首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于多视角观测的SEP事件与twin-CME关系研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文联合SOHO和STEREO-A/B(三视角)日冕观测和太阳高能粒子(SEP)观测,分析了2007—2014年间169个快速(速度>900 km·s-1)、宽角度(>60°)日冕物质抛射(CME)及其先行CME和关联SEP事件.通过相关分析,给出了SOHO/EPHIN 25~53MeV及STEREO/HET 23.8~60 MeV能量范围的大SEP事件通量判断阈值,分别为0.01和0.014(cm2·s·sr·MeV)-1.三视角CME观测能有效地避免投影效应产生的twin-CME事件误判,统计得到单一视角确定twin-CME事件的误判率一般低于10%,最高不超过15%.基于三视角判断的twin-CME事件及SEP事件峰值强度,得到判断twin-CME事件的时间阈值最短约为9 h(9~13 h).single-CME产生的SEP事件强度与CME速度、动能的相关性明显高于twin-CME,并且三视角下的相关性结果与单视角类似.结果表明,一个主CME可能存在多个先行CME,依据单卫星观测判断先行CME时有一定的误判几率,但少数单个先行CME的误判并不影响基于单卫星的统计规律或统计结果.  相似文献   

2.
Two Earth-directed coronal mass ejections (CMEs), which were most effective in energetic (1–50 MeV) particle acceleration during the first 18 months since the Solar and Heliospheric Observatory (SOHO) launch, occurred on April 7 and May 12, 1997. In the analysis of these events we have deconvoluted the injection spectrum of energetic protons by using the method described by Anttila et al. In order to apply the method developed earlier for data of a rotating satellite (Geostationary Operational Environmental Satellites, GOES), we first had to develop a method to calculate the omnidirectional energetic particle intensities from the observations of Energetic and Relativistic Nuclei and Electrons (ERNE), which is an energetic particle detector onboard the three-axis stabilized SOHO spacecraft. The omnidirectional intensities are calculated by fitting an exponential pitch angle distribution from directional information of energetic protons observed by ERNE. The results of the analysis show that, compared to a much faster and more intensive CMEs observed during the previous solar maximum, the acceleration efficiency decreases fast when the shock propagates outward from the Sun. The particles injected at distances <0.5 AU from the Sun dominate the particle flux during the whole period, when the shock propagates to the site of the spacecraft. The main portion of particles injected by the shock during its propagation further outward from the Sun are trapped around the shock, and are seen as an intensity increase at the time of the shock passage.  相似文献   

3.
The HED particle detector of the ERNE experiment to be flown on the SOHO spacecraft is unique compared to the earlier space-born detectors in its high directional resolution (better than 2°, depending on the track inclination). Despite the fixed view cone due to the three-axis stabilization of the spacecraft, the good angular and temporal resolution of the detector provides a new kind of opportunity for monitoring in detail the development of the anisotropies pertaining, for example, to the onset of SEP events, or passage of shock fronts related to gradual events. In order to optimize the measurement parameters, we have made a preflight simulation study of the HED anisotropy measurement capabilities. The purpose was to prove the feasibility of the selected measurement method and find the physical limits for the HED anisotropy detection. The results show HED to be capable of detecting both strong anisotropies related to impulsive events, and smoother anisotropies associated with gradual events.  相似文献   

4.
During solar flares and coronal mass ejections, nuclei and electrons accelerated to high energies are injected into interplanetary space. These accelerated particles can be detected at the SOHO satellite by the ERNE instrument. From the data produced by the instrument, it is possible to identify the particles and to calculate their energy and direction of propagation. Depending on variable coronal/interplanetary conditions, different kinds of effects on the energetic particle transport can be predicted. The problems of interest include, for example, the effects of particle properties (mass, charge, energy, and propagation direction) on the particle transport, the particle energy changes in the transport process, and the effects the energetic particles have on the solar-wind plasma. The evolution of the distribution function of the energetic particles can be measured with ERNE to a better accuracy than ever before. This gives us the opportunity to contribute significantly to the modeling of interplanetary transport and acceleration. Once the acceleration/transport bias has been removed, the acceleration-site abundance of elements and their isotopes can be studied in detail and compared with spectroscopic observations.  相似文献   

5.
Relativistic (E >1.6 MeV) electron flux enhancements during Solar Energetic Particle (SEP) events as observed by the synchronous FY-2 satellite at orbit located at 105°E are investigated. Energetic protons during SEP events heavily contaminate relativistic electron flux measurements. The ratio of the contamination in the original measurement of relativistic electron flux was over 30% during most of the SEP event on July 14, 2000. A method has been developed to eliminate the contamination caused by the energetic protons, and a "corrected" relativistic electron flux has been obtained. The "cleaned-up" relativistic electron flux measurement shows that relativistic electron flux enhancement at synchronous orbit is well correlated with SEP events during which the IMF Bz has some southward periods. The enhancement could arise as the transport of relativistic electrons from the upstream solar wind into synchronous orbit via the magnetotail.  相似文献   

6.
The development of new technologies and the miniaturization of sensors bring new requirements for our ability to predict and forecast hazardous space weather conditions. Of particular importance are protons in the energy range from 10s to 100s of MeV which cause electronic part and solar cell degradation, and pose a hazard to biological systems in space and to personnel in polar orbit. Sporadic high-energy solar particle events are a main contributor to the fluences and fluxes of such protons. A statistical model, JPL 1991 (J. Geophys. Res. 98 (1991) 13,281), was developed to specify fluences for spacecraft design and is now widely used. Several major solar proton events have occurred since that model was developed and one objective of this paper is to see if changes need to be made in the model due to these recent events. Another objective is to review the methods used in JPL 1991 in the light of new understandings and to compare the JPL methods with those used in other models. We conclude that the method used in developing JPL 1991 model is valid and that the solar events occurring since then are completely consistent with the 1991 model. Since no changes are needed we suggest that the name of the model be changed to “the JPL fluence model”.  相似文献   

7.
太阳高能粒子(SEP)事件是一类重要的空间天气灾害性事件,如能准确预报SEP事件,人们便可以采取必要的防护措施,保障卫星、星载设备以及航天员的安全,尽可能地降低经济损失.因此,其数值预报研究在空间天气预报研究中占有很重要的地位.SEP事件中的高能粒子在不同的时间尺度内被耀斑过程或者CME驱动的激波加速,并且在被扰动后的行星际太阳风中传输,这些过程都紧紧依赖于太阳风背景场.因此获取更加接近物理真实的太阳风背景场是模拟SEP事件的重要部分,也是提高SEP物理模式的关键因素之一.我们目前的工作基于张明等发展的SEP在行星际空间传播的模型,尝试将Parker太阳风速度解及WIND飞船观测的磁场实时数据融入模型中,研究不同的太阳风速度以及真实磁场分布对SEP在行星际空间中传播的影响.通过求解聚焦传输方程,我们的模拟结果表明:(1)快太阳风条件下,绝热冷却效应项发挥了更大的作用,使粒子能量衰减的更快,而慢太阳风对粒子的通量变化没有显著影响;(2)加入观测的磁场数据时,粒子的全向通量剖面发生了比较明显的变化,具体表现在:通量峰值推迟到达、出现多峰结构、各向异性也发生一些改变.分析表明真实磁场的极性对粒子在行星际空间中传播有着重要的影响.  相似文献   

8.
Qualitative estimates of the relative iron and oxygen ions (Fe/O) in flows of solar cosmic rays from impulsive and long-duration solar flares are obtained for different ion energy ranges. The Fe/O value serves as a measuring unit for the known FIP effect in the solar atmosphere. It is shown that the FIP effect is most evident (maximum Fe/O values) in impulsive events for ions at energies <2 MeV/n. In long-duration events, the Fe/O value gradually decreases in parallel with ion energy and its maximum values are observable in the area of relatively low energies. The comparison of some flare models provided grounds for a qualitative explanation of the Fe/O behavior in response to changes in ion energies for both classes of solar cosmic ray (SCR) events.  相似文献   

9.
基于AE8电子辐射带模式和各地磁场模式,本文系统分析了地磁场模式、太阳风、地磁扰动、地磁轴指向对静止轨道≥2 MeV高能电子分布的影响以及静止轨道不同经度位置≥2 MeV高能电子分布的差异,并与GOES系列卫星实测结果进行了对比分析.结果表明,AE8+IGRF+T96模式所得静止轨道≥2 MeV高能电子分布结果优于AE8+IGRF+OPQ77模式或AE8+IGRF+T89模式结果,其大部分定性结果与GOES系列卫星观测结果较为一致,AE8+IGRF+T96模式所得静止轨道≥2 MeV高能电子分布与磁壳参量Lm、局地磁场B分别呈较好的负和正相关性.基于AE8+IGRF+T96模式得到在相同太阳风及地磁扰动条件下2010年每分钟静止轨道≥2 MeV高能电子通量分布结果,经分析得到:1年内每个时刻静止轨道上≥2 MeV高能电子通量最大值和最小值比值变化范围为2.50~7.51,变化主周期为1天,每天比值变化量都超过3;1年内静止轨道各经度位置每天内≥2 MeV高能电子通量最大值和最小值比值变化范围为2.98~6.00,比值随着时间和经度位置而变化;1年内同一天静止轨道各经度位置≥2 MeV高能电子日积分通量最大值出现在170°W附近,最小值出现在70°W附近,最大值与最小值的比值分布在1.86~2.13之间.以上所得静止轨道≥2 MeV高能电子分布变化主要来自Lm变化,B/B0的影响小于5%,其中B0为磁力线上磁场最小值.因此,在构建≥2 MeV高能电子分布模式时,需要考虑地磁场结构的影响,特别是Lm参数.  相似文献   

10.
FY2D卫星与GOES卫星空间粒子观测结果的对比分析   总被引:2,自引:1,他引:1       下载免费PDF全文
风云二号D星(FY2D)搭载的空间粒子探测器可以观测10~300 MeV的质子和≥350 keV与≥2 MeV的电子.卫星在轨测试阶段,空间粒子探测器观测到了空间环境宁静期间地球同步轨道的电子昼夜周期变化的典型特征,并在卫星发射后的12月15日首次观测到了有代表性的 2级太阳质子事件(SEP),观测到的较高能量质子比较低能量质子更快地恢复到平静时的状态.通过比较FY2D卫星与GOES卫星的探测结果,既显示了同步轨道区域不同位置高能电子通量扰动时间的一致性,也显示了高能电子通量具强烈的晨昏不对称性.通过对太阳质子事件和地磁平静时期该轨道空间高能粒子环境特征的分析和研究,并与GOES卫星同期的观测结果进行相关性分析,结果表明仪器确实具备了监测空间环境扰动和预警能力,探测结果可以用于研究地球同步轨道粒子空间分布、起源和传输等科学目的.  相似文献   

11.
基于NOAA/POES卫星观测的磁层相对论电子起源的初探   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用低高度极轨卫星NOAA/POES的观测数据,并结合ACE卫星和Polar卫星的观测结果,研究分析了磁层相对论电子的起源. NOAA/POES卫星对于不同地磁活动时期相对论电子的分布和起源进行了较为详细观测, 分析结果表明(1) 亚暴期间注入磁层的能量电子可以为与磁暴相关的磁层高能电子暴提供种子电子;(2)太阳质子事件期间太阳风中的能量电子也可以为磁层中的相对论电子提供所需要的源.  相似文献   

12.
13.
Statistical analysis is performed for the relationship of coronal mass ejections (CMEs) and X-ray flares with the fluxes of solar protons with energies >10 and >100 MeV observed near the Earth. The basis for this analysis was the events that took place in 1976–2015, for which there are reliable observations of X-ray flares on GOES satellites and CME observations with SOHO/LASCO coronagraphs. A fairly good correlation has been revealed between the magnitude of proton enhancements and the power and duration of flares, as well as the initial CME speed. The statistics do not give a clear advantage either to CMEs or the flares concerning their relation with proton events, but the characteristics of the flares and ejections complement each other well and are reasonable to use together in the forecast models. Numerical dependences are obtained that allow estimation of the proton fluxes to the Earth expected from solar observations; possibilities for improving the model are discussed.  相似文献   

14.
The accelerated particle energy spectra in different energy intervals (from 0.06 to 75.69 MeV n–1) have been constructed for various powerful flare events (1997–2006) with the appearance of solar cosmic rays (SCRs) based on the processing of data from the Advanced Composition Explorer (ACE) and WIND spacecraft. Flares were as a rule accompanied by coronal mass ejections. Different specific features in the particle spectra behavior, possibly those related to different acceleration processes, were revealed when the events developed. The Fe/O abundance ratio in different energy intervals during the disturbed development of flareinduced fluxes has been qualitatively estimated. It has been established that ground level event (GLE) fluxes represent an individual subclass of gradual events according to the character of Fe/O variations. The manifestations of the first ionization potential (FIP) effect in the composition of SCRs during their propagation have been qualitatively described.  相似文献   

15.
采用GOES9卫星观测的能量大于2MeV和大于4MeV电子通量和行星际飞船ACE太阳风参数的高时间分辨率资料,以及磁暴指数Dst资料,分析了1998年4-5月期间地球同步轨道电子通量增强事件的时间和能量响应特征及其与行星际太阳风参数、磁暴和亚暴等扰动条件的对应关系.结果表明,地球同步轨道相对论性(MeV)电子通量增强事件有明显的周日变化,中午极大和午夜极小.4月22日和5月5日开始的两次大事件中,能量大于2MeV电子通量中午极大值上升到最大值的时间尺度分别约为4天和1天,中午极大值高于背景水平的持续时间分别为13天(4月22日-5月4日)和16天(5月4日-20日)以上.每次MeV电子通量增强事件的能量范围不完全相同.两次大事件的上升段都对应于磁暴的恢复相,与太阳风动压脉冲、高速流脉冲和负Bz分量关系密切.  相似文献   

16.
We performed a comparative study of geomagnetic variations, which are associated with sudden ionospheric disturbances (SIDs) caused by great X-class solar flares on July 14, 2000 (Bastille flare) and on October 28, 2003 (Halloween flare). Intense fluxes of solar X-rays and EUV radiation as well as solar energetic particles (SEP) were considered as sources of abundant ionization of the ionosphere and upper atmosphere. Flare-initiated SIDs are revealed as transient geomagnetic variations, which are generated by enhanced electric currents flowing mainly in the bottom-side ionosphere. Those so-called solar flare effects (SFEs) were studied by using of geomagnetic data from INTERMAGNET worldwide network of ground-based magnetometers. In subsolar region the SFE is mainly controlled by the flare X-rays and/or EUV radiation. We found that in the Halloween flare the contribution of X-rays was comparable with the EUV, but in the Bastille flare the EUV flux was dominant. The ionization at high latitudes is generated by the SEP, which energy flux is comparable and even exceeds the solar electromagnetic radiation in that region. It was shown that in the Halloween event the pattern of SFE is formed by a two-vortex current system, which is similar to the quiet day Sq current system. However, during the Bastille flare, the pattern of induced currents is quite different: the northern vortex shifts westward and southern vortex shifts eastward such that the electroject is substantially tilted relative to the geomagnetic equator. From numerical estimations we found that at middle latitudes the SEP-initiated geomagnetic effect becomes comparable with the effects of solar electromagnetic radiation. It was also shown that the SEP contribute to the SFE in the nightside hemisphere. The revealed features of the SEP impact to the ionosphere were found in a good agreement with the theory of energetic particle penetration to the bottom-side magnetosphere.  相似文献   

17.
On the basis of data from the Radio Solar Telescope Network (RSTN), as well as the Geostationary Operational Environmental Satellite (GOES) and the WIND spacecraft, for the period from 1989 to 2006 covering 107 flare events, we investigated the relationship between the intensity of solar cosmic rays and parameters of continuum radio bursts (25?C15400 MHz), as well as type II radio bursts in the meter and decahectometer wavelength ranges. Proton fluxes with energies E p > 1?100 MeV were calculated with regard to a reduced heliolongitude. The maximum correlation between solar cosmic rays and solar parameters of microwave bursts was 0.80. Its value was no more than 0.40 for the drift rate of type II bursts and 0.70 for the compression rate of coronal shock waves. Based on linear regression equations, we estimated the contribution of coronal shock waves to the acceleration of protons. We found that major acceleration processes occur in the area of burst energy release and complimentary processes occur at the fronts of coronal shock waves. The contribution of the latter to the acceleration process increases significantly with proton energy.  相似文献   

18.
李程  陈东 《地球物理学报》2019,62(6):1991-2000
高能电子穿透航天器并在其内部沉积电荷从而引发深层充电效应,是导致卫星故障的重要因素之一.为了评估深层充电效应诱发卫星异常的风险,本文基于贝叶斯方法,使用一颗地球同步轨道卫星的异常数据和GOES-8卫星的电子通量探测数据,计算了不同能量阈值及累积时间的电子注量、不同卫星配置下模拟仿真的沉积电荷,并分别与卫星异常建立一系列概率风险模型.本文从模型中随机抽样得到模拟异常,并与实测异常构造混淆矩阵以评估模型拟合优度,结果表明1.0MeV电子3日累积注量-卫星异常概率风险模型为该卫星最优模型.本文利用最优模型对该卫星深层充电效应风险进行了计算,在1.0MeV电子3日累积注量达到2.0×10~(10)cm~(-2)·sr~(-1)时,该卫星发生深层充电异常的平均后验概率为27%,且95%最小可信值为22%.根据最优模型,我们对该卫星最可能导致异常的部件的材料和结构等特征做出了推断.  相似文献   

19.
陈文磊  谢伦 《地球物理学报》2010,53(12):2796-2804
本文利用低高度太阳同步轨道系列卫星NOAA/POES从1996年到2006年的>0.3 MeV高能电子观测数据,分析了>0.3 MeV高能电子注入辐射带槽区的特征,研究了注入槽区事件与行星际条件、太阳活动和地磁扰动之间的联系.研究表明>0.3 MeV高能电子注入辐射带槽区事件与磁暴的发生密切相关,注入事件的发生与太阳活动的强度有一定的相关性.在此研究的基础上,本文通过分析辐射带槽区>0.3 MeV高能电子通量和Dst指数的相关性,提出了利用Dst指数推算辐射带槽区>0.3 MeV高能电子通量的方法,继而给出了可行的辐射带槽区高能电子辐射环境的预警模式.  相似文献   

20.
Coronal mass ejections (CMEs) are large-scale magnetized plasma structures ejected from closed magnetic field regions of the Sun. White light coronagraphic observations from ground and space have provided extensive information on CMEs in the outer corona. However, our understanding of the solar origin and early life of CMEs is still in an elementary stage because of lack of adequate observations. Recent space missions such as Yohkoh and Solar and Heliospheric Observatory (SOHO) and ground-based radioheliographs at Nobeyama and Nancay have accumulated a wealth of information on the manifestations of CMEs near the solar surface. We review some of these observations in an attempt to relate them to what we already know about CMEs. Our discussion relies heavily on non-coronagraphic data combined with coronagraphic data. Specifically, we discuss the following aspects of CMEs: (i) coronal dimming and global disk signatures, (ii) non-radial propagation during the early phase, (iii) Photospheric magnetic field changes during CMEs, and (iv) acceleration of fast CMEs. The relative positions and evolution of coronal dimming, arcade formation, prominence eruption will be discussed using specific events. The magnitude and spatial extent of CME acceleration may be an important parameter that distinguishes fast and slow CMEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号