首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Continual expansion of population density, urbanization, agriculture, and industry in most parts of the world has increased the generation of pollution, which contributes to the deterioration of surface water quality. This causes the dependence on groundwater sources for their daily needs to accumulate day by day, which raises concerns about their quality and hydrogeochemistry. This study was carried out to increase understanding of the geological setup and assess the groundwater hydrogeochemical characteristics of the multilayered aquifers in Lower Kelantan Basin. Based on lithological data correlation of exploration wells, the study area can be divided into three main aquifers: shallow, intermediate and deep aquifers. From these three aquifers, 101 groundwater samples were collected and analyzed for various parameters. The results showed that pH values in the shallow, intermediate and deep aquifers were generally acidic to slightly alkaline. The sequences of major cations and anions were Na+ > Ca2+ > Mg2+ > K+ and HCO3? > Cl? > SO42? > CO32?, respectively. In the intermediate aquifer, the influence of ancient seawater was the primary factor that contributed to the elevated values of electrical conductivity (EC), Cl? and total dissolved solids (TDS). The main facies in the shallow aquifer were Ca–HCO3 and Na–HCO3 water types. The water types were dominated by Na–Cl and Na–HCO3 in the intermediate aquifer and by Na–HCO3 in the deep aquifer. The Gibbs diagram reveals that the majority of groundwater samples belonged to the deep aquifer and fell in the rock dominance zone. Shallow aquifer samples mostly fell in the rainfall zone, suggesting that this aquifer is affected by anthropogenic activities. In contrast, the results suggest that the deep aquifer is heavily influenced by natural processes.  相似文献   

2.
The present study investigates the hydrogeochemistry and contamination of Varamin deep aquifer located in the southeast of Tehran province, Iran. The study also evaluates groundwater suitability for irrigation uses. The hydrogeochemical study was conducted by collecting and analyzing 154 groundwater samples seasonally during 2014. Based on evolutionary sequence of Chebotarev, the aquifer is in the stage of SO4 + HCO3 in the north half of the plain and it has evolved into SO4 + Cl in the south half. The unusual increase in TDS and Cl? toward the western boundaries of the aquifer indicates some anomalies. These anomalies have originated from discharge of untreated wastewater of Tehran city in these areas. The studied aquifer contains four dominant groundwater types including Na–Ca–SO4 (55%), Na–Ca–HCO3 (22%), Na–Cl (13%) and Ca–Cl (10%). The spatial distributions of Na–Cl and Ca–Cl water types coincide with observed anomalies. Ionic relationships of SO4 2? versus Cl? and Na+ versus Cl? confirm that water–rock interaction and anthropogenic contribution are main sources of these ions in the groundwater. The main processes governing the chemistry of the groundwater are the dissolution of calcite, dolomite and gypsum along the flow path, and direct ion exchange. Reverse ion exchange controls the groundwater chemistry in the areas contaminated with untreated wastewater. Based on Na% and SAR, 10.3 and 27% of water samples are unsuitable for irrigation purposes, respectively. Regarding residual sodium carbonate, there is no treat for crop yields. Only 6% of water samples represent magnesium adsorption ratios more than 50% which are harmful and unsuitable for irrigation.  相似文献   

3.
Groundwater residence time in the Kulnura–Mangrove Mountain aquifer was assessed during a multi-year sampling programme using general hydrogeochemistry and isotopic tracers (H2O stable isotopes, δ13CDIC, 3H, 14C and 87Sr/86Sr). The study included whole-rock analysis from samples recovered during well construction at four sites to better characterise water–rock interactions. Based on hydrogeochemistry, isotopic tracers and mineral phase distribution from whole-rock XRD analysis, two main groundwater zones were differentiated (shallow and deep). The shallow zone contains oxidising Na–Cl-type waters, low pH, low SC and containing 3H and 14C activities consistent with modern groundwater and bomb pulse signatures (up to 116.9 pMC). In this shallow zone, the original Hawkesbury Sandstone has been deeply weathered, enhancing its storage capacity down to ~50 m below ground surface in most areas and ~90 m in the Peats Ridge area. The deeper groundwater zone was also relatively oxidised with a tendency towards Ca–HCO3-type waters, although with higher pH and SC, and no 3H and low 14C activities consistent with corrected residence times ranging from 11.8 to 0.9 ka BP. The original sandstone was found to be less weathered with depth, favouring the dissolution of dispersed carbonates and the transition from a semi-porous groundwater media flow in the shallow zone to fracture flow at depth, with both chemical and physical processes impacting on groundwater mean residence times.

Detailed temporal and spatial sampling of groundwater revealed important inter-annual variations driven by groundwater extraction showing a progressive influx of modern groundwater found at >100 m in the Peats Ridge area. The progressive modernisation has exposed deeper parts of the aquifer to increased NO3? concentrations and evaporated irrigation waters. The change in chemistry of the groundwater, particularly the lowering of groundwater pH, has accelerated the dissolution of mineral phases that would generally be inactive within this sandstone aquifer triggering the mobilisation of elements such as aluminium in the aqueous phase.  相似文献   

4.
Teboursouk region, Northwestern Tunisia, is characterized by the diversity of its natural resources (petroleum, groundwater and minerals). It constitutes a particular site widely studied, especially from a tectonic stand point as it exhibits a complex architecture dominated by multi-scale synclinals and Triassic extrusions. It has typical karst landform that constitutes important water resources devoted for human consumption and agriculture activities, besides to the exploitation of the Mio-Plio-Quaternary aquifer (MPQ). Thus, hydrogeological investigations play a significant role in the assessment of groundwater mineralization and the evaluation of the used water quality for different purposes. Hence, the current study based on a combined geochemical–statistical investigation of 50 groundwater samples from the multilayered aquifer system in the study area give crucial information about the principal factors and processes influencing groundwater chemistry. The chemical analysis of the water samples showed that Teboursouk groundwater is dominantly of Ca–Mg–Cl–SO4 water type with little contribution of Ca–Mg–HCO3, Na–K–Cl–SO4 and Na–K–HCO3. The total dissolved solids (TDS) values range from 0.37 to 3.58 g/l. The highest values are located near the Triassic outcrops. Furthermore, the hydrogeochemistry of the studied system was linked with various processes such as carbonates weathering, evaporites dissolution of Triassic outcrops and anthropogenic activities (nitrate contamination). Additionally, the main processes controlling Teboursouk water system were examined by means of multivariate statistical analysis (PCA and HCA) applied in this study based on 10 physicochemical parameters (TDS, pH, SO4, HCO3, pCO2, Ca, Mg, Na, K, Cl and NO3). Two principal components were extracted from PCA accounting 61% of total variance and revealing that the chemical characteristics of groundwater in the region were acquired through carbonates and evaporite dissolution besides to nitrate contamination. Similarly, according to Cluster analysis using Ward’s method and squared Euclidean distance, groundwater from the studied basin belongs to five different groups suggesting that the geochemical evolution of Teboursouk groundwater is controlled by dissolution of carbonates minerals, chemical weathering of Triassic evaporite outcrops, cation exchange and anthropogenic activities (nitrate contamination).  相似文献   

5.
The Barwon Downs Graben lies on the northern flanks of the Otway Ranges and is situated approximately 70 km southwest of Geelong, Victoria, Australia. The major lower Tertiary Barwon Downs Graben aquifer comprises highly permeable sands and gravels interbedded with clays and silts of the hydraulically interconnected Pebble Point, Dilwyn and Mepunga Formations. Groundwater flows east into the Barwon Downs Graben from the Barongarook High, and yields 14C ages up to ~20 ka implying that recharge rates are low and, consequently, that the resource could be impacted by overabstraction. The presence of three different lithological units has led to the development of localized flow systems that has resulted in a lack of regular spatial variations in groundwater chemistry. Stable isotopic data suggests that groundwater was recharged under similar climatic conditions as of today. The major ion chemistry of the freshest groundwater is dominated by Na and HCO3 while higher TDS groundwater, from the confining Narrawaturk Marl, is dominated by Na and Cl. Cl/Br ratios are close to rainfall suggesting that halite dissolution is not the principle source of salts. An excess of Na relative to Cl in fresher groundwater suggests that feldspar dissolution has occurred, however, water–rock interaction is limited. The concentrations of Ca, Mg, and SO4 are controlled by silicate dissolution and ion-exchange reactions with clays.  相似文献   

6.
《Applied Geochemistry》2002,17(8):1047-1060
Due to the scarcity of water resources in semiarid sedimentary basins, hill reservoirs are often constructed to recharge groundwater and limit runoff induced water loss. The impact of such reservoirs on groundwater chemistry is investigated in the aquifers of the El Gouazine watershed, Central Tunisia. Three groundwater types are recognised, Ca–HCO3, Na–Cl and Ca–SO4. The strong similarity between host rock and groundwater chemistries indicates significant rock–water interaction. A flowpath, along which the chemical composition of the groundwater evolves, can be identified using the contrast in stable isotope signature between upstream and downstream groundwater. Shallow upstream groundwater is recharged by the infiltration of rainwater with the rate of recharge strongly linked to the permeability of the host lithology. Calcium and HCO3 are supplied to an alluvial aquifer from a more rapidly recharged limestone aquifer with the concentration of Ca and HCO3 ions decreasing by dilution. The alluvial aquifer is also enriched in Ca and SO4 during the downstream flow of groundwater through gypsiferous materials. There is evidence of mixing between meteoric groundwater and evaporated reservoir water. Below the reservoir and partly responsible for reservoir leakage is a sandy aquifer, formed by weathering and erosion of a sandstone host which also supplies water to the alluvial aquifer.  相似文献   

7.
An investigation was conducted to assess the hydrogeochemical processes of an alluvial channel aquifer located in a typical Karoo Basin of Southern Africa. The investigation was aimed at identifying and describing the groundwater chemistry evolution and its contribution to the overall groundwater quality. X-ray fluorescent spectrometry (XRF) and X-ray diffractometry (XRD) analyses were performed on geological samples to identify and quantify the major element oxides and minerals. The study utilises the conventional Piper diagram, bivariate plots and PHREEQC hydrogeochemical model to analyse groundwater chemistry data obtained during the wet (February and May) and dry seasons (August and December) of 2011. The XRF and XRD results show that the channel deposits are dominated by SiO2 element oxides and quartz minerals, thus elevated concentrations of silicon (Si4+) were found in the groundwater. Dolomite and calcite minerals were also detected in the unconsolidated aquifer sediments. The detailed study of the alluvial aquifer system has shown that dissolution of dolomite and calcite minerals and ion exchange are the dominant hydrogeochemical processes influencing the groundwater quality. The groundwater evolves from Ca2+–Mg2+–HCO3 ? recharge water that goes through ion exchange with Na+ in the clay-silt sediment to give a Na+–HCO3 ? water type. The groundwater is supersaturated with respect to quartz, dolomite and calcite minerals. The study shows the potential usefulness of simple bivariate plots as a complimentary tool to the conventional methods for analyzing groundwater hydrogeochemical processes.  相似文献   

8.
Insufficient knowledge of the hydrogeochemistry of aquifers in the Central Region of Ghana has necessitated a preliminary water quality assessment in some parts of the region. Major and minor ions, and trace metal compositions of groundwater have been studied with the aim of evaluating hydrogeochemical processes that are likely to impair the quality of water in the study area. The results show that groundwater in the area is weakly acidic with mean acidity being 5.83 pH units. The dominant cation in the area is Na, followed by K, Ca, and Mg, and the dominant anion is Cl?, followed by HCO3 ? and SO4 2?. Two major hydrochemical facies have been identified as Na–Cl and Na–HCO3, water types. Multivariate statistical techniques such as cluster analysis (CA) and factor analysis/principal component analysis (PCA), in R mode, were employed to examine the chemical compositions of groundwater and to identify factors that influenced each. Q-mode CA analysis resulted in two distinct water types as established by the hydrochemical facies. Cluster 1 waters contain predominantly Na–Cl. Cluster 2 waters contain Na–HCO3 and Na–Cl. Cluster 2 waters are fresher and of good quality than cluster 1. Factor analysis yielded five significant factors, explaining 86.56% of the total variance. PC1 explains 41.95% of the variance and is contributed by temperature, electrical conductivity, TDS, turbidity, SO4 2?, Cl?, Na, K, Ca, Mg, and Mn and influenced by geochemical processes such as weathering, mineral dissolution, cation exchange, and oxidation–reduction reactions. PC2 explains 16.43% of the total variance and is characterized by high positive loadings of pH and HCO3 ?. This results from biogenic activities taking place to generate gaseous carbon dioxide that reacts with infiltrating water to generate HCO3 ?, which intend affect the pH. PC3 explains 11.17% of the total variance and is negatively loaded on PO4 3? and NO3 ? indicating anthropogenic influence. The R-mode PCA, supported by R-mode CA, have revealed hydrogeochemical processes as the major sources of ions in the groundwater. Factor score plot revealed a possible flow direction from the northern sections of the study area, marked by higher topography, to the south. Compositional relations confirmed the predominant geochemical process responsible for the various ions in the groundwater as mineral dissolution and thus agree with the multivariate analysis.  相似文献   

9.
The alluvial aquifer of the Ghatprabha River comprises shallow tertiary sediment deposits underlain by peninsular gneissic complex of Archean age, located in the central–eastern part of the Karnataka in southern India. In order to establish the baseline hydrochemical conditions and processes determining the groundwater quality, groundwater samples were collected as part of an integrated investigation that coupled multivariate statistical analysis with hydrochemical methods to identify and interpret the groundwater chemistry of the aquifer system. Three main hydrochemical types (Ca–Mg–Cl, Ca–Mg–HCO3, and Na–SO4) were identified. Gibbs plots indicate that the evolution of water chemistry is influenced by water–rock interaction followed by evapotranspiration process. The results of factor analysis indicated the total variance explained by the extracted factor 79.9% and 87.1% for both pre- and post-monsoon, respectively. And other processes such as silicate weathering, ion exchange, and local anthropogenic activities affect the groundwater chemistry.  相似文献   

10.
The study area Mettur forms an important industrial town situated NW of Salem district. The geology of the area is mainly composed of Archean crystalline metamorphic complexes. To identify the major process activated for controlling the groundwater chemistry an attempt has been made by collecting a total of 46 groundwater samples for two different seasons, viz., pre-monsoon and post-monsoon. The groundwater chemistry is dominated by silicate weathering and (Na + Mg) and (Cl + SO4) accounts of about 90% of cations and anions. The contribution of (Ca + Mg) and (Na + K) to total cations and HCO3 indicates the domination of silicate weathering as major sources for cations. The plot for Na to Cl indicates higher Cl in both seasons, derived from Anthropogenic (human) sources from fertilizer, road salt, human and animal waste, and industrial applications, minor representations of Na also indicates source from weathering of silicate-bearing minerals. The plot for Na/Cl to EC indicates Na released from silicate weathering process which is also supported by higher HCO3 values in both the seasons. Ion exchange process is also activated in the study area which is indicated by shifting to right in plot for Ca + Mg to SO4 + HCO3. The plot of Na-Cl to Ca + Mg-HCO3-SO4 confirms that Ca, Mg and Na concentrations in groundwater are derived from aquifer materials. Thermodynamic plot indicates that groundwater is in equilibrium with kaolinite, muscovite and chlorite minerals. Saturation index of silicate and carbonate minerals indicate oversaturation during pre-monsoon and undersaturation during post-monsoon, conforming dissolution and dilution process. In general, water chemistry is guided by complex weathering process, ion exchange along with influence of Cl ions from anthropogenic impact.  相似文献   

11.
This paper provides insight into the quality of groundwater used for public water supply on the territory of Kikinda municipality (Vojvodina, Serbia) and main processes which control it. The following parameters were measured: color, turbidity, pH, KMnO4 consumption, TDS, EC, NH4 +, Cl?, NO2 ?, NO3 ?, Fe, Mn, total hardness, Ca2+, Mg2+, SO4 2+, HCO3 ?, K+, Na+, As. The correlations and ratios among parameters that define the chemical composition were determined aiming to identify main processes that control the formation of the chemical composition of the analyzed waters. Groundwater from 11 analyzed sources is Na–HCO3 type. Intense color and elevated organic matter content of these waters originate from humic substances. The importance of organic matter decay is assumed by positive correlation between organic matter content and TDS, HCO3 content. There is no evidence that groundwater chemistry is determined by the depth of captured aquifer interval. The main processes that control the chemistry of all analyzed water are cation exchange and feldspar weathering.  相似文献   

12.
《Applied Geochemistry》2004,19(4):519-560
The hydrogeochemistry of the Lac du Bonnet granitic batholith has been determined for the region of the Whiteshell Research Area (WRA) in southeastern Manitoba, Canada. This work forms part of the geosciences studies performed for the Canadian Nuclear Fuel Waste Management Program over the period 1980–1995 by Atomic Energy of Canada Limited (AECL). Knowledge of the variation of groundwater chemistry and its causes is useful in assessing the performance and safety of a nuclear fuel waste vault located at depths of up to 1000 m in a crystalline rock formation of the Canadian Shield. Groundwaters and matrix pore fluids have been obtained by standard sampling methods from shallow piezometers in clay-rich overburden, from packer-isolated borehole zones intersecting fractures or fault zones in the bedrock, and from boreholes in unfractured rock in AECL's Underground Research Laboratory (URL). Eighty-six individual fracture groundwaters have been sampled and analysed from permeable zones in 53 boreholes drilled to depths of up to 1000 m in the Lac du Bonnet batholith. In addition, 28 groundwaters from piezometers in a large wetland area near the URL have been sampled and analysed to determine the influence of clay-rich overburden on the bedrock hydrogeochemistry. Analyses have been made for major and minor ions, pH, Eh, trace metals, and stable and radioactive isotopes, to characterise these groundwaters and relate them to their hydrogeologic regimes. Shallow groundwaters in the fractured bedrock are generally dilute (TDS <0.3 g/l), Ca–Na–HCO3 waters and show little indication of mixing with Ca–Mg–HCO3–SO4 groundwater from overburden sediments. The near-modern levels of 3H and 14C, and a warm-climate 2H/18O signature in these groundwaters, indicates that the upper ∼200 m of fractured bedrock contains an active groundwater circulation system with a residence time of tens to hundreds of years. Deeper fracture groundwaters (200–400 m depth) in recharge areas, are more alkaline, Na–Ca–HCO3 waters and evolve to Na–Ca–HCO3–Cl–SO4 waters with increasing distance along the flow path. Isotopic data indicate the presence of a glacial melt-water component suggesting that the residence times of these waters are 103–105 a. These waters form a transition zone between the upper, advective flow regime and a deeper regime in sparsely fractured rock where groundwater in fractures and fracture zones is largely stagnant. At these depths (> 500 m), Na–Ca–Cl–SO4 waters of increasing salinity (up to 50 g/l) with depth are found and in some fractures the waters have evolved to a Ca–Na–Cl composition. Isotopic data indicate that these waters are warm-climate and pre-glacial in origin, with residence times of over 1 Ma. Pore fluids observed to drain from the unfractured rock matrix in the URL facility are almost pure Ca–Cl in composition, ∼90 g/l salinity, and have a 2H/18O composition displaced well to the left of the global meteoric water line, about which all other WRA groundwaters lie. This information indicates that these pore fluids have undergone prolonged water-rock interaction and have residence times of 101–103 Ma. Most of the deeper fracture groundwaters and pore fluids have low Br/Cl ratios and moderate to high δ34S values of dissolved SO4 which indicates that their salinity could be derived from a marine source such as the basinal sedimentary brines and evaporites to the west of the batholith. These fluids may have entered the batholith during early Paleozoic times when sedimentary rocks were deposited over the granite and were driven by a hydraulic gradient resulting from higher ground in western Canada. The hydrogeochemical data and interpretations show that below ∼500 m in the WRA, fracture-hosted groundwaters are very saline, reducing and old, and are, therefore, indicative of stagnant conditions over the period of concern for nuclear waste disposal (1 Ma). The intact rock matrix at these depths is extremely impermeable as indicated by the presence of pore fluids with unusual geochemical and isotopic characteristics. The pore fluids may represent basinal brines that have evolved geochemically and isotopically to their current composition over periods as long as 103 Ma.  相似文献   

13.
Correct identification of water inrush sources is particularly important to prevent and control mine water disasters. Hydrochemical analysis, Fisher discriminant analysis, and geothermal verification analysis were used to identify and verify the water sources of the multi‐aquifer groundwater system in Gubei coal mine, Anhui Province, North China. Results show that hydrochemical water types of the Cenozoic top aquifer included HCO3–Na+K–Ca, HCO3–Na+K–Mg and HCO3–Na+K, and this aquifer was easily distinguishable from other aquifers because of its low concentration of Na++K+ and Cl. The Cenozoic middle and bottom aquifers, the Permian fissure aquifer, and the Taiyuan and Ordovician limestone aquifers were mainly characterized by the Cl–Na+K and SO4–Cl‐Na+K or HCO3–Cl–Na+K water types, and their hydrogeochemistries were similar. Therefore, water sources could not be identified via hydrochemical analysis. Fisher model was established based on the hydrogeochemical characteristics, and its discrimination rate was 89.19%. Fisher discrimination results were improved by combining them with the geothermal analysis results, and this combination increased the identification rate to 97.3 % and reasonably explained the reasons behind two water samples misjudgments. The methods described herein are also applicable to other mines with similar geological and hydrogeological conditions in North China.  相似文献   

14.
Dar es Salaam Quaternary coastal aquifer is a major source of water supply in Dar es Salaam City used for domestic, agricultural, and industrial uses. However, groundwater overdraft and contamination are the major problems affecting the aquifer system. This study aims to define the principal hydrogeochemical processes controlling groundwater quality in the coastal strip of Dar es Salaam and to investigate whether the threats of seawater intrusion and pollution are influencing groundwater quality. Major cations and anions analysed in 134 groundwater samples reveal that groundwater is mainly affected by four factors: dissolution of calcite and dolomite, weathering of silicate minerals, seawater intrusion due to aquifer overexploitation, and nitrate pollution mainly caused by the use of pit latrines and septic tanks. High enrichment of Na+ and Cl? near the coast gives an indication of seawater intrusion into the aquifer as also supported from the Na–Cl signature on the Piper diagram. The boreholes close to the coast have much higher Na/Cl molar ratios than the boreholes located further inland. The dissolution of calcite and dolomite in recharge areas results in Ca–HCO3 and Ca–Mg–HCO3 groundwater types. Further along flow paths, Ca2+ and Na+ ion exchange causes groundwater evolution to Na–HCO3 type. From the PHREEQC simulation model, it appears that groundwater is undersaturated to slightly oversaturated with respect to the calcite and dolomite minerals. The results of this study provide important information required for the protection of the aquifer system.  相似文献   

15.
A total of 162 groundwater samples for three representative seasons were collected from Salem district of Tamilnadu, India to decipher hydrogeochemistry and groundwater quality for determining its suitability for drinking and agricultural proposes. The water is neutral to alkaline in nature with pH ranging from 6.6 to 8.6 with an average of 8.0. Higher electrical conductivity was observed during post-monsoon season. The abundance of major ions in the groundwater was in the order of $ {\text{Na} > \text{Ca} > \text{Mg} > \text{K} = \text{Cl} > \text{HC}}{{\text{O}}_3}\; > \;{\text{S}}{{\text{O}}_4}\; > \;{\text{N}}{{\text{O}}_3} $ . Piper plot reveals the dominance of geochemical facies as mixed Ca–Mg–Cl, Na–Cl, Ca–HCO3, Ca–Na–HCO3, and Ca–Cl type. NO3, Cl, SO4, and F exceed the permissible limit during summer and post-monsoon seasons. Sodium adsorption ratio was higher during post-monsoon and southwest monsoon season indicating high and low salinity, satisfactory for plants having moderate salt tolerance on soils. Permeability index of water irrespective of season falls in class I and class II indicating water is moderate to good for irrigation purposes. As per the classification of water for irrigation purpose, water is fit for domestic and agricultural purposes with minor exceptions irrespective of seasons.  相似文献   

16.
The geochemical and isotopic composition of surface waters and groundwater in the Velenje Basin, Slovenia, was investigated seasonally to determine the relationship between major aquifers and surface waters, water–rock reactions, relative ages of groundwater, and biogeochemical processes. Groundwater in the Triassic aquifer is dominated by HCO3 , Ca2+, Mg2+ and δ13CDIC indicating degradation of soil organic matter and dissolution of carbonate minerals, similar to surface waters. In addition, groundwater in the Triassic aquifer has δ18O and δD values that plot near surface waters on the local and global meteoric water lines, and detectable tritium, likely reflecting recent (<50 years) recharge. In contrast, groundwater in the Pliocene aquifers is enriched in Mg2+, Na+, Ca2+, K+, and Si, and has high alkalinity and δ13CDIC values, with low SO4 2– and NO3 concentrations. These waters have likely been influenced by sulfate reduction and microbial methanogenesis associated with coal seams and dissolution of feldspars and Mg-rich clay minerals. Pliocene aquifer waters are also depleted in 18O and 2H, and have 3H concentrations near the detection limit, suggesting these waters are older, had a different recharge source, and have not mixed extensively with groundwater in the Triassic aquifer.  相似文献   

17.
18.
In the light of progressive depletion of groundwater reservoir and water quality deterioration of the Neyveli basin, an investigation on dissolved major constituents in 25 groundwater samples was performed. The main objective was detection of processes for the geochemical assessment throughout the area. Neyveli aquifer is intensively inhabited during the last decenniums, leading to expansion of the residential and agricultural area. Besides semi-aridity, rapid social and economic development stimulates greater demand for water, which is gradually fulfilled by groundwater extraction. Groundwaters of the study area are characterized by the dominance of Na?+?K over Ca?+?Mg. HCO3 was found to be the dominant anion followed by Cl and SO4. High positive correlation was obtained among the following ions: Ca–Mg, Cl–Ca,Mg, Na–K, HCO3–H4SiO4, and F–K. The hydrochemical types in the area can be divided into two major groups: the first group includes mixed Ca–Mg–Cl and Ca–Cl types. The second group comprises mixed Ca–Na–HCO3 and Ca–HCO3 types. Most of the groundwater samples are within the permissible limit of WHO standard. Interpretation of data suggests that weathering, ion exchange reactions, and evaporation to some extent are the dominant factors that determine the major ionic composition in the study area.  相似文献   

19.
This work investigated the freshening time and hydrochemical evolution of coastal groundwater in two brackish aquifers in Shenzhen, China. One was the brackish aquifer that resulted from heavy pumping, and the other was the aquifer reclaimed from the coastal sea. Freshening time and hydrochemical evolution of brackish aquifers were quantitatively evaluated using PHREEQC 2.0, a one-dimensional reactive-transport model. Freshening time was shown to mainly depend on pore water velocity, while the chemical composition of groundwater was determined by the cation exchange capacity of the aquifer. It was shown that after heavy pumping ceased, the freshening time for the original coastal aquifer ranged from 20 to over 80 years. While for the coastal reclaimed aquifer, the freshening time was from 85 to 140 years, which depended on the hydraulic conductivity of the fill materials in the reclaimed site. During aquifer freshening, groundwater evolved from Na–Cl type to Ca–Mg–HCO3 or Na–HCO3 type. A sensitivity analysis showed that the freshening time was most sensitive to the pore water velocity in the aquifer, while the groundwater chemical composition was most sensitive to the values of cation exchange capacity of the aquifer. As for the dispersivity, it had almost no effect on the freshening time and the chemical composition of groundwater.  相似文献   

20.
High concentrations of fluoride (up to 7.6 mg/L) are a recognized feature of the Wailapally granitic aquifer of Nalgonda District, Andhra Pradesh, India. The basement rocks provide abundant sources of F in the form of amphibole, biotite, fluorite and apatite. The whole-rock concentrations of F in the aquifer are in the range 240–990 mg/kg. Calcretes from the shallow weathered horizons also contain comparably high concentrations of F (635–950 mg/kg). The concentrations of water-soluble F in the granitic rocks and the calcretes are usually low (1% of the total or less) but broadly correlate with the concentrations observed in groundwaters in the local vicinity. The water-soluble fraction of fluoride is relatively high in weathered calcretes compared to fresh calcretes.Groundwater major-ion composition shows a well-defined trend with flow downgradient in the Wailapally aquifer, from Na–Ca–HCO3-dominated waters in the recharge area at the upper part of the catchment, through to Na–Mg–HCO3 and ultimately to Na–HCO3 and Na–HCO3–Cl types in the discharge area in the lowest part. The evolution occurs over a reach spanning some 17 km. Groundwater chemistry evolves by silicate weathering reactions, although groundwaters rapidly reach equilibrium with carbonate minerals, favouring precipitation of calcite, and ultimately dolomite in the lower parts of the watershed. This precipitation is also aided by evapotranspiration. Decreasing Ca activity downgradient leads to a dominance of fluorite-undersaturated conditions and consequently to mobilisation of F. Despite the clear downgradient evolution of major-ion chemistry, concentrations of F remain relatively uniform in the fluorite-undersaturated groundwaters, most being in the range 3.0–7.6 mg/L. The rather narrow range is attributed to a mechanism of co-precipitation with and/or adsorption to calcrete in the lower sections of the aquifer. The model may find application in other high-F groundwaters from granitic aquifers of semi-arid regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号