首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Mapping burns and natural reforestation using thematic Mapper data   总被引:2,自引:0,他引:2  
Remote sensing techniques are specially suitable to detect and to map areas affected by forest fires. In this work, Landsat 5 Thematic Mapper (TM) data has been used to study a number of forest fires that occurred in the province of Valencia (Spain) and to monitor the vegetation regeneration over burnt areas.

A reference area (non‐burnt forest) was established to assess the change produced by fire. The radiance in the thermal band (10.4–12.5 μm) and the normalized difference in reflectance between near 1R (0.76–0.90 μm) and middle IR (2.08–2.35 μm) were the most suitable parameters to map burnt areas. This index can also be used for monitoring vegetation regeneration in burnt areas. About a month after the fire, the burns show temperatures of 5–6 °C higher than those found in the reference area, and the vegetation index shows negative values whereas the reference area values remain positive. The differences between the burns and the reference area for the vegetation index decrease with time as vegetation regenerates.  相似文献   

2.
Generation of fire danger maps play a vital role in forest fire management like forest fire research, locating lookout towers, risk assessment and for various other simulation studies. The present study addresses remote sensing and GIS applications in generating fire danger maps for tropical deciduous forests. Fire danger variables such as fuel type, topography, temperature, and relative humidity have been used in modeling fire danger. Information on local climate patterns and past fire records has been used to derive fire frequency map of the study area. Intermediate indices were derived using multiple regressions, where fire frequency data is taken as dependent variable. Results indicate that forests near human settlements are more vulnerable to forest fires.  相似文献   

3.
The hills of Uttarakhand witness forest fire every year during the summer season and the number of these fire events is reported to have increased due to increased anthropogenic disturbances as well as changes in climate. These fires cause significant damage to the natural resources which can be mapped and monitored using satellite images by virtue of its synoptic coverage of the landscape and near real time monitoring. This study presents burnt area assessment caused by the fire episode of April 2016 to the forest vegetation. Digital classification of satellite images was done to extract the burnt area which was found to be 3774.14 km2, representing 15.28% of the total forest area of the state. It also gives an account of cumulative progression of forest fire in Uttarakhand using satellite images of three dates viz. 23rd, 27th May and 2nd June, 2016. Results were analyzed at district, administrative and forest division level using overlay analysis. Separate area statistics were given for different categories of biological richness, forest types and protected areas affected by forest fire. The burnt area assessment can be used in mitigation planning to prevent drastic ecological impacts of the forest fire on the landscape.  相似文献   

4.
Biomass burning from vegetation fires is an important source of greenhouse gas emissions. In this study, we quantify biomass burning emissions from grasslands from the highly sensitive Kaziranga National Park, Assam, Northeast India. Most of the fires in the park are ‘controlled burning fires’ set by the park officials for management purposes. We evaluated the short-term impacts of fires and the resulting air pollution through integrating biomass burnt information from satellite remote sensing datasets. IRS-P6 Advanced Wide Field Sensor (AWiFS) data during March and April corresponding to dry season were evaluated to delineate the burnt areas. These burnt area estimates were then integrated with biomass data and emission factors for quantifying the greenhouse gas emissions. Results suggested that of the total study area of 37,822 ha, nearly 3163.282 ha has been burnt during March, 2005. Within one month, the burnt area increased to 7443.92 ha by April, i.e., from 8.36% to 19.68%. In total, biomass burning from the grasslands contributed to 29.65 Tg CO2, 1.19 Tg CO, 0.071 Tg NOx, 0.042 Tg CH4, 0.0625 Tg total non-methane hydrocarbons, 0.152 Tg of particulate matter, and 0.062 Tg of organic carbon and 0.008 Tg of black carbon during April. The importance of ‘fire’ as a management tool for maintaining the wildlife habitat has been highlighted in addition to some of the adverse affects of air pollution resulting from such management practices. The results from this study will be useful to forest officials as well as policy makers to undertake some sustainable forest management practices to maintain an ideal habitat for Kaziranga's wildlife.  相似文献   

5.
The purpose of this study was to assess the environmental impacts of forest fires on part of the Mediterranean basin. The study area is on the Kassandra peninsula, prefecture of Halkidiki, Greece. A maximum likelihood supervised classification was applied to a post-fire Landsat TM image for mapping the exact burned area. Land-cover types that had been affected by fire were identified with the aid of a CORINE land-cover type layer. Results showed an overall classification accuracy of 95%, and 83% of the total burned area was ‘forest areas’. A normalized difference vegetation index threshold technique was applied to a post-fire Quickbird image which had been recorded six years after the fire event to assess the vegetation recovery and to identify the vegetation species that were dominant in burned areas. Four classes were identified: ‘bare soil’, ‘sparse shrubs’, ‘dense shrubs’ and ‘tree and shrub communities’. Results showed that ‘shrublands’ is the main vegetation type which has prevailed (65%) and that vegetation recovery is homogeneous in burned areas.  相似文献   

6.
The Western Ghats constitute one of the three biodiversity hot spots in India, which is under constant threat from various quarters. Among the several anthropogenic causes, fire is one of the important anthropogenic factor, which plays a pivotal role in vegetation succession and ecosystem processes. It is very important to understand the ecological changes due to fire and other anthropogenic factors for conservation and management of biodiversity. Because of its synoptic, multi-spectral and multi-temporal nature remote sensing data can be a good source for forest fire monitoring. In the present study, an effort has been made to monitor the burnt areas using March 2000 and 2004 IRS LISS — III data. The study revealed that an area of 2.15 km2 and 4.46 km2 was affected by fire in 2000 and 2004 respectively. Repeated drought, followed by mass flowering and dying of bamboo accelerated the spread of fire from ground to canopy in areas with high bamboo density.  相似文献   

7.
Panna National Park is situated in the north-central part of Madhya Pradesh, India. Landscape parameters like fragmentation, porosity, patchiness and jaxtaposition have been analysed for disturbance gradient characterization. Disturbance on biodiversity due to human activities has been studied both qualitatively and quantitatively. The species richness is highest in northern mixed dry deciduous forest followed by dry deciduous open scrub and southern tropical dry deciduous teak forest. Species richness of the open thorny dry deciduous forest with grasses is found to be the lowest. Disturbance analysis indicates that 22.02% of the southern slightly moist teak forests are highly disturbed whereas Anogeissus forest and Riverine forest have 17.04% and 12.41% of the area under high disturbance, respectively. A total of 88 field sample plots were laid to enumerate trees, shrubs, herbs, climbers, etc. Biological richness parameters such as Shannon-Wiener biodiversity index, biodiversity value, ecosystem uniqueness were derived from field data. High biological richness is found in northern mixed dry deciduous forest and mixed dry deciduous forest with bamboo. More than 99% of such areas are falling under medium to high biological richness. Nearly 55% of the gentle and flat to gentle, slope categories were found to have low biological richness. Phytosociological analysis of sampled field data indicated that the number of trees per unit area is the lowest in the Savannah. In inaccessible areas, the species richness and number of trees per unit area is very high. Main forces causing disturbance are search for diamonds, dams on river Ken, settlements in and around the park, grazing and resource utilization by villagers for fodder, animal grazing, fuel-wood, timber, etc.  相似文献   

8.
Present study deals with the vegetation type mapping, structure and composition analysis of the tropical forests, spread over 1,294 km2 area in South Andaman Islands. Seventeen vegetation classes spreading over 89.92% forested area of the islands were mapped with the overall accuracy of 88.89%. Evergreen, semi-evergreen and mangrove forests were reasonably well distributed forests, while moist deciduous and littoral evergreen were narrowly restricted. The stocking was quite variable across the forest types. 60.04% of forested area was under medium to high canopy density. Secondary and degraded forest types were mapped. Information on floristic composition, structure and diversity of various forest types were obtained from 84 field sample plots. An inventory of 423 species of plants from 101 families included 155 trees, 84 shrubs, 150 herbs and 84 climbers. Tree density and mean basal area ranged from 517 to 900 stems ha−1 and 36.15 to 53.58 m2 ha−1 respectively. Evergreen forests accounted for highest diversity followed almost equally by semi-evergreen and moist deciduous forests.  相似文献   

9.
This paper describes an operational application of AVHRR satellite imagery in combination with the satellite-based land cover database CORINE Land Cover (CLC) for the comprehensive observation and follow-up of 10000 fire outbreaks and of their consequences in Greece during summer 2000. In the first stage, we acquired and processed satellite images on a daily basis with the aim of smoke-plume tracking and fire-core detection at the national level. Imagery was acquired eight times per day and derived from all AVHRR spectral channels. In the second stage, we assessed the consequences of fire on vegetation by producing a burnt-area map on the basis of multi-annual normalised vegetation indices using AVHRR data in combination with CLC. In the third stage we used again CLC to assess the land cover of burnt areas in the entire country. The results compared successfully to available inventories for that year. Burnt area was estimated with an accuracy ranging from 88% to 95%, depending on the predominant land cover type. These results, along with the low cost and high temporal resolution of AVHRR satellite imagery, suggest that the combination of low-resolution satellite data with harmonised CLC data can be applied operationally for forest fire and post-fire assessments at the national and at a pan-European level.  相似文献   

10.
The vegetation dynamics and land use/land cover types of Birantiya Kalan watershed located in the arid tracts of western Rajasthan have been characterized and evaluated using Remote Sensing and Geographical Information System (GIS). The watershed under study falls in the transitional plain of Luni Basin and is characterized by Aravali ranges in the eastern half and vast alluvial plains in the west. The land use/land cover types, as identified are cropland, fallow, forest, land with scrub, land without scrub, sandy area and the water body. Land with scrub occupied maximum area (39% area of the watershed) in 1996 in place of crop land which was dominant (43% of total area) in the year 1988. During eight years period, seasonal fallow land increased significantly and the areal extent of water body decreased to almost half. Vegetation vigour types have been classified into very poor, poor. moderate, good and very good categories. Moderate vigour type reduced from 62 to 27% and poor type increased from 34 to 68% during the period 1988 to 1996. Other vegetation vigour types have not shown any significant changes. To quantify the changes over the years in both vegetation and land use/land cover, weightages have been given to each type and composite values of both vegetation vigour and land use types for 1996 and 1988 have been calculated. It has been observed that the ratio for vegetation vigour has been found to be 0.85 showing that the overall vegetation have not improved after the treatment. The ratio for land use is found to be 1.01, which indicates negligible change in land use.  相似文献   

11.

Forest vegetation of Vindhyan range located in the north of G.B. Pant Sagar (dam) has been subjected to degradation due to high biotic pressure caused by the installation of thermal power plants, coal mining, heavy cattle grazing etc. In the present study Landsat TM FCC of 1∶250,000 scale was visually analysed with respect to forest vegetation types, crown density and structure along with other landuse/land cover classes. ExceptShorea robusta (Sal) andLagerstroemia parviflora (Lendia) all forest vegetation types show higher percentage of degradation and under-stocked condition with respect to their areal extent under study. Overall classification accuracy of the forest types has been found to be 88.94%. This indicates that for obtaining reliable mapping accuracy in dry deciduous areas, satellite remote sensing data of appropriate season is essential.

  相似文献   

12.
Fuzzy based soft classification have been used immensely for handling the mixed pixel and hence to extract the single class of interest. The present research attempts to extract the moist deciduous forest from MODIS temporal data using the Possibilistic c-Means (PCM) soft classification approach. Temporal MODIS (7 dates) data were used to identify moist deciduous forest and temporal AWiFS (7 dates) data were used as reference data for testing. The Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), and Transformed Normalized Difference Vegetation Index (TNDVI) were used to generate the temporal vegetation indices for both the MODIS and the AWiFS datasets. It was observed from the research that the MODIS temporal NDVI data set1, which contain the minimum number of images and avoids the temporal images corresponding to the highest frequency stages of onset of greenness (OG) and end of senescence (ES) activity of moist deciduous forest have been found most suitable data set for identification of moist deciduous forest with the maximum fuzzy overall accuracy of 96.731 %.  相似文献   

13.
Abstract

Visualization techniques have been developed to recreate natural landscapes, but little has been done to investigate their potential for illustrating land cover change using spatio‐temporal data. In this work, remote sensing, geographic information systems (GIS) and visualization techniques were applied to generate realistic computer visualizations depicting the dynamic nature of forested environments. High resolution digital imagery and aerial photography were classified using object‐oriented methods. The resulting classifications, along with preexisting land cover datasets, were used to drive the correct placement of vegetation in the visualized landscape, providing an accurate representation of reality at various points in time. 3D Nature's Visual Nature Studio was used to construct a variety of realistic images and animations depicting forest cover change in two distinct ecological settings. Visualizations from Yellowstone National Park focused on the dramatic impact of the 1988 fire upon the lodgepole pine forest. For a study area in Kansas, visualization techniques were used to explore the continuous human‐land interactions impacting the eastern deciduous forest and tallgrass prairie ecotone between 1941 and 2002. The resulting products demonstrate the flexibility and effectiveness of visualizations for representing spatio‐temporal patterns such as changing forest cover. These geographic visualizations allow users to communicate findings and explore new hypotheses in a clear, concise and effective manner.  相似文献   

14.
The review of study site have revealed the change in vegetation cover of Sal Dense to Sal Medium and Sal Open in 6 forest Mosaics owing to biotic and abiotic conditions prevailing in the specific areas. Analysis carried out using thematic map derived from aerial photograph of 1976 and satellite data of IRS 1C LISS III False Colour Composite (FCC) of March 1999 revealed the cause for change in forest density classes. Deforestation, encroachment and agriculture have been identified as the underlying causes, which have affected some specific locations to a marked extent. There has been a progressive and remarkable change among vegetation classes from 1976 to 1999. It is evident from forest type and density map that Sal density has significantly reduced from Sal Dense 65.61 % in 1976 to Sal Dense 11.12% in the year 1999 followed by Sal Open 11.18 % and Sal Medium 18.24 %. The overall change has been estimated to be 42.11% of the total forested area.  相似文献   

15.
Improving image classification and its techniques have been of interest while handling satellite data especially in hilly regions with evergreen forests particularly with indistinct ecotones. In the present study an attempt has been made to classify evergreen forests/vegetation in Moulirig National Park of Arunachal Pradesh in Eastern Himalayas using conventional unsupervised classification algorithms in conjunction with DEM. The study area represents climax vegetation and can be broadly classified into tropical, subtropical, temperate and sub-alpine forests. Vegetation pattern in the study area is influenced strongly by altitude, slope, aspect and other climatic factors. The forests are mature, undisturbed and intermixed with close canopy. Rugged terrain and elevation also affect the reflectance. Because of these discrimination among the various forest/vegetation types is restrained on satellite data. Therefore, satellite data in optical region have limitations in pattern recognition due to similarity in spectral response caused by several factors. Since vegetation is controlled by elevation among other factors, digital elevation model (DEM) was integrated with the LISS III multiband data. The overall accuracy improved from 40.81 to 83.67%. Maximum-forested area (252.80 km2) in national park is covered by sub-tropical evergreen forest followed by temperate broad-leaved forest (147.09 km2). This is probably first attempt where detailed survey of remote and inhospitable areas of Semang sub-watershed, in and around western part of Mouling Peak and adjacent areas above Bomdo-Egum and Ramsingh from eastern and southern side have been accessed for detailed ground truth collection for vegetation mapping (on 1:50,000 scale) and characterization. The occurrence of temperate conifer forests and Rhododendron Scrub in this region is reported here for the first time. The approach of DEM integrated with satellite data can be useful for vegetation and land cover mapping in rugged terrains like in Himalayas.  相似文献   

16.
A suitable index is proposed to evaluate the natural short–medium-term recovery capability of vegetation in burnt areas. The study area covers 2450 km2 in western Tuscany (Province of Pisa, Italy). This region is characterized by a typical Mediterranean climate and is subject to fire damage during the dry summer season. Damage is mitigated where a natural rapid regrowth of vegetation prevents soil erosion, supporting the return to a natural pre-fire state.  相似文献   

17.
Abstract

A method of analyzing remotely sensed data, a geographic information system, and an intelligent fire management system have been developed to provide integrated resource data for fire and other resources management. Natural and cultural features were digitized from 1:50,000 topographic maps using a geographic information system (GIS) to cover the 29 communities below the tree line in the western Canadian Arctic. Landsat Thematic Mapper data covering the same area were classified into land cover or fuel types. Detailed information on each fire such as location, area burned, date of discovery, fire number, fire zone, fire class and source of ignition was obtained and added to each map sheet as attribute data. A generalized vegetation cover map using NOAA AVHRR data was also obtained. The Intelligent Fire Management Information System (IFMIS) integrates relational data bases, geographic information display, and expert systems. It also has a spatial analysis procedure for forest fire preparedness planning. Linking the weather to the forest fuels through the Fire Weather Index system (FWI) and the Fire Behaviour Prediction System (FBPS), fire danger and fire behaviour are calculated and displayed, cell‐by‐cell. Values‐at‐risk and fire suppression resources are used in the dispatching and planning component of the system. The planning component allows the user to evaluate the coverage of fire suppression resources under the prevalent forecast fire behaviour conditions. Through the integration of data from the above systems, a set of maps were created which were used to analyze fire behaviour potential, identify fire hazards, and provide a basis for settlement protection strategies within the context of other land use activities such as wildlife harvesting and recreational activities.  相似文献   

18.
基于"3S"的梵净山自然保护区植被分布探讨   总被引:5,自引:0,他引:5  
利用“3S”技术对梵净山国家自然保护区森林植被类型的空间分布进行分析,并为森林植被的监测与管理提供依据,更好地对各个区域(核心区、缓冲区、影响区)危害因子进行监控,从而有效地对其森林植被进行有效的保护。  相似文献   

19.
南水北调中线工程是我国大规模跨流域调水工程的一部分,开展该区域植被覆盖度变化的研究与分析,对于保护该区域的生态环境及水质具有重要意义。该文以2000年和2009年两期遥感图像为本底数据,利用基于NDVI的像元二分模型对南水北调中线水源区的植被覆盖度进行了估算,并分析了该区植被覆盖度的时空变化特征。结果表明:2000年该水源区植被覆盖度的平均值为67.5%,2009年的平均值达到72%,植被覆盖度总体呈增长趋势;植被覆盖度增幅的空间特征表现为水源区中部地区高,东西部地区相对较低;在不同植被类型中,落叶针叶林的覆盖度平均值增幅最大,草地覆盖度增幅最小;位于水源区的大多数县(市)的植被覆盖度在近十年来都有不同程度的增加,其中柞水县的植被覆盖度平均值增长幅度最大,这与国家实施退耕还林、封山育林、基本农田建设等政策有关。  相似文献   

20.
Information on burnt area is of critical importance in many applications as for example in assessing the disturbance of natural ecosystems due to a fire or in proving important information to policy makers on the land cover changes for establishing restoration policies of fire-affected regions. Such information is commonly obtained through remote sensing image thematic classification and a wide range of classifiers have been suggested for this purpose. The objective of the present study has been to investigate the use of Support Vector Machines (SVMs) classifier combined with multispectral Landsat TM image for obtaining burnt area mapping. As a case study a typical Mediterranean landscape in Greece was used, in which occurred one of the most devastating fires during the summer of 2007. Accuracy assessment was based on the classification overall statistical accuracy results and also on comparisons of the derived burnt area estimates versus validated estimates from the Risk-EOS Burnt Scar Mapping service. Results from the implementation of the SVM using diverse kernel functions showed an average overall classification accuracy of 95.87% and a mean kappa coefficient of 0.948, with the burnt area class always clearly separable from all the other classes used in the classification scheme. Total burnt area estimate computed from the SVM was also in close agreement with that from Risk-EOS (mean difference of less than 1%). Analysis also indicated that, at least for the studied here fire, the inclusion of the two middle infrared spectral bands TM5 and TM7 of TM sensor as well as the selection of the kernel function in SVM implementation have a negligible effect in both the overall classification performance and in the delineation of total burnt area. Overall, results exemplified the appropriateness of the spatial and spectral resolution of the Landsat TM imagery combined with the SVM in obtaining rapid and cost-effective post-fire analysis. This is of considerable scientific and practical value, given the present open access to the archived and new observations from this satellite radiometer globally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号