首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper derives the contributionF 2 * by the great inequality to the secular disturbing function of the principal planets. Andoyer's expansion of the planetary disturbing function and von Zeipel's method of eliminating the periodic terms is employed; thereby, the corrected secular disturbing function for the planetary system is derived. An earlier solution suggested by Hill is based on Leverrier's equations for the variation of elements of Jupiter and Saturn and on the semi-empirical adjustment of the coefficients in the secular disturbing function. Nowadays there are several modern methods of eliminating periodic terms from the Hamiltonian and deriving a purely secular disturbing function. Von Zeipel's method is especially suitable. The conclusion is drawn that the canonicity of the equations for the secular variation of the heliocentric elements can be preserved if there be retained, in the secular disturbing function, terms only of the second and fourth order relative to the eccentricity and inclinations.The Krylov-Bogolubov method is suggested for eliminating periodic terms, if it is desired to include the secular perturbations of the fifth and higher order in the heliocentric elements. The additional part of the secular disturbing functionF 2 * derived in this paper can be included in existing theories of the secular effects of principal planets. A better approach would be to preserve the homogeneity of the theory and rederive all the secular perturbations of principal planets using Andoyer's symbolism, including the part produced by the great inequality.  相似文献   

2.
The aim of this investigation is to present the periodic and secular perturbations of the orbital elements of close binary systems due to tidal lag in latitude. The variational equations of the problem of plane motion will be set up in terms of the rectengular componentsR, S, andW of the disturbing accelerations. These equations are highly nonlinear with respect to the orbital elements and we present analytic approximations to the effects produced by the perturbing acceleration due to dynamical tides lagging in latitude. The perturbed elements of the orbit have been expressed by means of Hansen coefficients in the compact form of summations.  相似文献   

3.
In two previous papers (Zafiropoulos and Kopal, 1983a, b; hereafter referred to as Papers I and II) we have investigated the effects of rotational and tidal distortion (for non-lagging tides) on the orbital elements of a close binary system. The present paper deals with secular and periodic perturbations caused by dynamical tides. The componentsR, S, andW of disturbing accelerations for tidal lag have been substituted in the Gaussian form of Lagrange's planetary equations to give the first-order approximation. The results obtained have been expressed by means of Hansen coefficients and include the effects produced by the second, third and fourth harmonic dynamical tides.  相似文献   

4.
Yoshihide Kozai 《Icarus》1980,41(1):89-95
As the classical linear theory of secular perturbations for asteroids is known not to be adequate for computing the perturbations of asteroids with high eccentricities and/or inclinations, a seminumerical method to calculate the secular perturbations by including higher-degree terms in the disturbing function has been developed. It is here applied to asteroids with small values of (1 ? e2)12cos i, since the secular variations as well as their deviations from the results derived by the classical linear theory are generally large for such asteroids. It is found that the arguments of perihelion for five of the numbered asteroids are librating around 90 or 270°. For asteroids with (1 ? e2)12cos i less than 0.85 the results of the secular variations are tabulated. Also the stability of such orbits is discussed by comparing the orbital properties of short-periodic comets with them. Generally speaking, orbits of the asteroids are more stable than those of the short-periodic comets, and asteroids with librating arguments of perihelion are more stable than those with circular coplanar orbits although their orbital elements are changed more by secular perturbations.  相似文献   

5.
A new system of recurrence relations for Hansen coefficients is obtained. This system gives a connection between only those coefficients which are included in the disturbing function of planetary or satellite motion and allows to compute efficiently the Hansen coefficients for perturbations both from internal and external bodies. The recurrence process can be realized both from high to low and from low to high harmonical terms of the disturbing function. The corresponding algorithms of evaluation of Hansen coefficients are presented. The efficiency of the obtained system of recurrence relations is discussed.  相似文献   

6.
An analytical expansion of the disturbing function arising from direct planetary perturbations on the motion of satellites is derived. As a Fourier series, it allows the investigation of the secular effects of these direct perturbations, as well as of every argument present in the perturbation. In particular, we construct an analytical model describing the evection resonance between the longitude of pericenter of the satellite orbit and the longitude of a planet, and study briefly its dynamic. The expansion developed in this paper is valid in the case of planar and circular planetary orbits, but not limited in eccentricity or inclination of the satellite orbit.  相似文献   

7.
A new analytical method for calculating satellite orbital perturbations due to different disturbing forces is developed. It is based on the Poincaré method of small parameter but takes advantages of modern high-performance computers and of the tools of computer algebra. All perturbations proportional up to and including the 5th-order of small parameters are obtained. The method can precisely calculate the effects of all geodynamical forces on satellite motion given by the most up-to-date IAU and IERS models, such as non-central Earth gravity potential, precession and nutation of the geoequator, polar motion and irregularities in the Earth's rotation, effect of ocean and solid Earth tides, pole tide, and secular variations of gravity coefficients.Numerical tests prove the method's accuracy to be equivalent to 1–2 cm when calculating positions of high altitude geodetic satellites (like ETALON), and/or of GLONASS navigational spacecraft. The accuracy is stable over 1 year at least and comparable to that of the best tracking measurements of satellites.Positions of low altitude geodynamical satellites (like STARLETTE) by the analytical method are calculated to an accuracy of about 70cm over a month's interval. The method is developed for future use in GLONASS/GPS on-board ephemeris computation where it can improve the current scheme of their flight control.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

8.
Formulae are derived for the transformation of the secular perturbations of the elements giving the position of the orbit of a planet, produced by a solar quadrupole moment and related to the equator of the Sun, to perturbations related to the ecliptic. For Mercury, Venus, and Earth the numerical values of the coefficients of the transforming equations are given.  相似文献   

9.
In order to generate an analytical theory of the motion of the Moon by considering planetary perturbations, a procedure of general planetary theory (GPT) is used. In this case, the Moon is considered as an addition planet to the eight principal planets. Therefore, according to the GPT procedure, the theory of the Moon’s orbital motion can be presented in the form of series with respect to the evolution of eccentric and oblique variables with quasi-periodic coefficients, which are the functions of mean longitudes for principal planets and the Moon. The relationship between evolution variables and the time is determined by a trigonometric solution for the independent secular system that describes the secular motion of a perigee and the Moon node by considering secular planetary inequalities. Principal planetary coordinates required for generating the theory of the motion of the Moon includes only Keplerian terms, the intermediate orbit, and the linear theory with respect to eccentricities and inclinations in the first order relative to the masses. All analytical calculations are performed by means of the specialized echeloned Poisson Series Processor EPSP.  相似文献   

10.
This paper deals with the perturbations which tidal lag in longitude can produce to the orbital elements of a close binary system. The expressions obtained for the six elements of the orbit have been presented as functions of the unperturbed true anomaly, measured from the periastron. Our study includes the effects produced by the second, third, and fourth tidal harmonic distortions. In order to save space these extremely lengthy equations are given in the compact form of summations, by means of Hansen coefficients. Various recurrence relations, which hold good for Hansen coefficients, are also presented. Finally, this paper includes a second-order approximation only for the secular terms of first-order approximation.  相似文献   

11.
In a previous paper (Zafiropoulos and Kopal, 1982; hereafter referred to as Paper I) we have studies the effects of rotational distortion on the orbital elements. The aim of the present paper is to investigate the secular and periodic perturbations of the orbital elements due to tidal distortion. For tidal distortion when tides do not lag, the Gaussian form of Lagrange's planetary equations has been employed to yield the first- and second-order approximations. The results obtained include the effects produced by the second, third and fourth harmonic distortions. The first order approximation for non-lagging tides has been expressed by means of Hansen coefficients.  相似文献   

12.
A semi-analytical solution to the problem of the motion of a satellite of the moon is presented. Perturbative effects which are considered include those due to the attraction of the moon, earth, and sun, the non-sphericity of the moon's gravitational field, coupling of lower-order terms, solar radiation pressure, and physical libration. Short-period terms and intermediate-period terms, terms with the period of the moon's longitude, are produced by means of von Zeipel's method; it is proposed to obtain the secular perturbations, and those depending only on the argument of perilune, by numerical integration of the equations of motions. The short-period terms and intermediate-period terms are developed up to second order, where first order is 10–2. The secular perturbations and perturbations dependent on the argument of perilune are obtained to third order.  相似文献   

13.
We complete by this part II the establishment of a second order secular Jupiter-Saturn theory. This is achieved by taking into consideration the influence of the indirect part of the planetary disturbing function, and expressing the second order secular Hamiltonian in terms of Poincaré's canonical variables.  相似文献   

14.
Lunisolar perturbations of an artificial satellite for general terms of the disturbing function were derived by Kaula (1962). However, his formulas use equatorial elements for the Moon and do not give a definite algorithm for computational procedures. As Kozai (1966, 1973) noted, both inclination and node of the Moon's orbit with respect to the equator of the Earth are not simple functions of time, while the same elements with respect to the ecliptic are well approximated by a constant and a linear function of time, respectively. In the present work, we obtain the disturbing function for the Lunar perturbations using ecliptic elements for the Moon and equatorial elements for the satellite. Secular, long-period, and short-period perturbations are then computed, with the expressions kept in closed form in both inclination and eccentricity of the satellite. Alternative expressions for short-period perturbations of high satellites are also given, assuming small values of the eccentricity. The Moon's position is specified by the inclination, node, argument of perigee, true (or mean) longitude, and its radius vector from the center of the Earth. We can then apply the results to numerical integration by using coordinates of the Moon from ephemeris tapes or to analytical representation by using results from lunar theory, with the Moon's motion represented by a precessing and rotating elliptical orbit.  相似文献   

15.
The secular terms of the planetary disturbing function are given, after elimination of short period terms by von Zeipel's transformation. The adequacy of this expansion up to terms of eighth order in the inclination and eccentricity is investigated by numerical processes, as a function of the Keplerian elementsa, e andi. The eccentricityé of the outer planet, is taken equal to zero. It is concluded that for values ofi which are not small the inclusion of additional terms in the expression for the disturbing function, results to drastic changes in its values, while larger values ofe do not have an equaly large effect on the disturbing function.  相似文献   

16.
Electromagnetic Radiation and Motion of a Particle   总被引:2,自引:2,他引:0  
We consider the motion of uncharged dust grains of arbitrary shape including the effects of electromagnetic radiation and thermal emission. The resulting relativistically covariant equation of motion is expressed in terms of standard optical parameters. Explicit expressions for secular changes of osculating orbital elements are derived in detail for the special case of the Poynting-Robertson effect. Two subcases are considered: (i) central acceleration due to gravity and the radial component of radiation pressure independent of the particle velocity, (ii) central acceleration given by gravity and the radiation force as the disturbing force. The latter case yields results which may be compared with secular orbital evolution in terms of orbital elements for an arbitrarily shaped dust particle. The effects of solar wind are also presented. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A second order atmospheric drag theory based on the usage of TD88 model is constructed. It is developed to the second order in terms of TD88 small parameters K n,j . The short periodic perturbations, of all orbital elements, are evaluated. The secular perturbations of the semi-major axis and of the eccentricity are obtained. The theory is applied to determine the lifetime of the satellites ROHINI (1980 62A), and to predict the lifetime of the microsatellite MIMOSA. The secular perturbations of the nodal longitude and of the argument of perigee due to the Earth’s gravity are taken into account up to the second order in Earth’s oblateness.  相似文献   

18.
Assigning to the equivalent gravitational parameter of a two-body dynamic system, a periodic change of a small amplitude B and arbitrary frequency and phase, the behaviour of an elliptic-type orbit is studied. The first order (in B) perturbations of the orbital elements are determined by using Delaunay's canonical variables. According to the value of the ratio between oscillation frequency and dynamic frequency, three cases (non-resonant (NR), quasi-resonant (QR), and resonant (R) ones) are pointed out. The solution of motion equations shows that only in the QR and R cases there are elements (argument of pericentre and mean anomaly) affected by secular perturbations. The solutions are valid over prediction times of order of pericentre and mean anomaly) affected by secular perturbations. The solutions are valid over prediction times of order B−1 in the NR case and B−1/2 in the QR and R cases.  相似文献   

19.
Repeated time-variable redshifted absorption features in the spectrum of β Pictoris (β Pic) have been attributed to comet-like bodies falling toward the star, when evaporating in its immediate vicinity. This model explains now a large number of observational characteristics, but the exact mechanism that could generate these numerous star-grazers is still controversial, even if planetary perturbations are thought to be the basic process. The different models proposed up to now are here reviewed, and we discuss in particular a recent one, involving the effect of secular resonances in the β Pic system. We stress that it seems highly improbable that such a mechanism could apply to the β Pic case, because the extremely strong power of secular resonances is connected to the very specific structure of the Solar System. Therefore, the secular resonance mechanism is highly non-generic. Conversely, we propose a model involving the eccentricity-pumping effect of mean-motion resonances with a massive planet on a moderately eccentric orbit. We show in particular that the 4:1 mean-motion resonance is a very active source of star-grazers as soon as the eccentricity of the perturbing planet is ?0.05, while the 3:1 mean-motion resonance is less efficient. We stress that this mechanism is very generic. These theoretical predictions are confirmed by numerical integrations using the Extended Schubart Integrator. The time-scale of the process is discussed, and we show that if the eccentricity of the perturbing planet fluctuates, due to secular perturbations, this time-scale is compatible with the age of β Pic's system.  相似文献   

20.
The equations of motion of an artificial satellite are given in nonsingular variables. Any term in the geopotential is considered as well as luni-solar perturbations up to an arbitrary power ofr/r, r being the geocentric distance of the disturbing body. Resonances with tesseral harmonics and with the Moon or Sun are also considered. By neglecting the shadow effect, the disturbing function for solar radiation is also developed in nonsingular variables for the long periodic perturbations. Formulas are developed for implementation of the theory in actual computations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号