首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 111 毫秒
1.
2.
Shear wave splitting analyses have been carried out using teleseismic data from broad-band seismograph stations deployed at temporary and permanent locations in Dronning Maud Land (DML), Antarctica. In most cases, the observed anisotropy can be related to major tectonic events that formed the present-day Antarctic continent. We rule out an anisotropic contribution from recent asthenospheric flow. At the Russian base Novolazarevskaya near the coast in central DML, waveform inversion suggests a two-layer model where the fast direction of the upper layer is oriented parallel to Archean fabrics in the lithosphere, whereas the anisotropy of the lower layer is interpreted to have been created during the Jurassic Gondwana break-up. Recordings at the South African base Sanae IV, however, show enigmatic results. For narrow backazimuthal segments, splitting parameters show strong variations together with a multitude of isotropic measurements, indicative of complex scattering that cannot be explained by simple one- or two-layer anisotropic models. In the interior of the continent, the data are consistent with single-layer anisotropy, but show significant spatial variations in splitting parameters. A set of temporary stations across the Heimefront shear zone in western DML yield splitting directions that we interpret as frozen anisotropy from Proterozoic assembly of the craton. An abrupt change in fast axis direction appears to mark a suture between the Grunehogna craton, a fragment of the Kalahari–Kaapvaal craton in southern Africa and the Mesoproterozoic Maudheim Province.  相似文献   

3.
Classical models of lithosphere thinning predict deep synrift basins covered by wider and thinner post‐rift deposits. However, synextensional uplift and/or erosion of the crust are widely documented in nature (e.g. the Base Cretaceous unconformity of the NE Atlantic), and generally the post‐rift deposits dominate basins fills. Accordingly, several basin models focus on this discrepancy between observations and the classical approach. These models either involve differential thinning, where the mantle thins more than the crust thereby increasing average temperature of the lithosphere, or focus on the effect of metamorphic reactions, showing that such reactions decrease the density of lithospheric rocks. Both approaches result in less synrift subsidence and increased post‐rift subsidence. The synextensional uplift in these two approaches happens only for special cases, that is for a case of initially thin crust, specific mineral assemblage of the lithospheric mantle or extensive differential thinning of the lithosphere. Here, we analyse the effects of shear heating and tectonic underpressure on the evolution of sedimentary basins. In simple 1D models, we test the implications of various mechanisms in regard to uplift, subsidence, density variations and thermal history. Our numerical experiments show that tectonic underpressure during lithospheric thinning combined with pressure‐dependent density is a widely applicable mechanism for synextensional uplift. Mineral phase transitions in the subcrustal lithosphere amplify the effect of underpressure and may result in more than 1 km of synextensional erosion. Additional heat from shear heating, especially combined with mineral phase transitions and differential thinning of the lithosphere, greatly decreases the amount of synrift deposits.  相似文献   

4.
5.
Field data from four separate locations indicate that the rate at which river channel gradient decreases downstream is fundamentally different in areas of long-term erosion and deposition. Gradient ( S ) and distance from the drainage divide ( x ) are related such that S is proportional to x φ. In areas of deposition φ<−3, whilst in areas of erosion φ>−1.1. These differences produce downstream increases and decreases in stream power and bed shear stress which also coincide with areas of erosion and deposition. This is the first time that such a basin-wide coincidence has been demonstrated.
A strong positive correlation between stream power, bed shear stress and bedload transport rates has been clearly shown by previous empirical studies of loose-bed channels. It is proposed that large-scale patterns of erosion and deposition in alluvial basins result from downstream changes in bedload transport rates, produced by the observed trends in these two parameters. If this proposal is to be fully tested, further work is needed to assess the affects of downstream fining of bed material, short-term fluctuations in discharge and downstream exchange of particles between the suspended load and bedload.  相似文献   

6.
Summary The thermomechanical differential equations governing deformation in viscous shear zones have been solved for both constant velocity and constant stress boundary conditions. The solutions show that the inertial term in these equations can be neglected everywhere.
The starting condition of the constant velocity model has been shown to be a constant velocity gradient and not a Heaviside function. The temperature anomaly produced by shear heating at the centre of the shear zone is shown to increase gradually and continuously with time, not reaching an asymptotic value. Conclusions for the constant velocity boundary condition are otherwise generally similar to those presented by Yuen et al , and agree with Fleitout & Froidevaux. The temperatures reached by constant velocity shears are sufficient for partial melting.
Constant stress boundary condition shear zone models show an initially broad shear zone with uniform shear velocity gradient. Depending on the level of applied shear stress and ambient temperature, localized intense shear heating may develop followed by thermal runaway. At lower ambient temperatures relatively high stresses are required to produce thermal runaway.
The broadening of the constant velocity shear zone proceeds more rapidly with increased ambient temperature. This can be used to show that shear zones broaden with depth. The merging of parallel shear zone pairs has been investigated and shear zones separated by distances of less than 10km coalesce to form a single shear zone within 3 Myr. Only shear zones separated by 50km or more remain distinct over periods of tens of millions of years.  相似文献   

7.
A field study was conducted to ascertain the amount of protection that mesquite-dominated communities provide to the surface from wind erosion. The dynamics of the locally accelerated evolution of a mesquite/coppice dune landscape and the undetermined spatial dependence of potential erosion by wind from a shear stress partition model were investigated. Sediment transport and dust emission processes are governed by the amount of protection that can be provided by roughness elements. Although shear stress partition models exist that can describe this, their accuracy has only been tested against a limited dataset because instrumentation has previously been unable to provide the necessary measurements. This study combines the use of meteorological towers and surface shear stress measurements with Irwin sensors to measure the partition of shear stress in situ. The surface shear stress within preferentially aligned vegetation (within coppice dune development) exhibited highly skewed distributions, while a more homogenous surface stress was recorded at a site with less developed coppice dunes. Above the vegetation, the logarithmic velocity profile deduced roughness length (based on 10-min averages) exhibited a distinct correlation with compass direction for the site with vegetation preferentially aligned, while the site with more homogenously distributed vegetation showed very little variation in the roughness length. This distribution in roughness length within an area, defines a distribution of a resolved shear stress partitioning model based on these measurements, ultimately providing potential closure to a previously uncorrelated model parameter.  相似文献   

8.
9.
10.
Summary. Continuous vertical seismic reflection profiling, the use of which has been extended by COCORP, BIRPS, ECORS, DEKORP and other programmes (Barazangi & Brown 1986) from stratified sedimentary basins to the entire crust, provides a high resolution cross section of reflectivity. A similar extension of oblique or variable offset sounding would be expected only to provide complementary velocity information. However, combined use of the two methods at crustal scale is new, and we show that refractions and wide angle reflections do contribute original and relevant information, but generally in areas other than velocities - the reason being that interfaces and layers may have a different nature in the crystalline crust from that in sediments.  相似文献   

11.
Upper mantle shear structure of North America   总被引:5,自引:0,他引:5  
Summary. The waveforms and travel times of S and SS phases in the range 10°–60° have been used to derive upper mantle shear velocity structures for two distinct tectonic provinces in North America. Data from earthquakes on the East Pacific Rise recorded at stations in western North America were used to derive a tectonic upper mantle model. Events on the north-west coast of North America and earthquakes off the coast of Greenland provided the data to investigate the upper mantle under the Canadian shield. All branches from the triplications due to velocity jumps near 400 and 660 km were observed in both areas. Using synthetic seismograms to model these observations placed tight constraints on heterogeneity in the upper mantle and on the details of its structure. SS–S travel-time differences of 30 s along with consistent differences in waveforms between the two data sets require substantial heterogeneity to at least 350 km depth. Velocities in the upper 170 km of the shield are about 10 per cent higher than in the tectonic area. At 250 km depth the shield velocities are still greater by about 4.5 per cent and they gradually merge near 400 km. Below 400 km no evidence for heterogeneity was found. The two models both have first-order discontinuities of 4.5 per cent at 405 km and 7.5 per cent at 695 km. Both models also have lids with lower velocities beneath. In the western model the lid is very thin and of relatively low velocity. In the shield the lid is 170 km thick with very high elocity (4.78 km s-1); below it the velocity decreases to about 4.65 km s-1. Aside from these features the models are relatively smooth, the major difference between them being a larger gradient in the tectonic region from 200 to 400 km.  相似文献   

12.
13.
14.
Sediment shear Q from airgun OBS data   总被引:2,自引:0,他引:2  
  相似文献   

15.
16.
High noise levels hamper teleseismic shear wave splitting measurements, which bandpass filtering does not always help. To investigate how robust splitting measurements are to noise, we analysed a set of synthetic records with known splitting parameters and added fixed levels of noise. In the presence of weak anisotropy, single-waveform splitting measurements are unreliable when operating with noisy data sets. A practical rule in terms of S/N ratio and splitting delay time parameters is that splitting is confidently detectable at S/N > 8, regardless of the wave's original polarization orientation. However, for the evidence of weak anisotropy to be detectable and measurable at an S/N value of 4, the backazimuth separation of the phases from the fast polarization direction needs to be higher than 20°. Stacks of individual measurements consistently yield reliable results down to S/N values of 4. Applying stacking to data from DSB (Dublin, Ireland), the fast polarization direction φ and lag time δt are 58° and 0.95  s. This orientation reflects surface trends of deformation in the area, as found elsewhere in the UK. Our result thus reinforces the proposed model that the detected anisotropy in the British Isles originates from lithospheric coherent deformation preserved from the last main tectonic episode.  相似文献   

17.
18.
Okada (1992) provided expressions for the displacement and strain fields due to a finite rectangular source in an elastic, homogeneous and isotropic half-space. Starting with these results, we applied the correspondence principle of linear viscoelasticity to derive the quasi-static displacement, strain and stress fields in a viscoelastic, homogeneous and isotropic half-space. We assume that the medium deforms viscoelastically with respect to both the shear and the normal stresses but keeps a constant bulk modulus; in particular, the shear modulus relaxes as Maxwell fluid. We presented the viscoelastic effect on displacement, displacement gradient and stress fields, for a choice of parameter values. The viscoelastic effect due to the sudden dislocation reaches a limit value after about 10 times the Maxwell time. The expressions obtained here provide tools for the study of viscoelastic relaxation of lithosphere associated with seismic and volcanic phenomena.  相似文献   

19.
Effects of the free surface on shear wavetrains   总被引:1,自引:0,他引:1  
Summary. The behaviour of shear-waves is of great importance in identifying and investigating seismic anisotropy in the Earth. However, shear wavetrains recorded at the Earth's surface do not always reflect the motion at depth, introducing practical problems of interpretation. Shear wavetrains incident on the surface of an isotropic half-space at angles less than critical (about 35°) are broadly preserved, but at greater angles substantial distortions can occur. For stations situated close to the source, as in local earthquake studies, the local SP phase, a radially polarized precursor to S , may occur. The behaviour at the surface of an anisotropic half-space is further complicated by the divergence of phase and energy propagation vectors. All of these complications suggest that detailed seismogram modelling is essential to any study of shear wave propagation in the Earth, and in particular to investigations of anisotropy-induced shear-wave splitting.  相似文献   

20.
Summary. The problem of the scattering of harmonic SH waves by an arbitrary surface irregularity in an otherwise semi-infinite elastic, homogeneous, isotropic two-dimensional half-space is examined in this study in order to ascertain the effect of topography on this type of seismic ground motion and to develop a useful scheme which can realistically handle arbitrary two-dimensional topography. Three geometric models are considered: a semicircular hill which is of academic interest; a mountain with a Gaussian shape which utilizes realistic dimensions and the combination of a ridge and a depression that models a region in Sylmar, California.
A singular Fredholm integral equation of the second kind for the displacement at the free surface is developed and solved numerically. In the case of the semicircular hill, horizontal ground motion can be more than twice that occurring in the case of smooth topography. The mountain simulated by a Gaussian profile experiences at its crest amplifications for certain angles of incidence and de-amplifications for other angles of incidence, as well as displacements whose amplitudes vary slowly with frequency on the side of the mountain which is in the same direction as the incident waves. The ridge-depression combination which is approximated by a sixth-order polynomial actually experienced shattered earth at its ridge crest during the San Fernando, California earthquake of 1971. This amplification is also exhibited by the results of the analysis which, predicts amplifications of over 75 per cent at the top of the ridge for waves arriving on the same side as the ridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号