken at three cross sections of the Varínka stream. This paper is focused mainly on post-event analysis of the Varínka stream in two profiles: Strá?a (gauged profile) and Tiesňavy (ungauged cross section). Subsequently, the extremeness of the flash flood was preliminary evaluated. Results of the post-event analysis showed that the July 2014 flood was not the highest flood in this area despite its catastrophic consequences. By studying historical materials, we came to the conclusion that in the past (e.g. in 1848 or 1939) some devastating floods in this area had occurred, which had disastrous consequences for the population. The second part of the study is focused on comparing this flash flood with three major floods which have occurred in Slovak territory since 1998. The first flood occurred on the 20th of July, 1998 on the Malá Svinka stream, and the two others are floods which occurred on the 7th of June, 2011 in the Small Carpathian Mountains: on the Gidra stream in Píla village and on the Parná stream in Horné Ore?any village. Such comparison of flash floods from different geographical regions and different rainfall events can provide comprehensive information about their regimes, threats and disastrous effects.  相似文献   

11.
In the past decades, the influence of climate change has caused changes in the amount of rainfall in many areas which may affect the flood assessment and mitigation. This research aims to determine amount of rainfall which impacts on changes of the water levels in canals and evaluate the appropriate mitigation measures for floods in the inner Bangkok area, Bangkok Noi and Bangkok Yai districts of Bangkok. The maximum 1-day rainfall during 1997–2010 was determined under different return periods of 2, 5, 10, 25, 50 and 100 year. The MIKE 11 model was then applied to assess changes of the water levels in canals caused by design rainfall events for those return periods. The flood mitigation was also proposed by applying various pumping capacities and initial water levels, incorporating with building dykes and a floodgate. This study has found that the highest flood-risk areas are along Chak Phra and Bangkhunnon canals and the eastern part of Jakthong Canal while the lowest flood-risk area is Bangkok Yai district. Flood caused from the 10-year rainfall can be mitigated by building dykes with the height of 0.75 m [mean sea level (MSL)] and maintaining the initial water level of 0.70 m (MSL). Furthermore, it has also been found that flood caused from the 25-year rainfall can be mitigated by building the floodgate to prevent the flowing back water at Wat Yangsuttharam Canal. However, 50- and 100-year rainfalls seem to cause floods which are too large to mitigate.  相似文献   

12.
This paper presents the derivation of the design storm hyetograph patterns for the Kingdom of Saudi Arabia based on real rainfall events from meteorological stations distributed throughout the Kingdom. Two thousand twenty-seven rainfall storms for a 20–28-year period were collected and analyzed covering 13 regions of the Kingdom. Four distinct dimensionless rainfall hyetograph patterns have been obtained over the Kingdom, while two patterns have been obtained for each individual region because of the lack of data for long-duration storms in individual regions. The resulting dimensionless rainfall patterns for each region can be used to develop storm hyetographs for any design duration, total rainfall depth and return period. It has been shown that the developed storm hyetographs have different features from other storm patterns that are commonly used in arid zones. The study recommends using these curves for the design of hydraulic structures in Kingdom of Saudi Arabia and regions alike.  相似文献   

13.
Wadi Fatima, east of jiddah on the Red Sea coast of Saudi Arabia, is a microcosm of the geology of the jiddah area. Rocks ranging in age from 800-million-year-old metamorphic rocks to Tertiary lava flows are exposed, and illustrate the geological richness of western Saudi Arabia. The valley is a major south-west-trending fault zone that has been active since Precambrian times. A major Tertiary dyke swarm in the vicinity of Wadi Fatima is related to the opening of the Red Sea as the African-Arabian landmass split apart.  相似文献   

14.
To study the application of the TOPMODEL and the Xin’anjiang model to rainfall runoff simulation in semi-humid regions, the Holtan excess infiltration runoff module was added to the TOPMODEL structure. The basin of the Heihe Jinpen Reservoir in Shaanxi Province, China, was selected as the study area. Rainfall and runoff data and digital elevation models were collected. The watershed topographic parameters and 21 floods that occurred from 2005 to 2013 were obtained to simulate rainfall runoff. Results show that the improved TOPMODEL and the Xin’anjiang model can effectively stimulate rainfall runoff. The average values of their Nash coefficient are 0.84 and 0.83, respectively, upon calibration, and 0.78 and 0.80, respectively, upon validation. The Xin’anjiang model performs slightly better than the improved TOPMODEL. The results of large flood peaks are better than those of ordinary floods. Both results can be used to simulate the rainfall runoff of a watershed.  相似文献   

15.
Overview of some geological hazards in the Saudi Arabia   总被引:2,自引:1,他引:1  
The Saudi Arabia has harsh environmental conditions which enhance some geomorphologic/geological processes more than in other areas. These processes create different geological hazards. The general physiography of the Saudi Arabia is characterized by the Red Sea coastal plains and the escarpment foothills called Tihama, followed by the Arabian Shield Mountains, the Arabian Shelf plateau and finally the Arabian Gulf coastal plains. These types of geological hazards can be categorized into sand accumulations, earth subsidence and fissures, flash floods, problematic soils, slope stability problems, and karst problems. The current study gives an overview of all these hazards with examples, as well as develops a geo-hazard map for the Saudi Arabia. Our findings indicate that the desert environment needs much concern and care. National and international agencies have to join together with other people to keep the system balanced and to reduce the resulting geological hazards. Also, remedial measures should be proposed to avoid and reduce these natural hazards.  相似文献   

16.
极端气候条件往往会诱发各种地质灾害,而降雨型滑坡的发生则与极值降雨关系密切。为了有效预防和控制汛期滑坡灾害的发生,定量评估滑坡灾害造成的人员与经济风险,讨论了汛期极值降雨条件下滑坡概率的分析方法。利用Gumbel极值分布理论,以三峡库区巴东县1990~2006年日降雨量为基础资料,采用统计分析方法,求取研究区在汛期(6月中旬至9月)最大一次连续降雨量、多日累积最大降雨量的极值及其分布曲线; 在此基础上,以研究区一个滑坡实例为对象,综合采用渗流模拟、稳定性分析和基于蒙特卡罗的滑坡概率分析方法,讨论了降雨极值及其重现期成果分别在降雨新生型滑坡和降雨复活型滑坡概率分析中的应用思路与方法。结果表明,随着重现期的增加,一次降雨过程的降雨量也增加; 随着降雨日数的增加,具有不同重现期降雨事件的累积降雨量均会增加,且重现期越长,累积降雨量值会越大; 降雨极值曲线分别应用于降雨新生型和降雨复活型滑坡概率分析的思路是可行并有效的。  相似文献   

17.
In arid and semiarid areas, the only surface and groundwater recharge source is the runoff generated through flash floods. Lack of hydrological data in such areas makes runoff estimation extremely complicated. Flash floods are considered catastrophic phenomena posing a major hazardous threat to cities, villages, and their infrastructures. The objective of this study is to assess the flash flood hazard and runoff in Wadi Halyah and its sub-basins. Integration of morphometric parameters, geo-informatics, and hydrological models has been done to overcome the challenge of scarcity of data.Advanced Spaceborne Thermal Emission and Reflection (ASTER) data was used to prepare a digital elevation model (DEM) with 30-m resolution, and geographical information system (GIS) was used in the evaluation of network, geometry, texture, and relief features of the morphometric parameters. Thirty-eight morphometric parameters were estimated and have been linked together for producing nine effective parameters for evaluation of the flash flood hazard in the study basin.Flash flood hazard in Wadi Halyah and its sub-basins was identified and grouped into three classes depending on nine effective parameters directly influencing the flood prone areas. Calculated runoff volume of Wadi Halyah ranges from 26.7 × 106 to 111.4 × 106 m3 with an inundation area of 15 and 27 km2 at return periods of 5 and 100 years, respectively. Mathematical relationships among rainfall depth, runoff volume, infiltration losses, and rainfall excess demonstrate a strong directly proportional relationships with correlation coefficient of about 0.99.  相似文献   

18.
Spatial variations in the relationship between topography and mean annual and seasonal rainfalls in southwestern Saudi Arabia are examined using Kruskal–Wallis one-way analysis of variance. The topographic factors include physiographic features (topography), altitude, slope, proximity to a ridge or crest of mountains, and proximity to the Red Sea. There is a statistically significant effect of topographic factors on the mean annual rainfall, but the results are more significant for the mean seasonal rainfall. The largest amount of mean rainfall in the study area occurs during spring, when rainfall displays a significant relationship with topographic factors, in which more orographic rainfall patterns are associated with higher altitude, greater proximity to a ridge and steeper slopes. Higher altitudes do not necessarily receive more rain; some low altitude locations (i.e., the southern part of the study area) receive more rain during summer and fall because they are located on the windward side of the Asir Mountains and are exposed to the moist air masses brought by the southwest monsoonal system in summer and by the northwest air flow from the Mediterranean and Red Sea in the fall in addition to local convective rainfall patterns. Rainfall in winter increases in the foothills of the Asir Mountains above the coastal plain of the Red Sea. The steep western slopes (windward side) receive more rainfall than the gentle eastern slopes (leeward side): this may be due to the Asir Mountains forcing moist air masses carried by the westerly and northwest winds to rise and cool before they descend and warm on the leeward side.  相似文献   

19.
李克先 《水文》2016,36(1):84-87
基于水科院推理公式,从山洪雨量预警需求出发,解除原公式在部分汇流中对流域面积分配曲线的矩形概化,经反演得出各典型时段临界雨量计算式;同时采用等流时方法,有效解决了计算式中最大部分汇流面积的定量问题。研究提出的预警雨量计算方法,物理概念清晰,易于理解和掌握,计算便捷,且无需水文资料,可作为现行山洪预警雨量分析计算的一种新方法。  相似文献   

20.
Comparison of TRMM-based flood indices for Gaziantep,Turkey   总被引:1,自引:0,他引:1  
Floods are the most common natural disasters threatening the welfare of humanity. Gaziantep, a city located in a semi-arid region of Turkey, is occasionally flooded, and in May 2014, a flood not only caused property damage, but also resulted in the death of a lady who became trapped in flood waters. The fatality and property damage of flash floods arise from the limited response time for remediation. Despite improvements in numerical weather predictions, forecasting flash floods is not easy. Due to its frequent observations, Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis (TMPA) real-time (RT) 3B42RT data are tested for Gaziantep flood predictions in this study. During TRMM era, six floods occurred in Gaziantep. Three-hourly 3B42RT data covering the 2000- to 2014-year period indicated high rain rates during months in which floods were observed. Also daily variation of rainfall was well represented. High-intensity rain (HIR), cumulative distribution functions (CDF) and Gaziantep Flood Index (GAFI) indices are developed for flood characterization. HIR, calculated as 10 mm/h, detected October and December of 2010 floods. CDFs with 99, 98.5, 95 and 91.3% indicated 4 floods occurred in August 2005, June 2007, October 2010 and December 2010, respectively. GAFI was able to detect 4 out of 6 occurrences (August 2005, June 2007, October 2010 and December 2010) as values ranging from 1 to 2.63 are selected for monthly precipitation. In the missed occurrence, 3B42RT did not indicate any rainfall. Although only rain rates are used in flood characterization, the results are promising, and the simplicity of the methodology favors its usage. Also, methodology can easily be implemented to TRMM following missions such as Global Precipitation Measurement Mission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号