首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
An integrated sulfur isotope model for Namibian shelf sediments   总被引:2,自引:0,他引:2  
In this study the sulfur cycle in the organic-rich mud belt underlying the highly productive upwelling waters of the Namibian shelf is quantified using a 1D reaction-transport model. The model calculates vertical concentration and reaction rate profiles in the top 500 cm of sediment which are compared to a comprehensive dataset which includes carbon, sulfur, nitrogen and iron compounds as well as sulfate reduction (SR) rates and stable sulfur isotopes (32S, 34S). The sulfur dynamics in the well-mixed surface sediments are strongly influenced by the activity of the large sulfur bacteria Thiomargaritanamibiensis which oxidize sulfide (H2S) to sulfate () using sea water nitrate () as the terminal electron acceptor. Microbial sulfide oxidation (SOx) is highly efficient, and the model predicts intense cycling between and H2S driven by coupled SR and SOx at rates exceeding 6.0 mol S m−2 y−1. More than 96% of the SR is supported by SOx, and only 2-3% of the pool diffuses directly into the sediment from the sea water. A fraction of the produced by Thiomargarita is drawn down deeper into the sediment where it is used to oxidize methane anaerobically, thus preventing high methane concentrations close to the sediment surface. Only a small fraction of total H2S production is trapped as sedimentary sulfide, mainly pyrite (FeS2) and organic sulfur (Sorg) (∼0.3 wt.%), with a sulfur burial efficiency which is amongst the lowest values reported for marine sediments (<1%). Yet, despite intense SR, FeS2 and Sorg show an isotope composition of ∼5 ‰ at 500 cm depth. These heavy values were simulated by assuming that a fraction of the solid phase sulfur exchanges isotopes with the dissolved sulfide pool. An enrichment in H2S of 34S towards the sediment-water interface suggests that Thiomargarita preferentially remove H232S from the pore water. A fractionation of 20-30‰ was estimated for SOx (εSOx) with the model, along with a maximum fractionation for SR (εSR-max) of 100‰. These values are far higher than previous laboratory-based estimates for these processes. Mass balance calculations indicate negligible disproportionation of autochthonous elemental sulfur; an explanation routinely cited in the literature to account for the large fractionations in SR. Instead, the model indicates that repeated multi-stepped sulfide oxidation and intracellular disproportionation by Thiomargarita could, in principle, allow the measured isotope data to be simulated using much lower fractionations for εSOx (5‰) and εSR (78‰).  相似文献   

5.
The vertical distribution of iodine, bromine and organic carbon has been examined in sediment cores from a range of environments on the Namibian shelf. The relationship between Br and C org. is linear, and that between I and C org. is variable, for all surface sediments; I/C org. ratios show a decrease of about one order of magnitude between the outer shelf oxidising sediments (250 × 10?4) and the organic-rich inner shelf sediments (20 × 10?4). The contrasting behaviour of the halogens in surface sediments is explained by differences in the amount of halogen absorbed by living organisms within the euphotic zone and on seston on the seabed. It is suggested that sorption by seston occurs only in oxidising sediment where free O2 is available. Hence, iodine is sorbed by seston in the outer shelf environment, but is not sorbed by the reducing sediments of the inner shelf. Here the iodine in the sediment represents only that taken up by plankton. On the outer shelf, 50–80% of the total iodine in the organic matter is sorbed by seston. The principal site of Br uptake is not known.The distribution of C org. in subsurface sediments broadly reflects that found at the surface, although there is a slight decrease with depth in the outer shelf cores due to dilution by terrigenous materials. In the inner shelf cores, there is no change in the relationship of iodine and bromine to organic carbon at depth. Those from the mid shelf, and especially the outer shelf, on the other hand, show decreases in both I/C org. and Br/C org. ratios, reaching values at about 70 cm depth that are similar to those in surface reduced sediments from the inner shelf. Over this depth interval I/C org. ratios decrease by a factor of five while Br/C org. ratios show a two fold decrease. These changes in the ratios at depth imply that diagenesis within the reducing cores is negligible compared with that of oxidised sediments. The implications of diagenesis with regard to halogen recycling in sediments are briefly discussed.  相似文献   

6.
The distribution of uranium was studied in supergene phosphorites from the zones of the weathering of sedimentary and endogenous rocks, as well as in nonmarine coprolitic phosphorites and, to a lesser extent, phosphorites from ocean islands. These phosphorites show a diversity of the composition of their carbonate-apatite and structural characteristics. The uranium content ranges mostly from 5 to 100 ppm, with minimum and maximum values of 0.5 and 790 ppm. There is no correlation between the uranium content of a phosphorite and the type of rock with which it is connected. Lacustrine coprolitic phosphorites show elevated uranium contents (about 200 ppm). The maximum uranium content was detected in finely laminated phosphorite encrustations. The correlation analysis of the whole data set (63 samples) showed that uranium content is not correlated with any other component of phosphorites at a confidence level of 0.95. In contrast, there is a correlation between U and P2O5, CaO, and F for the combined set of samples from southern Siberian deposits. The significant correlation of U with Na2O and CO2 is variable both for southern Siberia on the whole and for particular deposits from this region.  相似文献   

7.
8.
Trace elements in supergene phosphorites   总被引:1,自引:0,他引:1  
Supergene phosphorites were analyzed for Sr, Ba, Zn, Cd, Sc, Cr, Ag, and V, i.e., elements incorporated in carbonate-apatite by isomorphic substitution. The phosphorites were subdivided into four groups: (1) phosphorites related to the weathering of sedimentary rocks, (2) phosphorites related to the weathering of endogenous rocks, (3) lacustrine coprolite phosphorites, and (4) phosphorites of ocean islands. In all the phosphorites groups, Sr, Zn, and Ba were the most abundant of the trace elements, whereas Cd, Ag, and Sc showed the lowest concentrations. Variations in trace element contents between supergene phosphorites of different genetic groups or within a single group can be explained by the different compositions of weathered rocks and geochemical environments of supergene phosphorite formation. At the same time, the contents of some trace elements are correlated with the structural type of phosphorite. In particular, phosphorite crusts or only their outer parts show elevated contents of chalcophile elements (Cd, Zn, and Ag), whereas massive phosphorites and inner parts of crusts are often enriched in such lithophile elements as Sc, V, and Cr. It was found that Cd, Zn, Ag, Sr, and Ba are positively correlated with CO2 but show negligible correlations with other constituents of carbonate-apatite.  相似文献   

9.
10.
An analysis of rare earth elements in various types of supergene phosphorites established the following sequence of increasing average total contents (ppm): phosphorite from Christmas Island in the Indian Ocean, 3.89; spelean coprolitic phosphorite, 21.98; phosphorite from the weathering zone of sedimentary rocks, 27.41; phosphorite from the weathering zone of endogenous rocks, 372.32; and lacustrine coprolitic phosphorite, 461.59. Supergene phosphorites, especially the most common among them from the weathering zone of sedimentary rocks, are significantly depleted relative to marine phosphorites both in average and maximum REE contents. The REE contents of supergene phosphorites are controlled by several factors, including the REE contents in the primary rocks affected by weathering, the physicochemical conditions of phosphorite formation, the presence of a biogenic component in the phosphatogenetic system, and the structural type of the phosphorites. There is a strong positive correlation within the group of light and, in part, middle REEs (La, Ce, Nd, Sm, and Eu) and between the heavy REEs Yb and Lu, whereas the correlation between these two groups is weaker or insignificant. Gd and Tb are well correlated with the elements of both groups.  相似文献   

11.
Egyptian phosphorites from Abu Tartur(Western Desert),El Mahamide mine(Nile Valley) and Rabah mne(Eastern Desert)show variable degrees of relative REE enrichment.Black plateau phosphorites of Abu Tartur are substantially enriched in REE as compared to the Red Sea and Nile Valley phosphorites.P-rich organic matter from the Abu Tartur and Rabah mines recorded negative Ce and positive Eu anomalies.Positive Eu anomaly reveals an anoxic event prior to the phase of Late Cretaceous phosphate formation.Ce is a redox indicator.Mixing of sea water and upwelling during the Late Cretaceous was responsible for the recording of positive Eu and negative Ce anomalies in the Egyptian phosphorites.  相似文献   

12.
13.
14.
15.
Oxygen and carbon isotopes in Jordanian phosphorites and associated fossils   总被引:1,自引:0,他引:1  
Stable isotopes have proven to be efficient tools for paleoenvironmental analysis and interpretation of paleotemperature. Oxygen and carbon isotopes were analyzed in carbonate flourapatite (francolite), oyster shells, tests of foraminifera and ostracods from the Phosphorite Unit throughout Jordan.Isotopic analysis showed δ18O to be enriched in authigenic francolite in Upper Cretaceous in NW Jordan, indicating lower temperatures, a deeper depositional environment and lower salinity than Central Jordan. In Central Jordan, the local basin of Hafira shows enrichment of δ18O indicating a deeper depositional environment than shallower highs in Mutarammil and Wadi El-Hasa. The δ13C shows that the depositional environment was oxic to suboxic and may have reached the suboxic to anoxic interface in the deeper environment in NW Jordan.δ18O values in tests of foraminifera and ostracods are similar to δ18O values of authigenic phosphate, which is enriched in NW Jordan, indicating lower temperature, lower salinity and a deeper environment than Central Jordan. In Central Jordan, δ13C shows more depletion in the Sultani section due to land derived organic carbon (food web supply) carried by terrestrial water draining to the sea.The δ18O in oyster shells show an upward enrichment in the Wadi El-Hasa section, which indicate an increase of intense upwelling, enrichment of nutrients, development of productivity and growth of oyster buildups. Meanwhile, Hafira shows enrichment of δ18O and lower temperature, in agreement with foraminifera and ostracods. The two samples of oysters from SE Jordan, although affected by diagenesis, show heavier oxygen to the north, indicating a deeper water environment and lower salinity in the same basin.  相似文献   

16.
17.
The content, distribution patterns, and occurrence forms of Cl in phosphorites and bone phosphate from the ocean bottom, as well as in a set of samples from the land, are studied. The total Cl content ranges from 0.05 to 4.25% in phosphorites and from 2.48 to 2.75% in recent phosphate-bearing sediments. Recent phosphorites are enriched in Cl relative to ancient ones. The bound Cl content (not extractable by washing), which increases with lithification, ranges from 0.17 to 0.60% in oceanic and land phosphorites and from 0.02% to 1.30% in the bone phosphate. The Na content in most samples is higher relative to NaCl due to its incorporation into the crystal lattice of apatite. However, the opposite relationship is observed in some samples, indicating a partial Cl incorporation into the anion complex of phosphate. The behavior of Cl in phosphorites from the present-day ocean bottom is controlled by early diagenetic processes, whereas the role of weathering, catagenesis, and hydrogeological factors may be crucial for phosphorites on continents.Translated from Litologiya i Poleznye Iskopaemye, No. 1, 2005, pp. 65–77.Original Russian Text Copyright © 2005 by Baturin.  相似文献   

18.
The investigation of phosphorites from Africain Island situated in the Indian Ocean revealed that they contain iron sulfides in the form of framboids consisting of separate crystallites, as well as fine-dispersed colloidal particles of micrometer and submicrometer size. Crystallites consist of pyrite, whereas colloidal matter consists of troilite, which is initially formed as hydrogel inside voids. During the subsequent interaction of gelatinous troilite with sulfur, pyrite crystals are formed. The growth of crystals inside a 10987ted microvoid space in the rock leads to their dense hexagonal and tetragonal packing.  相似文献   

19.
The triglyceride fraction, isolated from extractable lipids of a diatomaceous ooze off shore Walvis Bay (S.W. Africa) by TLC methods, was analyzed by direct probe low and high resolution mass spectrometry. The mass spectral data reveal the fatty acid moieties and their relative distribution in the triglycerides identified. The C12, C14, C15 and C16 are the major composing fatty acid moieties. The triglycerides are thought to be present in protective structures such as diatom spores, which were found to be present by scanning electron microscopy.  相似文献   

20.
Fabrics of phosphatized calcium carbonate particles in various phosphorites have been studied using scanning electron microscopy coupled with X-ray dispersive microanalysis. Replacement of calcium carbonate by apatite has been observed in bivalve shell fragments and in foraminiferal tests; replacement proceeds at constant volume with excellent preservation of the original microtextures. In some deposits, replacement of carbonate by apatite is the main phosphogenic process. However, in general, the process seems to be far less important than might be believed purely on the basis of thin section observations. In many phosphorites, internal or external apatite moulds of bioclasts are common, including very small particles such as coccoliths in phosphatized chalks. Apatite precipitation was typically followed by carbonate dissolution. Later apatite precipitation within the dissolution voids may produce partial or total phosphate pseudomorphs of the original carbonate grain. In these examples direct replacement of carbonate by phosphate cannot be demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号