首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 869 毫秒
1.
The basement topography and the free-air gravity along two profiles in the central North Atlantic between 16° and 25° N, crossing a number of fracture zones, were divided in three wavelength intervals. Two-dimensional modelling shows that the short wavelength (>50 km) gravity is well explained by uncompensated topography (mainly spreading topography). For the long wavelengths (>200 km) there is no correlation of topography and gravity. In principle this topography is compensated. Residual anomalies comprise the Ridge effect as well as regional anomalies related to depth anomalies. The 50 to 200km band-pass filtered topography and gravity contain relevant information on fracture zones. Models require a base of the crust that parallels the topography rather than a form of regional compensation. For an explanation of this crustal model that has the appearance of frozen in normal faults we have to consider the typical morphology as created in the transform domain. The geophysical processes that cause this morphology are still an object of study.  相似文献   

2.
The West O’Gorman Fracture Zone is an unusual feature that lies between the Mathematician Ridge and the East Pacific Rise on crust generated on the East Pacific Rise between 4 and 9 million years ago. We made a reconnaissance gravity, magnetic and Sea Beam study of the zone with particular emphasis on its eastern (youngest) portion. That region is characterized by an elongate main trough, a prominent median ridge and other, smaller ridges and troughs. The structure has the appearance of large-offset fracture zone, possibly in a slow spreading environment. However, magnetic anomalies indicate that the offset, if any, is quite small, and the spreading rate during formation was fast. In addition, the magnetic profiles do not support earlier models for a difference in spreading rate north and south of the fracture. The morphology of the fracture zone suggests that flexure may be responsible for some of the topography; but gravity studies indicate some of the most prominent features of the fracture zone are at least partially compensated. The main trough is underlain by a thin crust (or high density body), similar to large-offset fracture zones in the Atlantic, while the median ridge is underlain by a thickened crust. Sea Beam data does not unambiguously resolve between volcanism or serpentinization of the upper mantle as a mechanism for isostatic compensation. Why the West O’Gorman exists remains enigmatic, but we speculate that the topographic expression of a fracture zone does not require a transform offset during formation. Perhaps the spreading ridge was magma starved for some reason, resulting in a thin crust that allowed water to penetrate and serpentinize portions of the upper mantle.  相似文献   

3.
The data from a recent magnetic compilation by Verhoefet al. (1991) off west Africa were used in combination with data in the western Atlantic to review the Mesozoic plate kinematic evolution of the central North Atlantic. The magnetic profile data were analyzed to identify the M-series sea floor spreading anomalies on the African plate. Oceanic fracture zones were identified from magnetic anomalies and seismic and gravity measurements. The identified sea floor spreading anomalies on the African plate were combined with those on the North American plate to calculate reconstruction poles for this part of the central Atlantic. The total separation poles derived in this paper describe a smooth curve, suggesting that the motion of the pole through time was continuous. Although the new sea floor spreading history differs only slightly from the one presented by Klitgord and Schouten (1986), it predicts smoother flowlines. On the other hand, the sea floor spreading history as depicted by the flowlines for the eastern central Atlantic deviates substantially from that of Sundvik and Larson (1988). A revised spreading history is also presented for the Cretaceous Magnetic Quiet Zone, where large changes in spreading direction occurred, that can not be resolved when fitting magnetic isochrons only, but which are evident from fracture zone traces and directions of sea floor spreading topography.Deceased 11 November 1991  相似文献   

4.
A. V. Ilyin 《Oceanology》2010,50(2):240-253
Due to the complex transformation of the Earth’s crust in the rift valley, the morphology of the newly formed crust is changed by that of the province of rift mountains. The main factors of the variability of the morphological structure are as follows: the tectonomagmatic cyclicity of the geodynamic processes at the spreading centers and the isostatic uplift of the rift valley floor. The interchange of magmatic and tectonic cycles determines the difference in the bathymetric levels of the isostatic equilibrium at the edges of the rift valley slopes and the beginning of the formation of the topography of the province of rift mountains. This relief represents an indepth system of ridges and valleys rhythmically interchanging in the lateral direction. The morphology of the province of rift mountaines becomes the morphology of the acoustic basement throughout the ocean floor, except for the continental margins and areas of intraplate tectonics and volcanism.  相似文献   

5.
Historically, prediction of ocean floor depth, or bathymetry, has been based on the isostatic modeling and linearized relationships between gravity anomalies and bathymetry. The need for isostatic modeling limits the application of the resulting bathymetry predictions as constraints in geophysical models. An alternative technique making use of the Earth's vertical gravity gradient for predicting bathymetry is explored in this paper. This technique is based on the fact that the observed gravity gradient anomalies result primarily from local mass concentrations on the ocean floor, and that mass compensation by the oceanic crust has an insignificant effect on the gravity gradients, and can be neglected. The resulting bathymetry prediction therefore is independent of isostatic modeling assumptions, allowing it to be used as a constraint on models of lithospheric compensation and for other geodetic and geophysical applications.  相似文献   

6.
Predicting Bathymetry from the Earth's Gravity Gradient Anomalies   总被引:4,自引:0,他引:4  
Historically, prediction of ocean floor depth, or bathymetry, has been based on the isostatic modeling and linearized relationships between gravity anomalies and bathymetry. The need for isostatic modeling limits the application of the resulting bathymetry predictions as constraints in geophysical models. An alternative technique making use of the Earth's vertical gravity gradient for predicting bathymetry is explored in this paper. This technique is based on the fact that the observed gravity gradient anomalies result primarily from local mass concentrations on the ocean floor, and that mass compensation by the oceanic crust has an insignificant effect on the gravity gradients, and can be neglected. The resulting bathymetry prediction therefore is independent of isostatic modeling assumptions, allowing it to be used as a constraint on models of lithospheric compensation and for other geodetic and geophysical applications.  相似文献   

7.
The largest known submarine slope instabilities occur on gently inclined slopes or in the deep sea. The sedimentation rates are mostly too low to induce an excess pore-water pressure sufficient to create failure. A possible triggering mechanism for these instabilities is additional horizontal ground acceleration caused by earthquakes. Old zones of weakness, represented by fracture zones, can be reactivated by isostatic movements and induce seismic activity. The distribution of some major slope instabilities and the trend of fracture zones in the Eastern Atlantic are compared and Fracture activity is suggested as the main triggering mechanism for these slope instabilities.  相似文献   

8.
The largest known submarine slope instabilities occur on gently inclined slopes or in the deep sea. The sedimentation rates are mostly too low to induce an excess pore-water pressure sufficient to create failure. A possible triggering mechanism for these instabilities is additional horizontal ground acceleration caused by earthquakes. Old zones of weakness, represented by fracture zones, can be reactivated by isostatic movements and induce seismic activity. The distribution of some major slope instabilities and the trend of fracture zones in the Eastern Atlantic are compared and Fracture activity is suggested as the main triggering mechanism for these slope instabilities.  相似文献   

9.
Geoid data from Geosat and subsatellite basement depth profiles of the Kane Fracture Zone in the central North Atlantic were used to examine the correlation between the short-wavelength geoid (=25–100 km) and the uncompensated basement topography. The processing technique we apply allows the stacking of geoid profiles, although each repeat cycle has an unknown long-wavelength bias. We first formed the derivative of individual profiles, stacked up to 22 repeat cycles, and then integrated the average-slope profile to reconstruct the geoid height. The stacked, filtered geoid profiles have a noise level of about 7 mm in geoid height. The subsatellite basement topography was obtained from a recent compilation of structure contours on basement along the entire length of the Kane Fracture Zone. The ratio of geoid height to topography over the Kane Fracture Zone valley decreases from about 20–25 cm km-1 over young ocean crust to 5–0 cm km-1 over ocean crust older than 140 Ma. Both geoid and basement depth of profiles were projected perpendicular to the Kane Fracture Zone, resampled at equal intervals and then cross correlated. The cross correlation shows that the short-wavelength geoid height is well correlated with the basement topography. For 33 of the 37 examined pro-files, the horizontal mismatches are 10 km or less with an average mismatch of about 5 km. This correlation is quite good considering that the average width of the Kane Fracture Zone valley at median depth is 10–15 km. The remaining four profiles either cross the transverse ridge just east of the active Kane transform zone or overlie old crust of the M-anomaly sequence. The mismatch over the transverse ridge probably is related to a crustal density anomaly. The relatively poor correlation of geoid and basement depth in profiles of ocean crust older than 130–140 Ma reflects poor basement-depth control along subsatellite tracks.  相似文献   

10.
A detailed aeromagnetic survey carried out across the northeast Newfoundland margin clearly shows the presence of sea floor spreading anomalies 25 to 34. Correlation of these anomalies with synthetic profiles shows an increase in the rate of spreading soon after anomaly 27 time. Three fracture zones can be identified by dislocations in the magnetic anomalies; their positions are confirmed on the depth to basement map of this region. An eastward extension of the southernmost fracture zone at latitude 49 N matches well with the Faraday Fracture Zone across the Mid Atlantic Ridge, and with a basement ridge known as Pastouret Ridge mapped off Goban Spur. By combining the present survey data with the previously collected shipborne measurements, we have also traced the westward continuation of the Charlie-Gibbs Fracture Zone under the Newfoundland shelf.A large amplitude magnetic anomaly lies along the margin and separates two zones with different magnetic characteristics: long wavelength small amplitude anomalies on the landward side, and quasi lineated anomalies on the seaward side. Seismic data compilations show that this large anomaly coincides with the ocean-continent boundary at most places north of Flemish Cap. Modelling of the magnetic anomalies indicate that the large amplitude anomaly is caused by the juxtaposition of highly magnetized oceanic crust against weakly magnetized continental crust; this situation is similar to that observed across the Goban Spur margin, which is a conjugate of the Flemish Cap margin. The presence of highly magnetized oceanic crust landward of anomaly 34 and within the Cretaceous Magnetic Quiet Zone is attested to by the presence of similar large amplitude anomalies south of the Flemish Cap and Goban Spur regions, but these do not mark the ocean-continent transition.  相似文献   

11.
In this paper we focused on understanding the isostatic compensation of the Ninetyeast Ridge in the overall context of the Bay of Bengal oceanic lithosphere and the interaction of the ridge system with the north Andaman subduction zone from north of 7–18°N. This region is characterized by the initial interaction of the Kerguelen hotspot with the Bay of Bengal oceanic lithosphere. We used satellite altimeter-derived marine geoid, as it should comprehensively reflect the compensations caused by large spatial wavelength dominated deeper anomaly sources in a hotspot affected lithospheric load like the Ninetyeast Ridge. Our analyses of the geoid-to-topography ratio (GTR), residual geoid, gravity-to-topographic kernel and upward continuation of anomalies show the existence of two different types of source compensation bodies beneath the northern (12–18°N) and southern (7–12°N) Ninetyeast Ridge. In the northern region, the geoid to topography ratio varies from 0.63 ± 0.05 to 0.44 ± 0.03, while in the southern region it ranges from 1.34 ± 0.09 to 1.31 ± 0.07 which resulted in a north to south increase in the apparent compensation depth from ~9 to 28 km. The presence of a shallow Moho, low GTR, broader gravity to topography kernel and the absence of a ridge anomaly from the mantle density dominated upward continued anomaly at z = 300 km indicates that at the northern segment the underplated low density crustal melt is the dominant isostatic compensating body. However, at the southern ridge segment the high GTR, strong gravity-to-topography kernel and the subsistence of the anomaly at long wavelengths, even at z = 300 km represents the existence of large volumes of hotspot related underplated dense material as the source of compensation. The proximity of the dense source compensating body of the southern Ninetyeast Ridge to the Andaman subduction zone affected the regional mantle driven density gradient flow, as observed from the z = 300 km continued gravity anomaly. The existence of a southern Ninetyeast Ridge in such a transpressional regime has caused the formation of a forearc sliver at its eastern flank, which is a major crustal deformational structure developed as a result of ridge-trench collision.  相似文献   

12.
The central part of the northern Labrador Sea is a magnetic quiet zone, and is flanked by regions exhibiting well developed linear magnetic anomalies older than anomaly 24. The quiet zone dies out progressively to the south, where it becomes possible to correlate anomalies between adjacent profiles. A 45 degree change in spreading direction at anomaly 25 time was accompanied by a major jump in ridge position and orientation. As a consequence of this reorganisation, spreading in the northern Labrador Sea next occurred within a rift that was oriented at 45 degrees to the spreading direction, while to the south spreading occurred within in a rift that was orientated at 90 degrees to the spreading direction. Obliquity of spreading changed, between these limits, progressively along the ridge. The quiet zone may be present to the north because the oblique northern geometry resulted in a fragmented ridge composed of many small-offset transform faults joining many short spreading ridge segments. Each magnetic source block produced by magnetisation of sea floor at these small ridge segments will be surrounded by similar small blocks that have opposite polarity, so that none can be resolved at the sea surface. Supporting evidence comes from multi-channel seismic profiles across the Labrador Sea, which show that the basement is more textured within the quiet zone than outside, suggesting the presence of numerous small fracture zones in the quiet zone.A magnetic quiet zone is present in the northern Greenland Sea between margins that are oblique to the spreading direction. In contrast, there are clear lineated magnetic patterns in adjacent areas to north and south where the margins are orthogonal to the spreading direction. This quiet zone may also be due to the geometry of spreading.  相似文献   

13.
南黄海灾害性地质研究   总被引:2,自引:0,他引:2  
本文研完了南黄海10种灾害地质因素的性质、危害性及分布,对其进行了分类,在此基础上对本区之灾害地质进行了区划和评价。  相似文献   

14.
All anomalous masses of the Earth are reflected in the free air gravity anomalies and the geoidal undulations. The low viscosity of the asthenosphere significantly reduces the possibility of existence of density inhomogeneities in the layer. This fact provides some physical basis for the separation of the gravity field anomalies. It has been shown by power spectrum analysis of the free air anomalies and gravity field of isostatically compensated model of the lithosphere for the North Atlantic and adjacent areas of America, Europe and Mediterranean, that the attraction of isostatically compensated model is significant for any wave length of the field. It causes significant error in the interpretation if long wavelength constituents of the free air gravity anomalies are considered as a field of deep anomalous masses. The isostatic anomalies und isostatic geoid are free from the influences of isostatically compensated lithosphere. The characteristic feature of the isostatic anomalies power spectrum is a pronounced minimum at the wavelength of about 1000 km. The relative homogeneity of the asthenosphere may explain this minimum. It means that principal density inhomogeneities of the Earth's interior are separated by the asthenospheric layer. Such a minimum has not been observed at the power spectrum of free air anomalies being masked by corresponding wavelength of the field of isostatically compensated lithosphere. Isostatic anomalies that reflect the differences between the real structure of the lithosphere and its isostatically compensated model have wavelengths less than 1000 km. Isostatic anomalies with the wavelength more than 1000 km reflect the attraction of density inhomogeneities situated under the level of isostatic compensation. The basic features of power spectrum of isostatic anomalies are the same for oceanic and continental areas. The method based on Kolmogorov-Wiener filtration which consideres statistical characteristics of the field has been developed to divide the isostatic gravity anomalies into lithosphere and mantle components. For the North Atlantic and adjacent areas the field of mantle inhomogeneities has been determined.  相似文献   

15.
Magnetic data recently collected in the eastern tropical Pacific confirm that the Galapagos rift zone is connected to the Panama fracture zone by a short north-south fracture zone (the Ecuador fracture zone) and a short east-west center of sea floor spreading (the Costa Rica rift zone). These features were found approximately in the locations predicted by Molnar and Sykes from considerations of earthquake studies and plate tectonics. A spreading rate of 3.1 cm/year for the Costa Rica rift zone agrees with the rate found for the Galapagos rift zone but the anomalies associated with the two rifts differ markedly in amplitude.  相似文献   

16.
Satellite-borne altimeters have had a profound impact on geodesy, geophysics, and physical oceanography. To first order approximation, profiles of sea surface height are equivalent to the geoid and are highly correlated with seafloor topography for wavelengths less than 1000 km. Using all available Geos-3 and Seasat altimeter data, mean sea surfaces and geoid gradient maps have been computed for the Bering Sea and the South Pacific. When enhanced using hill-shading techniques, these images reveal in graphic detail the surface expression of seamounts, ridges, trenches, and fracture zones. Such maps are invaluable in oceanic regions where bathymetric data are sparse. Superimposed on the static geoid topography is dynamic topography due to ocean circulation. Temporal variability of dynamic height due to oceanic eddies can be determined from time series of repeated altimeter profiles. Maps of sea height variability and eddy kinetic energy derived from Geos-3 and Seasat altimetry in some cases represent improvements over those derived from standard oceanographic observations. Measurement of absolute dynamic height imposes stringent requirements on geoid and orbit accuracies, although existing models and data have been used to derive surprisingly realistic global circulation solutions. Further improvement will only be made when advances are made in geoid modeling and precision orbit determination. In contrast, it appears that use of altimeter data to correct satellite orbits will enable observation of basin-scale sea level variations of the type associated with climatic phenomena.  相似文献   

17.
南海西部灾害性地质研究   总被引:5,自引:0,他引:5  
灾害地质学(hazard geology)是研究对海底工程,特别是海洋石油工程能够产生直接危害,或具有潜在性危害的地质因素的特征及分布规律的科学。在过去几十年的海上石油开发中,由于事先未能对灾害性地质进行详细调查而造成重大损失的事件不乏其例。1973年3月,墨西哥湾一钻井平台,因浅层天然气喷发引起火灾,数千万美元的仪器设备毁于一旦。1977年南海莺歌海盆地作业的一架自升式钻井平台,在水深75m处插桩时,由于埋藏古河道的影响,地层分布不连续,两只柱腿插在古河岸上,至海底以下3m即稳定,另一只桩腿落入古河床,插入21m尚不稳定,致使钻井平台倾斜,后被迫移位才免遭于害。灾害性地质问题的研究已成为海洋石油和天然气开发成败的关键问题之一,因而引起了国内外有关部门的极大重视。1985-1987年,中国科学院海洋研究所受南海西部石油公司的委托,对珠江口以西至北部湾东部的广大海域,进行了大规模的灾害性地质、工程地质的普查及井位调査。调查中先后使用了“科学一号”科学考察船和“南海502”、“南海503”等工程物探及工程地质调查船,在海上进行了七千余公里的综合性工程物探测量,为研究调查区灾害性地质问题积累了丰富的资料。  相似文献   

18.
The multistreamer Side-Looking Seismic system presented in this paper makes a sonograph of uncovered or buried crustal topography, thus revealing the structural fabric of the oceanic basement, even when this is covered with a sedimentary layer. Major elements of the system are an airgun as a sound source, five single-channel parallel streamers and two minicomputers for signal capture and processing.The system is used simultaneously for enhanced single-channel seismic profiling and for side-looking seismics. A vertical section with an improved signal-to-noise ratio and a suppression of side-echoes is produced on a digital seismic recorder. Primary side-looking seismic output in the form of 5 profiles with different angles of incidence is obtained within 10 seconds. This part of the processing can be done in real time.In sediment-covered areas the low frequencies used cause the slanted profiles (the side beams in the primary output) to be side-looking sonar images of buried topography. The projection process yielding final side-looking output corrects for slant range deformation caused by the water column and, if necessary, for deformation caused by refraction within the sedimentary column. The result approaches a conformal map of the structure of the traversed basement. Swath width is mainly determined by water depth and refraction effects in the sediment. In Madeira abyssal plain a swath width of 8000 m was attained in a water depth of 5000 m.Within the swath, oceanic basement structures are recognized in the form of elongate more or less parallel reflectors. They are interpreted as buried spreading topography. The lack of side-echoes within fracture zones combined with typical wall signatures can be used to trace fracture zones. These features are demonstrated for an area in Madeira abyssal plain.  相似文献   

19.
We discuss the results of numerical experiments aimed at the investigation of the process of formation of the three-dimensional structure of the zones of upwelling on the northwest shelf of the Black Sea depending on the direction of the wind. We perform the detailed analysis of three zones (I, II, and III) with fairly well pronounced inhomogeneities of the bottom topography. Zone I is located in the north part of the shelf and, in this region, we observe a narrow depression to the southwest of the Tendrovskaya Spit. In zone II located in the near-Danube zone, we observe a height reaching the sea surface (Zmeinyi Island). Zone III is located in the east part of the shelf and corresponds to a sharp drop of depths with specific curvature of the coastal line of the Kalamitskii Bay and Gerakleiskii Peninsula. The performed analysis enables us to conclude that, in the vicinity of the local features of the bottom topography and coastal line (such as underwater heights, depressions, and capes), we observe the appearance of the zones of upwelling of waters, especially pronounced in the deep-water layers of the sea. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 3, pp. 68–80, May–June, 2008.  相似文献   

20.
Data from the GEOS 3 and SEASAT Satellites have provided a very accurate geoid map over the oceans. Broad bathymetric features in the oceans such as oceanic swells and plateaus are fully compensated. For these features it can be shown that the geoid anomalies due to the density structure of the lithosphere are proportional to the first moment of the density distribution. Deepening of the ocean basins is attributed to thermal isostasy. The thickness of the oceanic lithosphere increases with age due to the loss of heat to the sea floor. Bathymetry and the geoid provide constraints on the extent of this heat loss. Offsets in the geoid across major fracture zones can also be used to constrain this problem. Geoid-bathymetry correlations show that the Hawaiian and Bermuda swells and the Cape Verde Rise are probably due to lithospheric thinning. A similar correlation for the Walvis Ridge and Agulhas Plateau indicates that these features are probably due to an anomalously light mantle lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号