首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 15 毫秒
1.
Previously validated model results were used to characterize the wave climate over the Southern Brazilian Shelf (SBS). The low mean significant wave height over the western South Atlantic shelves was shown together with examples of cyclone-induced extreme wave fields and other typical wave conditions. The mean offshore spectra showed a bimodal shape with a predominance of S/SSW and ENE/E waves with distinctive interannual rising periods in wave energy density. Along-shelf wave energy gradients were seen near the coast with higher energy located off capes and coastal projections and energy minima between them. A considerable drop in wave energy suggests the 40 m depth as the mean wave base and consequently the lower limit of the SBS shoreface. The upper shoreface mean wave energy density varied abruptly along the shelf in response to differences in bottom declivities. The large and shallow shoreface was responsible for an intense refraction of the waves and hence very small angles of attack. Additionally, it was shown the sheltering effect caused by capes and coastal projections and a remarkable north/south energy asymmetry between them, caused by a windowing on the wave propagation to the shore. Altogether, it was possible to state that bottom friction plays a major role in wave differentiation along the SBS shoreface, thus suggesting that shelf morphology might indeed be more important to generate wave variability than the offshore wave variation itself.  相似文献   

2.
Air flow inside an array of cubes is simulated. Cubes (edge length 0.15 m) are arranged in a regular array, separated by 0.15 m in the streamwise and spanwise directions. Numerical simulations are performed based on Reynolds-averaged Navier–Stokes equations (RANS), solved in a computational fluid dynamics model (CFD), with standard k–ε turbulent closure (two prognostic equations are solved for the turbulent kinetic energy k and its dissipation ε, respectively). Simulations are validated against wind-tunnel data using a technique based on hit-rate calculations, and calculated statistical parameters. The results show that the horizontal velocity is very well modelled, and despite some discrepancies, the model that fulfils the hit-rate test criteria gives useful results that are used to investigate three-dimensional (3-D) flow structures. The 3-D analysis of the flow shows interesting patterns: the centre of the canyon vortex is at 3/4 of the canyon height, and stronger downward than upward motions are present within the canyon. Such behaviour is explained by the presence of a compensation flow through the side of the canyon, which enters the canyon from the upper part and exits from the lower part. This complex 3-D structure affects the tracer dispersion, and is responsible for pollutant transport and diffusion.  相似文献   

3.
A hybrid coupled model(HCM) is constructed for El Nino–Southern Oscillation(ENSO)-related modeling studies over almost the entire Pacific basin. An ocean general circulation model is coupled to a statistical atmospheric model for interannual wind stress anomalies to represent their dominant coupling with sea surface temperatures. In addition, various relevant forcing and feedback processes exist in the region and can affect ENSO in a significant way; their effects are simply represented using historical data and are incorporated into the HCM, including stochastic forcing of atmospheric winds, and feedbacks associated with freshwater flux, ocean biology-induced heating(OBH), and tropical instability waves(TIWs). In addition to its computational efficiency, the advantages of making use of such an HCM enable these related forcing and feedback processes to be represented individually or collectively, allowing their modulating effects on ENSO to be examined in a clean and clear way. In this paper, examples are given to illustrate the ability of the HCM to depict the mean ocean state, the circulation pathways connecting the subtropics and tropics in the western Pacific, and interannual variability associated with ENSO. As satellite data are taken to parameterize processes that are not explicitly represented in the HCM, this work also demonstrates an innovative method of using remotely sensed data for climate modeling. Further model applications related with ENSO modulations by extratropical influences and by various forcings and feedbacks will be presented in Part II of this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号