首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Industrialization, urbanization, and agricultural practices are 3 of the most important sources of metal accumulations in soils. Concentrations of Cr, Mn, Ni, Cu, Pb, Zn and Cd were determined in surface soils collected under different land uses, including urban (UR), industrial (IN-1 and IN-2), agricultural (AG), abandoned unused (AB), and natural (NA) sites to examine the influence of anthropogenic activities on metals in soils formed in a typical Mediterranean environment. The highest concentrations of Cr, Cd, and Pb observed in the NW industrial area (IN-2) were 63.7, 3.34 and 2330 mg metal kg−1 soil, for each metal, respectively. The SW industrial area (IN-1) contained the highest Zn content at 135 mg kg−1. However, soils with the highest concentrations of Ni and Cu were located in AG sites at 30.9 and 64.9 mg kg−1 soil, respectively. Sampling locations with the highest concentrations of Mn were identified in AB sites. Using the concentrations of metals at the NA sites as the baseline levels, soils collected from all other land uses in the study area exhibited significantly higher total contents of Zn, Mn, Cr and Ni. Metal enrichment was attributed to fertilizer and pesticide applications, industrial activities, and metal deposition from a high volume of vehicular traffic (for Pb and Cd). High concentrations of Mn in some samples were attributed to parent materials. The study demonstrated that anthropogenic activities associated with various land uses contribute to metal accumulation in soils and indicated a need to closely monitor land management practices to reduce human and ecological risks from environmental pollution.  相似文献   

2.
Agricultural soils of the Riotinto mining area (Iberian Pyrite Belt) have been studied to assess the degree of pollution by trace elements as a consequence of the extraction and treatment of sulphides. Fifteen soil samples were collected and analysed by ICP-OES and INAA for 51 elements. Chemical analyses showed an As–Cu–Pb–Zn association related with the mineralisation of the Iberian Pyrite Belt. Concentrations were 19–994 mg kg−1 for As, 41–4,890 mg kg−1 for Pb, 95–897 mg kg−1 for Zn and of 27–1,160 mg kg−1 for Cu. Most of the samples displayed concentrations of these elements higher than the 90th percentile of the corresponding geological dominium, which suggests an anthropogenic input besides the bedrock influence. Samples collected from sediments were more contaminated than leptosols because they were polluted by leachates or by mining spills coming from the waste rock piles. The weathering of the bedrock is responsible for high concentrations in Co, Cr and Ni, but an anthropogenic input, such as wind-blown dust, seems to be indicative of the high content of As, Cu, Pb and Zn in leptosols. The metal partitioning patterns show that most trace elements are associated with Fe amorphous oxy-hydroxides, or take part of the residual fraction. According to the results obtained, the following mobility sequence is proposed for major and minor elements: Mn, Pb, Cd, > Zn, Cu > Ni > As > Fe > Cr. The high mobility of Pb, Cu and Zn involve an environmental risk in this area, even in soils where the concentrations are not so high.  相似文献   

3.
The current study was designed to investigate the extent and severity of contamination as well as the fractionation of potentially toxic elements (As, Cd, Cr, Cu, Pb, Zn, Ni) in minesoils and agricultural soils around a Pb–Zn mine in central Iran. For this purpose, 20 agricultural soils and eight minesoils were geochemically characterized. Results showed that minesoils contained elevated concentrations of As (12.9–254 mg kg−1), Cd (1.2–55.1 mg kg−1), Pb (137–6239 mg kg−1) and Zn (516–48,889 mg kg−1). The agricultural soils were also polluted by As (5.5–57.1 mg kg−1), Cd (0.2–8.5 mg kg−1), Pb (22–3451 mg kg−1) and Zn (94–9907 mg kg−1). The highest recorded concentrations for these elements were in soils influenced directly by tailing ponds. Chromium, Cu and Ni content in agricultural soils (with average value of 74.1, 34.6 and 50.7 mg kg−1, respectively) were slightly higher than the minesoils (with average value of 54.5, 33.1 and 43.4 mg kg−1, respectively). Sequential extraction data indicated that there were some differences between the speciation of PTEs in soil samples. In the agricultural soils, Zn and Cd were mainly associated with carbonate bound fraction, As and Pb with reducible fraction, Cu with oxidisable fraction and Cr and Ni with residual phase. With respect to mobility factor values, Zn and Cd in the agricultural soils have been found to be the most mobile while As mobility is negligible. Also, the mobility factor of As, Cd and Pb in agricultural soils adjoining tailing ponds was high. In minesoil sample Cd was most abundant in the carbonate form, whereas other studied elements were mainly present in the reducible and residual fractions; therefore, despite the high total concentrations of As, Pb and Zn in the minesoils, the environmental risk of these elements was low. Based on the obtained data, a portion of Cu, Cr and Ni input was from agricultural activities.  相似文献   

4.
Analysis of ten heavy metals (Ag, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, Zn) in six sediment cores from Wellington Harbour show both anthropogenic enrichments and diagenetic modifications. Absolute concentrations determined by two methods, x-ray fluorescence and acid leaching for bioavailability, are not comparable. However, vertical trends in concentrations of the cored sediment are comparable. To assess levels of anthropogenic pollution, enrichment factors (enriched concentrations in upper core divided by background levels in lower core) are preferred over index of accumulation (I geo) values because preindustrial or background levels of heavy metals are well constrained. The ten metals are placed into three groups: (1) Cu, Pb, and Zn, which show the most anthropogenic enrichment; (2) As, Cd, Cr, Ni, and Sb, which are often associated with anthropogenic pollution but show only minor enrichment; and (3) Fe and Mn, which are diagenetically enriched. Assuming harbor waters are well mixed, anthropogenic enrichments of Cu, Pb, and Zn, are time correlative, but the degree of enrichment depends on the method of analysis and core location. Levels of As, Cd, Pb, and Zn show small variations in preindustrial sediments that are not related to changes in grain size and probably result from changes in the oxidation-reduction potential of the sediments and salinity of the pore waters.  相似文献   

5.
The concentrations of metals (Cd, Pb, Ni, Cr, Cu, Fe, Mn and Zn) were determined in soils under different land use types in an urban environment in order to study the impact of land uses on the concentrations of metals in the soils. The mean concentration range of metals for all land use types were 42.1 to 410, 11.2 to 118.2, 4388.2 to 31891.1, 9.7 to 65.4, 0.1 to 1.8, 4.7 to 35.2, 2.0 to 16.8 and 77.9 to 881.7 mg/kg, for Mn, Pb, Fe, Cu, Cd, Cr, Ni and Zn, respectively. The computed multiple pollution index (MPI) indicated that 67 % of the examined sites had MPI values between 1 and 20 i.e. at the pollution range, while 33 % of sites had MPI values of zero which indicated that these sites were not polluted with the studied metals. Zinc had the highest impact on the multiple pollution index values. Three main principal components were identified from the principal component analysis which include (i) Cu, Zn, Pb, Cr and Ni originating from both industrial and agricultural sources, and as well as automobile exhausts; (ii) Fe and Mn which originated from both natural and anthropogenic sources; (iii) Cd which its anthropogenic origin is different from components I and II. This study provided information on the sources of metals in the urban environment and extent of contamination associated with each land use, which are useful in the ranking of contaminated sites, environmental quality management, environmental forensic studies and guidance for remediation/redevelopment of contaminated land.  相似文献   

6.
Heavy metals are constantly emitted into the environment and pose a major threat to human health, particularly in urban areas. The threat is linked to the presence of Cd, Cr, Cu, Ni, Pb, and Zn in street dust, which consists of mineral and organic particles originating from the soil, industrial emitters, motor vehicles, and fuel consumption. The study objective was to determine the level of street dust contamination with trace metals in Lublin and to indicate their potential sources of origin. The analyses were carried out with an energy-dispersive X-ray fluorescence spectrometer. The sampling sites (49) were located within the city streets characterised by varying intensity of motor traffic. The following mean content values and their variation (SD) were determined: Cd: 5.1?±?1.7 mg kg?1, Cr: 86.4?±?23.3 mg kg?1, Cu: 81.6?±?69.2 mg kg?1, Ni: 16.5?±?3.9 mg kg?1, Pb: 44.1?±?16.4 mg kg?1, and Zn: 241.1?±?94.6 mg kg?1. The level of pollution was assessed with several widely used geochemical indices (geoaccumulation index, enrichment factor, pollution index, index of ecological risk, and potential ecological risk index). For most of the indices, the mean (median) values are arranged in the following manner: Zn?>?Cu(or Cd)?>?Pb?>?Ni?>?Cr. In general, street dust in Lublin does not show pollution with Cr, Ni, and Pb. Igeo and EF indices show moderate levels for Cu, Cd, and Zn; their presence in street dust is linked with anthropogenic factors (motor traffic). A significant threat is posed by Cd, and more than half of the samples show considerable pollution with cadmium (median for the index of ecological risk: 151). The spatial pattern of indices and the results of statistical analyses (CA, PCA) indicate three groups of elements: (1) Cr and Ni: natural origin; (2) Pb: mixed origin; and (3) Cd, Cu, and Zn: anthropogenic origin (mainly motor vehicle traffic). Higher content values for metals of anthropogenic origin in street dust indicate that it is a source of pollution of soil and air in the city.  相似文献   

7.
This paper describes the concentrations of heavy metals in soils and in raisins (sultanas) cultivated upon the Gediz Plain (Manisa), western Turkey, which is cut by major roads from ?zmir to ?stanbul and ?zmir to Ankara. A total of 212 samples of surface soil and 82 raisin samples were analysed. Soil samples have nearly same mineralogy, quartz, calcite, magnetite, pseudo-rutile and clay minerals. Dolomite is seen especially in areas close to Neogene sediments. Clay minerals are mainly mica (illite?Cmuscovite), chlorite/kaolinite, smectite and mixed layers (Sm-Il). The concentrations of 21 elements (Ba, Ni, Mo, Cu, Pb, Zn, Co, Mn, As, U, Sr, Cd, Sb, Bi, Cr, B, W, Hg, Sn, Li and organic C) were determined in the surface soils. The degree of element enrichment in soil can be measured in many ways, the most common of which are the geoaccumulation index (Igeo), enrichment factor and the pollution index. Arsenic and Sb showed the highest Igeo values, corresponding to Igeo classes 3?C4. Hence, the area is characterised as ??being heavily contaminated to polluted?? by As and Sb. Arsenic contamination has been reported from all over world. Arsenic-related pollutants enter the groundwater system by gradually moving with the flow of groundwater from rains and irrigation. Gediz Plain forms the main groundwater supply of ?zmir city. The enrichment factor (EFarsenic) of the analysed soil samples is around 76, which corresponds to ??extremely high enrichment??. The concentrations of 33 elements (Al, Sb, As, Ba, Be, Bi, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Hg, Mo, Ni, K, Se, Ag, Na, Sr, Ta, Th, Sn, Ti, U, V, Zn and Zr) were determined in the raisin samples. The Pb and Cd contents of raisins are of great concern due to their toxicity. Pb contents ranged between 0.05 and 0.46?mg?kg?1, and average Cd content was 0.04?mg?kg?1. Only one sample contained high level of Cd, 0.23?mg?kg?1. After cleaning the raisins, the heavy metal concentrations were low as in the European Community (EC) regulation No: 466/2001 for allowable levels of Pb (0.2?mg?kg?1) and Cd (0.05?mg?kg?1).  相似文献   

8.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

9.
 The Ganga Plain is one of the most densely populated regions and one of the largest groundwater repositories of the Earth. For several decades, the drainage basin of the Ganga Plain has been used for the disposal of domestic and industrial wastes which has adversely affected the quality of water, sediments and agricultural soils of the plain. The concentrations of Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sn, Zn and organic carbon were determined in river sediments and soils of the Ganga Plain in the Kanpur-Unnao industrial region in 1994 and 1995 (pre-monsoon period of April–May). High contents (maximum values) of C-org (12.0 wt. %), Cr (3.40 wt. %), Sn (1.92 wt. %), Zn (4000 mg/kg), Pb (646 mg/kg), Cu (408 mg/kg), Ni (502 mg/kg) and Cd (9.8 mg/kg) in sediments (<20 μm fraction); and C-org (5.9 wt. %), Cr (2.16 wt. %), Sn (1.21 wt %), Zn (975 mg/kg) and Ni (482 mg/kg) in soils (<20 μm) in the pre-monsoon period of 1994 were found. From 1994 to 1995 the contents of Fe and Sn in sediments increase whereas those of C-org, Cd, Cu, Ni and Zn decrease. Considering the analytical errors, Al, Co, Cr, Mn and Pb do not show any change in their concentrations. In soils, the contents of Cd, Fe and Sn increase whereas those of Ni decrease from 1994 to 1995. Aluminium, Co, Cr, Cu, Mn, Pb and Zn do not show any change in their concentrations from 1994 to 1995. About 90% of the contents of Cd, Cr and Sn; 50–75% of C-org, Cu and Zn; and 25% of Co, Ni and Pb in sediments are derived from the anthropogenic input in relation to the natural background values, whereas in soils this is the case for about 90% of Cr and Sn; about 75% of Cd; and about 25% of C-org, Cu, Ni and Zn. The sediments of the study area show enrichment factors of 23.6 for Cr, 14.7 for Cd, 12.2 for Sn, 3.6 for C-org, 3.2 for Zn, 2.6 for Cu and 1.6 for Ni. The soils are enriched with factors of 10.7 for Cr, 9.0 for Sn, 3.6 for Cd, 1.8 for Ni and 1.5 for Cu and Zn, respectively. Received: 3 March 1998 · Accepted: 15 June 1998  相似文献   

10.
New data are presented on the contents of Fe, Mn, Zn, Cu, Pb, Cd, and Ni in dissolved and particulate modes of occurrence in unpolluted or anthropogenically contaminated major rivers of Primorye. The background contents of dissolved metals are as follows: 0.1–0.5 μg/l for Zn and Ni, 0.3–0.7 μg/l for Cu, 0.01–0.04 μg/l for Pb and Cd, and 2–20 μg/l for Fe and Mn. Common anthropogenic loading (communal wastewaters) notably increases the dissolved Fe and Mn concentrations Industrial wastes lead to a local increase in the contents of dissolved metals in river waters by one to three orders of magnitude. The effect of hydrological regime is expressed most clearly in the areas of anthropogenic impact. The metal contents in the particulate matter are controlled mainly by its granulometric composition. Original Russian Text ? V.M. Shulkin, N.N. Bogdanov, V.I. Kiselev, 2007, published in Geokhimiya, 2007, No. 1, pp. 79–88.  相似文献   

11.
Water, sediment, and mine spoil samples were collected within the vicinity of the Okpara coal mine in Enugu, Southeastern Nigeria, and analyzed for trace elements using ICP-MS to assess the level of environmental contamination by these elements. The results obtained show that the mine spoils and sediments are relatively enriched in Fe, with mean values of 1,307.8(mg/kg) for mine spoils and 94.15% for sediments. As, Cd, Cr, Mn,Ni, Pb, and Zn in the sediments were found to be enriched relative to the mean values obtained from the study area, showing contamination by these elements. The mean values of Fe, Mn, Cu, and Cr in the mine spoils and mean values of Fe, Cu, Pb, Zn, Ni, Cr, and Mn in sediments, respectively, are above the background values obtained from coal and shale in the study area, indicating enrichment with these elements. The water and sediments are moderately acidic, with mean pH values of 4.22?±?1.06 and 4.66?±?1.35, respectively. With the exception of Fe, Mn, and Ni, all other elements are within the Nigerian water quality standard and WHO limits for drinking water and other domestic purposes. The strong to moderate positive correlation between Fe and Cu (r?=?0.72), Fe and Zn (r?=?0.88), and Fe and As (r?=?0.60) at p?<?0.05 as obtained for the sediments depict the scavenging effect of Fe on these mobile elements. As also shows a strong positive correlation with Mn (r?=?≥ 0.70, p?<?0.05), indicating that Mn plays a major role in scavenging elements that are not co-precipitated with Fe. In water, the strong positive correlation observed between Cr and Cd (r?=?1.00), Cu and Ni (r?=?0.94), Pb and Cu (r?=?0.87) and Zn and Cu (r?=?0.99); Ni and Pb (r?=?0.83) and Zn and Ni (r?=?0.97); and between Pb and Zn (0.84) at p?<?0.05 may indicate similar element–water reaction control on the system due to similarities in chemical properties as well as a common source. Elevated levels of heavy metals in sediments relative to surface water probably imply that sorption and co-precipitation on Al and Fe oxides are more effective in the mobilization and attenuation of heavy metals in the mine area than acid-induced dissolution. The level of concentration of trace elements for the mine spoils will serve as baseline data for future reference in the study area.  相似文献   

12.
We studied the mobility of silver, heavy metals and europium in waste from the Las Herrerías mine in Almería (SE Spain). The most abundant primary mineral phases in the mine wastes are hematite, hydrohematite, barite, quartz, muscovite, anorthite, calcite and phillipsite. The minor phase consisted of primary minerals including ankerite, cinnabar, digenite, magnesite, stannite, siderite and jamesonite, and secondary minerals such as glauberite, szomolnokite, thenardite and uklonscovite. The soils show high concentrations of Ag (mean 21.6 mg kg–1), Ba (mean 2.5%), Fe (mean 114,000 mg kg–1), Sb (mean 342.5 mg kg–1), Pb (mean 1,229.8 mg kg–1), Zn (mean 493 mg kg–1), Mn (mean 4,321.1 mg kg–1), Cd (mean 1.2 mg kg–1) and Eu (mean 4.0 mg kg–1). The column experiments showed mobilization of Ag, Al, Ba, Cu, Cd, Eu, Fe, Mn, Ni, Sb, Pb and Zn, and the inverse modelling showed that the dissolution of hematite, hausmannite, pyrolusite and anglesite can largely account for the mobilization of Fe, Mn and Pb in the leaching experiment. The mobility of silver may be caused by the presence of kongsbergite and chlorargyrite in the waste, while the mobility of Eu seems to be determined by Eu(OH)3, which controls the solubility of Eu in the pH–Eh conditions of the experiments. The mineralogy, pH, Eh and geochemical composition of the mine wastes may explain the possible mobilization of heavy metals and metalloids. However, the absence of contaminants in the groundwater may be caused by the carbonate-rich environment of “host-rocks” that limits their mobility.  相似文献   

13.
A good understanding of roadside soil contamination and the location of pollution sources is important for addressing many environmental problems. The results are reported here of an analysis of the content of metals in roadside dust samples of four major highways in the Greater Toronto area (GTA) in Ontario, Canada. The metals analyzed are Pb, Zn, Cd, Ni, Cr, Cu, Mn, and Fe. Multivariate geostatistical analysis [correlation analysis (CA), principal component analysis (PCA), and hierarchical cluster analysis (HCA)] were used to estimate soil chemical content variability. The correlation coefficient shows a positive correlation between Cr–Cd, Mn–Fe, and Fe–Cu, while negatively between Zn–Cd, Mn–Cd, Zn-Cr, Pb–Zn, and Ni–Zn. PCA shows that the three eigenvalues are less than one, and suggests that the contamination sources are processing industries and traffic. HCA classifies heavy metals in two major groups. The cluster has two larger subgroups: the first contains only the variables Fe, Mn, Cu, Cr, Ni, and Pb, and the second includes Cd and Zn. The geostatistical analysis allows geological and anthropogenic causes of variations in the contents of roadside dust heavy metals to be separated and common pollution sources to be identified. The study shows that the high concentration of traffic flows, the parent material mineralogical and chemical composition, and land use are the main sources for the heavy metal concentration in the analyzed samples.  相似文献   

14.
In this study, 30 topsoil samples were collected from Karaduvar area (Mersin, SE Turkey) where at present various industrial and agricultural activities are occurring. Using a five-step ultrasound-assisted sequential extraction (UASE) procedure, trace elements in soil samples were partitioned into the following: (1) soluble-exchangeable; (2) bound to carbonates; (3) bound to Fe- and Mn-oxides; (4) bound to organic matter and sulfide compounds, and (5) residual fraction. Concentrations of 11 trace elements in the extracts were determined using ICP-MS. Total concentrations ranged between (in mg kg−1) 3.35 and 7.26 for As; 1.18 and 3.96 for Cd; 10.76 and 20.26 for Co; 37.99 and 63.48 for Cr; 18.55 and 243.1 for Cu; 338.7 and 565.6 for Mn; 4.42 and 6.44 for Mo; 148 and 279.3 for Ni; 10.12 and 73.71 for Pb; 17.93 and 36.55 for V, and 25.46 and 331.7 for Zn. Factor analysis was applied to dataset in order to discriminate between natural and anthropogenic pollution sources and factors controlling the spatial distribution of trace elements in the area. Results suggest that distributions of Co, Cr, Mn, and Ni are mainly controlled by lithological factors, whereas, distributions of Cu, Pb, and Zn can be attributed to agricultural activities such as pesticide/herbicide use and fertilizer application, as well as irrigation with petroleum hydrocarbon-contaminated groundwater. Highest concentrations of Cd and Mo are generally observed around the diesel-fired thermal power plant and ATAŞ refinery. Highest concentrations of As and V are generally observed at the NW sector of the area; however, no definitive source can be designated for both of these elements.  相似文献   

15.
Acid extractable Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb. and Zn were determined in sediments from the Inner Virginia Shelf, and from shipping channels in the lower Chesapeake Bay and Hampton Roads, Virginia, harbor system. Data were evaluated by a variety of techniques Levels of Cd, Cu, Pb, and Zn exceeded average crustal abundances for most of the study sites. Cumulative frequency curves suggested that there were two major populations for all metals and perhaps a third and smaller, one for Cd, Cr, and Mn Plots of metal vs Fe indicated no anthropogenic inputs of metals for shelf and Chesapeake Bay channel sites, but suggested anthropogenic influences for all metals in several of the inshore sites. Enrichment factor calculations showed enrichment of Cd, Pb, and Zn with respect to average crustal abundances for all sites and of Cu for the industrial harbor system. A recommendation of this study for evaluation of environmental geochemical metals data is to utilize mean concentrations, cumulative frequency plots, and metal vs Fe and/or enrichment factor calculations when evaluating the pollution status of sediments.  相似文献   

16.
Selenium and heavy metals content in some Mediterranean soils   总被引:1,自引:0,他引:1  
The study of metal contents in industrial, agricultural or/and polluted soils compared with natural or unpolluted soils is currently necessary to obtain reference values and to assess soil contamination. Nonetheless, very few works published appear in international journals on elements like Se, Li and Sr in Spanish soils. This study determines the total levels of Se, Li, Sr, As, Cd, Co, Cr, Cu, Ni, Pb, V, Zn, Fe, Mn and Ba in 14 natural (unpolluted) soils (Gypsisols, Leptosols, Arenosols and Acrisols), 14 agricultural soils (Anthrosols, Fluvisols and Luvisols), and 4 industrial–urban affected-surface soil horizons (Anthrosols and Fluvisols) of Eastern Spain. The geochemical baseline concentrations (GBC) and reference values (RV) have been established, and the relationships among elements and also between soil properties and elemental concentrations have been analysed. The RV obtained in this study were (mg kg−1): Se 2.68, Li 115, Sr 298, Cd 0.97, Co 35, Cr 217, Cu 46, Ni 50, Pb 137, V 120, Zn 246, Fe 124,472, Mn 2691, and Ba 743. The RV for Se and Li were used as a preliminary approach to assess soil contamination in Spanish soils. The results confirm human impact on Sr, As, Cd, Cr, Cu, Ni, Pb and Zn soil concentrations, but evidence no deviation from natural Se, Li, Co, V, Fe, Mn and Ba concentrations. The results obtained from the statistical analysis reveal significant correlations between some elements and clay and soil organic matter (SOM) contents, indicating that metal concentrations are controlled by soil composition. One particularly interesting finding is the high correlation coefficients obtained between SOM and Se, Cd, Cr, V, Fe, and Mn, and between clay and Cd, Zn, V, Fe and Mn. Once again, these facts confirm the role of SOM and clay minerals in soil functions and that soil is an ecosystem element responsible for maintaining environmental quality.  相似文献   

17.
Assessment of heavy metal pollution in surface water   总被引:4,自引:3,他引:1  
A total of 96 surface water samples collected from river Ganga in West Bengal during 2004–05 was analyzed for pH, EC, Fe, Mn, Zn, Cu, Cd, Cr, Pb and Ni. The pH was found in the alkaline range (7.21–8.32), while conductance was obtained in the range of 0.225–0.615 mmhos/cm. Fe, Mn, Zn, Ni, Cr and Pb were detected in more than 92% of the samples in the range of 0.025–5.49, 0.025–2.72, 0.012–0.370, 0.012–0.375, 0.001–0.044 and 0.001–0.250 mg/L, respectively, whereas Cd and Cu were detected only in 20 and 36 samples (0.001–0.003 and 0.003–0.032 mg/L). Overall seasonal variation was significant for Fe, Mn, Cd and Cr. The maximum mean concentration of Fe (1.520 mg/L) was observed in summer, Mn (0.423 mg/L) in monsoon but Cd (0.003 mg/L) and Cr (0.020 mg/L) exhibited their maximum during the winter season. Fe, Mn and Cd concentration also varied with the change of sampling locations. The highest mean concentrations (mg/L) of Fe (1.485), Zn (0.085) and Cu (0.006) were observed at Palta, those for Mn (0.420) and Ni (0.054) at Berhampore, whereas the maximum of Pb (0.024 mg/L) and Cr (0.018 mg/L) was obtained at the downstream station, Uluberia. All in all, the dominance of various heavy metals in the surface water of the river Ganga followed the sequence: Fe > Mn > Ni > Cr > Pb > Zn > Cu > Cd. A significant positive correlation was exhibited for conductivity with Cd and Cr of water but Mn exhibited a negative correlation with conductivity.  相似文献   

18.
The concentration of trace metals like Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were studied in beach and estuarine sediments of the Velanganni Coast, South East coast of India to understand metal pollution due to urbanization/industrialization. This area was affected by the urbanization activity like untreated effluent discharge, transportation and incineration of solid waste, etc. In this context, quality of the sediments was evaluated based on the enrichment factor, geo-accumulation index (Igeo), pollution load index, and sediment quality guidelines. Furthermore, correlation matrix and principal compound analyses have been performed with SPSS 7.5 statistical software. The result illustrated that the metal enrichment is in the following order: Cd > Cr > Ni > Zn > Pb > Mn > Cu. The level of Igeo suggests that Cd has moderately polluted the sediment class. Similarly, principal component analysis showed that Cd and Pb accounted for the anthropogenic pollution, but Pb inferred as its tracers level. The results strongly indicate anthropogenic sources for moderate input of Cd contamination in to Velanganni coastal sediments.  相似文献   

19.
Understanding of the landscape response to agricultural practices mainly in relation to soil trace metals requires particular attention. Consistent with this, the trend and possible pollution of total and DTPA fraction of Mn, Zn, Cu, and Cd in the agricultural soils developed on different landscape positions involving piedmont alluvial plain (PAP), river alluvial plain (RAP), plateau (PL), and lowland (LL) were investigated. The content of the metal in different soil profiles, grouped by landscape positions, varied in the following orders: total and DTPA-Mn as LL > PAP > RAP > PL, total Zn and Cu as PAP > RAP > LL > PL, total Cd as RAP > PAP > PL > LL, DTPA-Zn as RAP > PAP > PL > LL, and DTPA-Cu as RAP > LL > PL > PAP. A wide variation in the total fraction of Mn (89–985 mg kg?1), Zn (24–152 mg kg?1), Cu (8–27 mg kg?1), and Cd (0.6–1.7 mg kg?1) and in the DTPA fraction of Mn (1.2–11 mg kg?1), Zn (0.3–4.4 mg kg?1), Cu (0.3–3 mg kg?1), Cd (0.03–0.09 mg kg?1) observed as a result of the effects of agricultural practices and landscape properties. The values of both total and DTPA-extractable Mn, Zn, and Cu were enriched in the AP horizon probably due to anthropogenic activities particularly successive use of agrochemical compounds and manure during numerous years. Using soil pollution indices [single pollution (PI) and comprehensive pollution (PIN)], the study soils were categorized mainly as low to moderate pollution and Zn was identified as the major element affecting on the yield of these indices.  相似文献   

20.
Survey of heavy metals in the catfish Synodontis clarias   总被引:1,自引:1,他引:1  
Elevated levels of heavy metals in the catfish Synodontis clarias can be a good indication of pollution of an aquatic ecosystem due to anthropogenic influence. The concentrations of Zn, Cd, Pb, Mn and Ni were determined in Synodontis clarias caught along a section of Taylor Creek and its associated tributaries. Samples were collected bimonthly between July 1999 and June 2000 in five stations. The metals: Zn, Cd, Ni, Pb and Mn were recorded in appreciable quantities, signifying their bioavailability. The levels of Zn, Cd, Ni, Pb and Mn may have obvious health implications on the rural communities that depend on fish species as fish supplement in view of its rich protein content and its bio-economic value. Generally, the sources of the metals in the catfish appear to be point and diffuse which include rural and agricultural runoff sources in the catchments area. However, the presence of an oil industry activity (Etelebou oil field and flow station) in one of its tributaries appears to be the major point source of the metal pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号