首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fine cohesive, suspended sediments appear in all estuarine environments in a predominately flocculated state. The transport and deposition of these flocs is influenced by their in-situ and primary particle size distribution. Especially the size of the inorganic particles influences the density and hence the settling velocity of the flocculated material. To describe both the changes in primary particle size of suspended particulate matter as well as the variability of floc sizes over time and space, the data of In-Situ Particle-Size Distributions (ISPSDs), Primary Particle Size Distributions (PPSDs) and Suspended Sediment Concentrations (SSCs) were collected. For this, Laser In-Situ Scattering and Transmissiometry (LISST) measurements as well as the water samples were collected in the German Elbe and Weser estuaries, covering seasonal variability of the SSC.The data of the ISPSDs show that the inorganic and organic Suspended Particulate Matter (SPM), as found in the Elbe and Weser estuaries, mostly appears in a flocculated state. The substrate for organic matter is mainly imported from the seaside and transported into the estuaries as indicated by an upstream decrease of the amount of fine particles. In winter, when the freshwater discharge is high, different PPSDs are found in the case of the Elbe estuary in the Turbidity Maximum Zone (TMZ) as well as in the landward and in the seaward sections close to the TMZ. In summer, the distance between the seaward and the landward section is too low to obtain an individual PPSD within the Elbe TMZ.A missing correlation between the PPSD and ISPSD shows that the inorganic constituents do not have an influence on the in-situ floc size. Although flocs aggregate and disaggregate over a tidal cycle and with changing SSC, they do not change their PPSD. The microflocs are therefore strong enough to withstand further breakage into their inorganic constituents.  相似文献   

2.
In the Bach Dang–Cam Estuary, northern Vietnam, mechanisms governing cohesive sediment aggregation were investigated in situ in 2008–2009. As part of the Red River delta, this estuary exhibits a marked contrast in hydrological conditions between the monsoon and dry seasons. The impact on flocculation processes was assessed by means of surveys of water discharge, suspended particulate matter concentration and floc size distributions (FSDs) conducted during a tidal cycle at three selected sites along the estuary. A method was developed for calculating the relative volume concentration for the modes of various size classes from FSDs provided by the LISST 100X (Sequoia Scientific Inc.). It was found that all FSDs comprised four modes identified as particles/flocculi, fine and coarse microflocs, and macroflocs. Under the influence of the instantaneous turbulent kinetic energy, their proportions varied but without significant modification of their median diameters. In particular, when the turbulence level corresponded to a Kolmogorov microscale of less than ∼235 μm, a major breakup of flocs resulted in the formation of particles/flocculi and fine microflocs. Fluctuations in turbulence level were governed by seasonal variations in freshwater discharge and by the tidal cycle. During the wet season, strong freshwater input induced a high turbulent energy level that tended to generate sediment transfer from the coarser size classes (macroflocs, coarse microflocs) to finer ones (particles/flocculi and fine microflocs), and to promote a transport of sediment seawards. During the dry season, the influence of tides predominated. The turbulent energy level was then only episodically sufficiently high to generate transfer of sediment between floc size classes. At low turbulent energy, modifications in the proportions of floc size classes were due to differential settling. Tidal pumping produced a net upstream transport of sediment. Associated with the settling of sediment trapped in a near-bed layer at low turbulent energy, this causes the silting up of the waterways leading to the harbour of Haiphong.  相似文献   

3.
The flocculation of cohesive sediment in the presence of waves is investigated using high-resolution field observations and a newly-developed flocculation model based on artificial neural networks. Vertical profiles of suspended sediment concentration and turbulent intensity are estimated using measurements of current profile and acoustic backscatter. The vertical distribution of floc size is estimated using an artificial neural network (ANN) that is trained and validated using floc size measurements at one vertical level. Data analysis suggests a linear correlation between suspended sediment concentration and turbulence intensity. Observations and numerical simulations show that floc size is inversely related to sediment concentration, turbulence intensity and water temperature. The numerical results indicate that floc growth is supported by low concentration and low turbulence. In the vertical direction, mean size of flocs decreases toward the bottom, suggesting floc breakage due to increasing turbulence intensity toward the bed. A significant decrease in turbulent shear could occur within the bottom few-cm, related to increased damping of turbulence by sediment induced density stratification. The results of the numerical simulations presented here are consistent with the concept of a cohesive sediment particle undergoing aggregation-fragmentation processes, and suggest that the ANN can be a precise tool to study flocculation processes.  相似文献   

4.
Interactions between turbulence, suspended sediment concentration (SSC), settling velocity, effective density, fractal dimension, and floc size were studied on the tide-dominated, muddy coastal shelf of the southwestern Yellow Sea, China. The measurements were carried out in July 2013 at two sites located in water depths of 21.2 and 22.1 m. Negative correlations were observed between shear rate, SSC, effective density, and mean floc size, which supports the results of previous numerical, experimental, and field studies. A significant positive correlation was observed between near-bed SSC and shear rate, an indication that SSC variations are controlled by turbulence and re-suspension. In addition, significant linear relationships were found between settling velocity and other parameters (floc size, turbulence, SSC, effective density, and fractal dimension) at the two sites, indicating that the controlling factors on settling velocity are spatially variable. Principal component analysis was applied to determine the relative importance of turbulence, flocculation ability, and SSC as controls on floc size in situ. The relative contributions of turbulence, flocculation ability, and SSC to floc size (at both sites) were ~33.0%, 30.3%, and 29.7%, respectively, this being a new field-based quantitative analysis of the controls on floc size. The findings demonstrate that, in nature, flocculation ability affects floc size to the same degree as turbulence and SSC. Therefore, predictions of floc size in coastal marine environments require constraints not only on turbulence and SSC, but also on flocculation ability.  相似文献   

5.
Measurements are presented of median floc diameters and associated environmental data over spring-tide tidal cycles at two stations in the muddy Tamar Estuary, UK, for winter, spring and summer conditions. The particulate organic carbon and particulate total carbon contents of mudflats and SPM (suspended particulate matter) at the stations, together with other evidence, indicates that much of the SPM was derived from mud sources that were located between the two stations during winter and spring, and from very mobile sediment sources in the upper estuary during summer. Observed in-situ median floc sizes varied widely, from <50 to >500 μm and rapid settling of particles close to HW and LW (high and low water) left only the smaller flocs in suspension. Time-series of depth-averaged median floc sizes generally were most closely, positively, correlated with depth-averaged SPM concentrations. Floc diameters tended to reach maximum median sizes near the time when SPM concentrations were highest. These high concentrations were in turn largely generated by resuspension of sediment during the fastest current speeds. Although such correlations may have arisen because of SPM-driven floc growth - despite fast tidal currents - there is also the possibility that tough aggregates were eroded from the intertidal mudflats and mudbanks. Although a hypothesis, such large aggregates of fine sediment may have resulted from the binding together of very fine bed particles by sticky extracellular polymeric substances (EPS) coatings, produced by benthic diatoms and by other biologically-mediated activity. A rapid reduction of SPM occurred at the up-estuary station within 2.5 h of HW on the flood, when decelerating currents were still relatively fast. It appears that at least two processes were at work: localised settling of the largest flocs and up-estuary transport in which large flocs were transported further into the estuary before settling into the Tamar's ETM (estuarine turbidity maximum) over the HW-slack period. Up-estuary advection of large flocs and their eventual settling would place the down-estuary edge of the ETM above the upper-estuary station during summer, spring-tide conditions. This position of the ETM was observed close to HW during longitudinal surveys of the estuary.  相似文献   

6.
本文基于现场观测的絮团粒径、悬沙浓度及水动力数据,研究了黄河口南部潮滩泥沙絮凝特征。研究发现,黄河口潮滩絮团粒径在25.42~264.44 μm之间,平均为95.20 μm。水体紊动对黄河口潮滩絮凝的影响存在差异,紊动对絮凝促进作用的上限约为Gl=3.76 s−1。紊动强度低于Gl时,紊动促进泥沙絮凝,絮团粒径随紊动加强而增大;反之水体紊动对絮凝主要起抑制作用,絮团粒径随紊动强度增大而减小。悬沙浓度对黄河口潮滩泥沙絮凝起抑制作用,同等紊动条件下高悬沙浓度对应的絮团粒径更小。黄河口潮滩絮团有效密度与粒径呈现负相关关系,沉速主要受粒径影响。本研究补充了对弱潮河口潮滩泥沙絮凝特性的认识。  相似文献   

7.
8.
《Journal of Sea Research》1999,41(1-2):87-95
In situ instruments, particularly the instrument INSSEV (in situ settling velocity) have given new information on the sizes, settling velocities and effective densities of individual flocs within the spectrum of distribution. The low-density macroflocs (diameter >∼150 μm) contain a mixture of organic and inorganic constituents that become separated when the flocs are disrupted to form microflocs. Representation of the floc characteristics in terms of fractals reveals a range of fractal dimensions representing the distributions varying between 1 and 3, instead of the ideal value of 2. Measurements in estuarine turbidity maxima and on intertidal mudflats show that the fractal dimension is less than 2 in situations where turbulent shearing causes disruption of the flocs. At the same time increasing suspended sediment concentration tends to increase the fractal dimension. Measurements of size using an in situ Malvern sizer show that the floc size distribution is also affected by both turbulent energy dissipation and by concentration. Complementary laboratory studies suggest that, at a constant concentration, flocculation is enhanced by low shear, but that disruption occurs at higher shear. These experiments confirm the relationship between fractal dimension, shear stress and concentration.  相似文献   

9.
Measurement of the influence of salinity on floc density and strength   总被引:3,自引:0,他引:3  
The effective density and the strength of flocs formed in the laboratory from mud from the Tamar Estuary reached a maximum value at a salinity of 10–15‰ within the concentration range studied (0.1–1.0 g liter−1). For a constant salinity and concentration, the density decreases with increasing floc size. The strength of the flocs increases with the floc diameter. However, the strength of the individual particle bonds within the floc decreases with size. Large flocs were relatively more brittle than smaller ones. The results suggest that larger flocs may be disrupted by the formation of unequal fragments.  相似文献   

10.
Results are presented from a series of settling column experiments investigating temporal variations in the flocculation characteristics of purely cohesive (kaolin clay) sediment suspensions and cohesive (kaolin) and non-cohesive (fine sand) sediment fraction mixtures. Experimental runs were conducted under controlled hydrodynamic conditions generated by a rigid array of in-phase oscillating grids. The results indicated that rapid initial floc aggregation occurred under low turbulent shear rates, with peak maximal and root-mean-square (r.m.s.) floc sizes (∼ 400 μm and ∼ 200 μm, respectively) attained after relatively short time periods, before reducing with time. By contrast, lower aggregation rates and smaller floc sizes were observed under higher shear conditions, with flocs retaining suspended in the settling column for longer time scales due to the increased turbulence. The mud input concentration displayed some correlation with maximal and r.m.s. floc sizes at higher shear rates but no correlation was apparent at low shear rates. This observed floc behaviour may be attributed to the differences in concentration gradients at high and low shear rates that affect both floc settling rate and time required for flocs to attain equilibrium size. The addition of the fine sand fraction to the kaolin clay suspension reduced both the initial floc formation (i.e. aggregation) rate and the maximal and r.m.s. floc sizes attained throughout the experiments. The reduction in maximal floc sizes appeared to be enhanced by an increase in the ratio of fine sand to kaolin clay content within the mixture.  相似文献   

11.
《Journal of Sea Research》1999,41(1-2):109-118
Settling velocities of suspended fine-grained sediment in estuaries vary over a range of several orders in magnitude. Variations in the suspended sediment concentration are often put forward as the principal cause. However, comparison of settling velocities from a number of estuaries shows that even in the case of the same suspended sediment concentration, large variations in the settling velocities can occur of up to two orders in magnitude. From measurements in the Ems estuary we found that even within a single estuary such large variations can occur. Field measurements and complementary laboratory experiments demonstrate that `other factors' can affect the settling velocity in the same order as the assumed effects of the suspended sediment concentration. To address these `other factors', which include physical–chemical and biological effects, the concept of `flocculation ability' is introduced, as a measure of the effectiveness of the collisions between suspended particles for floc growth. On the basis of the results from the Ems estuary, it is hypothesised that variations in the flocculation ability of the suspended fine-grained sediments are at the root of the large differences in settling properties of suspended fine-grained sediment in estuaries.  相似文献   

12.
The transport of metals from rivers through the estuaries to the oceans is, to a large extent, carried out by small particles. These small particles coagulate when they are exposed to small amounts of salt water. The coagulation process segregates the particles and their associated metals in different size flocs. To understand further the process that was found to occur in the Chesapeake Bay, laboratory simulation experiments have been conducted on these natural materials in which the turbulence and salinity was controlled. The metals studied were Cd, Cr, Cu, Fe, Pb, Ni, Mn and Zn. In these laboratory simulation experiments, the concentration of the various metals was different in the various size flocs. This experiment demonstrated that segregation of the metals does occur due to the coagulation of natural sediments by seawater.  相似文献   

13.
Outflows from estuaries potentially contribute to the productivity of adjacent coastal waters, although most previous work has been on estuaries with considerable river discharge. We investigated the influence of estuary outflow on aspects of coastal sediments adjacent to two seasonally intermittent estuaries, the Curdies and Anglesea Rivers, in southwest Victoria, Australia. For each estuary, we measured sediment organic matter, microphytobenthic chlorophyll a and microbial utilization of carbon sources at three locations associated with each estuary: (1) inside estuary mouth, (2) estuary swash and (3) control swash (an open beach distant from any estuarine influences). Sampling occurred one week before and at one and nine weeks after both an artificial mouth opening and a separate natural flood at both estuaries. Significant temporal changes were detected for all three variables at the estuary mouth and estuary swash but the direction of change was inconsistent across the two estuaries and between the artificial mouth opening and natural flood. Organic matter in both estuaries showed no difference after the artificial mouth openings. Only Anglesea showed an increase in organic matter in the estuary mouth and estuary swash after the floods. Microphytobenthic chlorophyll a concentrations were highest when the estuary mouths were closed. Concentrations decreased at all locations at Curdies after the mouth was artificially opened. The estuary mouth at Anglesea sustained high chlorophyll concentrations and the estuary swash increased one week post artificial opening. The flood event resulted in an increase in chlorophyll a at the estuary mouth and swash at both estuaries, one week post flood. At Curdies, the microbial utilization of different carbon sources changed after both mouth events; estuary mouth and estuary swash showed similar patterns at one and nine weeks post opening. At Anglesea, the bacteria utilized different carbon sources between locations and the only significant interaction between location and time was post flood with change in carbon sources utilized by bacteria in the estuary mouth and estuary swash for one and nine weeks post flood. The southern coastline of Australia is characterized by estuaries with small catchments. This study highlights the spatial and temporal variability in the effects of the output of relatively small, intermittent estuaries on coastal sediment of adjacent beaches, particularly during prolonged periods of drought.  相似文献   

14.
三峡截流后长江口秋季TSM、POC和PN的分布特征   总被引:2,自引:0,他引:2  
基于2004年11—12月长江口56个站位的悬浮体调查资料,分析了长江口区悬浮体总量(TSM)、颗粒有机碳(POC)和颗粒氮(PN)质量浓度的平面分布特征,探讨该区TSM及颗粒有机质的物质来源和三峡截流对长江三角洲的影响。结果表明,表、底层TSM与POC、PN质量浓度之间存在显著的正线性相关关系并都呈现出南高北低的格局,说明了长江悬浮颗粒物入海后主要沿东南方向输运。POC、PN质量分数与POC、PN的质量浓度不同,它们与TSM质量浓度对数有负相关关系。由于河口区底质再悬浮作用显著,TSM和POC、PN质量浓度呈现表层低、底层高的特点。长江口悬浮体主要来自长江径流和底质沉积物的再悬浮。与三峡截流前数据的对比表明,截流对目前长江口区的TSM和POC尚未造成明显的影响。  相似文献   

15.
小尺度湍流过程对河口物质输运与能量交换至关重要。受传统观测方法的限制, 河口浅水区域的剖面观测资料至今较为匮乏, 进而限制了湍流过程的研究。为此, 采用新型5波束声学多普勒流速剖面仪(Nortek Signature 1 000 kHz AD2CP)在长江口开展湍流剖面观测, 获取高频、低噪的高质量湍流剖面数据, 并与声学多普勒点式流速仪(acoustic doppler velocimeters, ADV)同步观测的数据进行对比。结果表明, 通过AD2CP与ADV获得的近底部边界层摩阻流速u*、拖曳系数Cd、雷诺应力SR等特征参数基本一致, 底摩擦与波浪能量为河口区域湍动能的主要输入源。湍流垂向结构存在显著的非局地平衡, 即温盐等斜压作用引起的浮力通量、对流项以及强波浪作用影响的脉动压力做功、黏性输运等因素可能为长江口湍流非局地平衡的主因。  相似文献   

16.
Stable carbon and nitrogen isotopes (δ13C, δ1?N) were used to analyse food web dynamics of two of the main estuaries of the Portuguese coast: Tejo and Mira. The ultimate sources of organic matter supporting production of some of the most abundant and commercially important fish species were determined; and seasonal, inter- and intra- estuarine differences in the trophic relations among producers and consumers were identified. Stable isotope analysis was performed in different producers, primary consumers (main prey items for fish) and fish species (Solea solea, Solea senegalensis, Pomatoschistus microps, Dicentrarchus labrax, Liza ramada, Diplodus vulgaris and Atherina presbyter) of two areas in each estuary, in July and October 2009. Model calculations showed that the main prey for the fish species in the Tejo estuary used mostly salt marsh-derived organic matter as nutritional sources, with no marked differences between the sampled months. Trophic levels of fish species from the same estuary differed at multiple scales: inter-species, seasonally and spatially (both between and within estuaries). Significant differences in isotopic composition of fish species were more pronounced spatially (between the two sampled areas in the estuary) than seasonally (between sampled months). Trophic relationships in both estuaries demonstrated that organic matter is transferred to higher trophic positions mainly through benthic pathways. This shows the flexibility of these species to share resources and to exploit temporary peaks in prey populations. The present results showed that extensive disturbance in intertidal habitats from both estuaries may potentially change the balance of organic matter in the base of these complex food webs.  相似文献   

17.
The fate of fine particulate material in aquatic environments is closely linked to aggregation and disaggregation processes. Understanding the mechanisms controlling these processes is fundamental to the development of predictive models of fate and effects for particulate discharges in the coastal zone from such sources as offshore hydrocarbon exploration and development. One of the variables required for the development of these models is maximal floc size. Using a non-invasive imaging technique, the significance of turbulence, composition, and concentration on maximal floc size in an inverting column flocculator was determined for materials commonly discharged during offshore hydrocarbon development. The settling velocity of the suspension was determined from volume concentrations of samples obtained by pipette during still water settling in a manner similar to that of Owen tubes. After 20 h, both maximal floc size and settling velocity showed a highly significant dependence on turbulence and type of material in suspension, but showed no effect from concentration.  相似文献   

18.
河口沉积物作为承接陆海过程的重要载体, 是有机质赋存的主要形式之一。本文研究了珠江口沉积物总有机碳、总氮含量和沉积物可溶性有机物三维荧光特征, 以及其在口内区、混合区和口外区空间差异和影响因素, 并结合碳稳定同位素(δ13C)估算了珠江口各区域沉积物中不同来源有机质的贡献。结果显示: (1)沉积物总有机碳和总氮含量空间变化相似, 口内区和混合区域沉积有机质含量显著高于口外区; 主成分分析发现, 口内区沉积有机质含量主要受径流输入的影响, 口外区主要受Fe3+的影响; (2)MixSIAR稳定同位素混合模型结果显示, 口内区和混合区沉积有机质以陆源为主, 口外区则以海源为主; (3)珠江口沉积物新生有机质较多, 可快速被利用, 总体上不利于有机碳存储; 而陆源输入导致口内区和混合区沉积有机质腐殖化程度较高, 有机碳可存储性相对较高, 口外受海源有机质和铁氧化物—有机质复合体的影响, 有机碳可存储性相对较低。本研究可为深入认知河口区沉积有机质的生物地球化学过程及有机碳存储提供参考。  相似文献   

19.
Between 2003 and 2007, a series of field studies were performed in a typical small coastal plain type estuary (Eprapah Creek) located on the Southeast coast of Australia. The aim of these field studies was to investigate the turbulence and turbulent mixing properties in the estuarine zone. During these studies, high frequency turbulence and physio-chemistry data were collected continuously over a relatively long duration (up to 50 h). This article provides a summary of the key outcomes of these studies, highlighting the implications that these findings have on the modelling of small estuaries. The studies showed that the response of the turbulence and water quality properties were distinct under spring and neap tidal forcing and behaved differently in the middle and upper estuarine zones. The behaviour of turbulence properties to spring tidal forcing differed from that observed in larger estuaries and seemed unique to small estuarine systems. An investigation of several key turbulence parameters used in the modelling of estuarine mixing showed that many assumptions used in larger estuaries must be applied with caution or are simply untrue in small estuaries. For example the assumption that the mixing coefficient parameters are constant over the tidal cycle in a small estuary is simply untrue. These distinctions between the turbulence and mixing properties in small and large estuarine systems highlight the need for the continued study of small estuaries, so this type of system can be properly understood.  相似文献   

20.
In coastal environments, fine-grain sediments often aggregate into large and porous flocs. ElectroMagnetic Current Meters (EMCM) and Laser In Situ Scattering and Transmissometry (LISST-ST) have been deployed within a Spartina alterniflora marsh of the Luoyuan Bay in Fujian Province, China, to measure the current velocity, the floc size and the settling velocity between 15 and 22 January 2008. During the observations, the near-bed water was collected in order to obtain the suspended sediment concentration (SSC) and constituent grain size. Data show that: (1) the nearbed current velocities vary from 0.1 to 5.6 cm/s in the central Spartina alterniflora marsh and 0.1–12.5 cm/s at the edge; (2) the SSCs vary from 47 to 188 mg/dm 3 . The mean grain size of constituent grains varies from 7.0 to 9.6 μm, and the mean floc sizes (MFS) vary from 30.4 to 69.4 μm. The relationship between the mean floc size and settling velocity can be described as: w s =ad b , in which w s is the floc settling velocity (mm/s), a and b are coefficients. The floc settling velocity varies from 0.17 to 0.32 mm/s, with a mean value of 0.26 mm/s, and the floc settling velocity during the flood tide is higher than that during the ebb tide. The current velocity and the SSC are the main factors controlling the flocculation processes and the floc settling velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号