首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shark Bay, Western Australia is a large, shallow, hypersaline coastal lagoon with low nutrient input. Dissolved inorganic P in the water column decreased from 0·2 μm in the oceanic region of the bay to undetectable limits in the hypersaline areas of the bay. Organic C, total N, and total P were measured in the sediments along the salinity gradient. The sediment organic C was 1–3 mmol C g−1 and increased into the bay; total N was positively correlated with C; but P decreased from 15 μmol P g−1 in the outer bay to less than 1 μmol P g−1 in the hypersaline region. Sediment inorganic P comprised 80–90% of the total sediment P. The molar C:P ratio of the sediment organic phase increased from 1700 in the outer bay to 12 000 in the hypersaline region. Organic C and total P were also measured in the benthic plants. P content of the plants also decreased as salinity increased, resulting in an increase in the plant C:P ratio which was similar to the increase in the C:P ratio of the sediment organic phase. P composition of the coastal sediments can change dramatically in a relatively short distance as a result of net uptake and sedimentation by benthic communities.  相似文献   

2.
According to bioassay studies and high dissolved nutrient N/P ratios in the seawater column, phosphorus (P) is thought to control marine productivity in the northern Adriatic Sea. P in near-shore marine sediments of the Gulf of Trieste, the northernmost part of the Adriatic Sea, was investigated using pore water P distributions, and benthic P flux studies under oxic and anoxic conditions. The data show that P regeneration is up to three-fold more extensive in sediments overlain by oxygen-depleted waters and proceeds in parallel with Fe and Mn enhanced benthic fluxes. It appears from the incubation experiments that degradation of sedimentary organic matter is the main contribution to the flux of P at the sediment–water interface, while the release of phosphate adsorbed on the iron oxide surface is of minor importance.It appears that about 50% of P in the Gulf of Trieste is retained within in the sediments, probably bonded to clay minerals and carbonate grains or precipitated as fluoroapatite. In these sediments total P (Ptot) is preserved preferentially over organic C (Corg). P regenerated from surficial sediments contributes about 1/3 of the P that is assimilated by benthic microalgae. The phytoplankton P requirement should be entirely supplied from fresh-water sources. These results suggest that oxygen depletion in coastal areas caused by eutrophication enhances P regeneration from sediments, providing the additional P necessary for increased biological productivity. The development of anoxic bottom waters in coastal areas enhances the recycling of P, exacerbating the nutrient requirement in the area. A geochemical record of P burial in a longer sedimentary sequence revealed an increasing trend of Ptot and organic P (Porg) contents occurring approximately 50 years BP (after 1950), probably due to increasing use of inorganic fertilizers and detergents in the area.  相似文献   

3.
Concurrent distributions of dissolved and suspended particulate organic carbon (DOC and POCsusp), nitrogen (DON and PONsusp) and phosphorus (DOP and POPsusp), and of suspended particulate inorganic phosphorus (PIPsusp), are presented for the open ocean water column. Samples were collected along a three-station transect from the upper continental slope to the abyssal plain in the eastern North Pacific and from a single station in the Southern Ocean. The elemental composition of surface sedimentary organic matter (SOM) was also measured at each location, and sinking particulate organic matter (POMsink) was measured with moored sediment traps over a 110-d period at the abyssal site in the eastern North Pacific only. In addition to elemental compositions, C : N, C : P and N : P ratios were also calculated. Surface and deep ocean concentrations of dissolved organic matter (DOM) and inorganic nutrients between the two sites displayed distinct differences, although suspended POM (POMsusp) concentrations were similar. Concentrations of DOM and POMsusp displayed unique C, N and P distributions, with POMsusp concentrations generally about 1–2 orders of magnitude less than the corresponding DOM concentrations. These differences were likely influenced by different biogeochemical factors: whereas the dissolved constituents may have been influenced more by the physical regime of the study site, suspended particulate matter may have been controlled to a greater extent by biological and chemical alteration. Up to 80% of total particulate P in POMsusp, POMsink and SOM consisted of PIP. For all organic matter pools measured, elemental ratios reveal that organic P is preferentially remineralized over organic C and organic N at both sites. Increases in C : P and N : P ratios with depth were also observed for DOM at both sites, suggesting that DOP is also preferentially degraded over C and N as a function of depth. A simple one-dimensional vertical eddy diffusion model was applied to estimate the contributions of dissolved and suspended particulate organic C, N and P fluxes from the upper mixed layer into the permanent thermocline. Estimated vertical DOM fluxes were 28–63% of the total organic matter fluxes; POMsusp and POMsink fluxes were 8–20 and 28–52% of the total.  相似文献   

4.
The distribution of protein and carbohydrate concentrations of the particulate matter (size fraction: 0.45–160 μm) was studied, from 22 January 2003 to 02 December 2003, in three ponds of increasing salinity in the Sfax solar saltern (Tunisia). The coupling of N/P: DIN (DIN = NO2 + NO3 + NH4+) to DIP (DIP = PO43−) with P/C: protein/carbohydrates ratios along salinity gradient allowed the discrimination of three types of ecosystems. Pond A1 (mean salinity: 45.0 ± 5.4) having marine characteristics showed enhanced P/C ratios during a diatom bloom. N/P and P/C ratios were closely coupled throughout the sampling period, suggesting that the nutritional status is important in determining the seasonal change in the phytoplankton community in pond A1. In pond A16 (mean salinity: 78.7 ± 8.8), despite the high nitrate load, P/C ratios were overall lower than in pond A1. This may be explained by the fact that dinoflagellates, which were the most abundant phytoplankton in pond A16 might be strict heterotrophs and/or mixotrophs, and so they may have not contributed strongly to anabolic processes. Also, N/P and P/C ratios were uncoupled, suggesting that cells in pond A16 were stressed due to the increased salinity caused by water evaporation, and so cells synthesized reserve products such as carbohydrates. In pond M2 (mean salinity: 189.0 ± 13.8), P/C levels were higher than those recorded in either pond A1 or A16. N/P and P/C were more coupled than in pond A16. Species in the hypersaline pond seemed paradoxally less stressed than in pond A16, suggesting that salt-tolerant extremophile species overcome hypersaline constraints and react metabolically by synthesizing carbohydrates and proteins.  相似文献   

5.
The concentrations of cadmium, phosphorus, and aluminum in size-fractionated phytoplankton, zooplankton, and sinking particles are determined using ICPMS to evaluate the roles of biotic and abiotic particles on the cycling and ratios of Cd and P in the water column. Plankton were collected with a filtration apparatus equipped with 10-, 60-, and 150-μm aperture plankton nets on two occasions (2002 and 2006), and sinking particles were sampled by moored sediment traps deployed at depths of 120, 600, and 3500 m from 2004 to 2005. In contrast to what our previous study revealed, i.e., that most of the other bioactive trace metals in plankton were strongly correlated with abiotic Al and adsorbed on phytoplankton [Ho, T.Y., Wen, L.S., You, C.F., Lee, D.C., 2007. The trace metal composition of size-fractionated plankton in the South China Sea: biotic versus abiotic sources. Limnol Oceanogr 52, 1776–88.], Cd/P ratios, ranging from 0.12 to 0.34 mmol/mol P, did not vary with Al and exhibited fairly consistent values among different sizes of plankton, showing that Cd was mostly incorporated on an intracellular basis. In terms of the sinking particles, fluxes in Cd and P as well as in Cd/P ratios were strongly influenced by both biotic and abiotic particles. Overall, the Cd/P ratios in the sinking particles ranged from 0.03 to 1.2 mmol/mol, with the highest value observed in traps at 120 m during the productive season. The lowest value was observed in deep water during high flux periods for lithogenic particles. At surface depth, flux and Cd/P ratios were elevated during the most productive season in the region. The elevated ratios in the traps at 120 m were most likely related to preferential uptake of Cd for the dominant species (coccolithophores) during the productive period. Relatively, Cd/P ratios sharply decreased with increasing Al flux in deep water and ratios were much lower than the expected Cd/P ratios obtained from the relative portion of lithogenic and biogenic particles, indicating that the adsorption of soluble P into lithogenic particles was significant in the deep water during high lithogenic particle flux periods. Using averaged annual fluxes and standing stock in the water column, the residence time of biogenic Cd and P are 0.10 and 0.20, 250 and 100, and 9100 and 5000 years respectively in the top 120 m, 600 m, and water column as a whole, also showing preferential removal for Cd in the euphotic zone but relatively higher removal rates for P in the deep water. Our study suggests that the shift in microalgal community structure along with input of lithogenic minerals are both potentially important factors in influencing Cd/P ratios in oceanic water on a geological time scale.  相似文献   

6.
《Marine Chemistry》2001,75(3):201-217
Solid-phase phosphorus (P) speciation and benthic phosphate fluxes have been determined in Arabian Sea sediments. Benthic phosphate fluxes are highest in the continental slope sediments, underlying bottom waters with low oxygen concentrations. Organic matter degradation and phosphate desorption from iron oxides do not produce sufficient phosphate to explain these high phosphate fluxes. The potentially high deposition of P associated with fish debris (Pfish) in the Arabian Sea, and a good correlation between benthic phosphate fluxes and Pfish accumulation rates suggest that benthic phosphate fluxes in these sediments are to a large extent governed by dissolution of biogenic apatite. Factors controlling dissolution and preservation of fish debris, therefore, may play an important role in the burial and regeneration of P in continental margin sediments. A sharp decrease of the reactive P accumulation rate with increasing water depth, in combination with rather constant primary productivity rates throughout the northern Arabian Sea, indicates that P burial in continental margin sediments located within the OMZ is more efficient than in deep basin sediments. The effectiveness of P burial is to a large extent regulated by P regeneration occurring in the water column and redeposition processes. Sedimentary phosphorus burial efficiencies, thus, should be interpreted with caution in terms of the environmental conditions.  相似文献   

7.
Proliferation of fast-growing ephemeral macroalgae in shallow-water embayments constitutes a large-scale environmental change of coastal marine ecosystems. Since inorganic nutrients essential for the initiation and maintenance of macroalgal growth may be supplied from the underlying sediment, we investigated the coupling between benthic inorganic nutrient (mainly N and P) fluxes and sediment properties in 6 bays representing a wide gradient of sediment characteristics (grain size, organic matter content, solid phase C and N). The initial characterization of bays was made in June and also included measurements of oxygen flux and microphytobenthic and macrofaunal biomass. In September, still within the growth season of the macroalgae, complementary experiments with sediment-water incubations for benthic flux measurements of oxygen and nutrients focused on trophic status (balance between auto- and heterotrophy) as a controlling factor for rates of measured benthic nutrient fluxes. Generally, sediments rendered autotrophic by microphytobenthic photosynthesis removed nutrients from the overlying water, while heterotrophic sediments supplied nutrients to the overlying bottom water. Estimations of the green-algal nutrient demand suggested that late in the growth season, net heterotrophic sediments could cover 20% of the N-demand and 70% of the P demand. As the benthic trophic status is a functional variable more closely coupled to nutrient fluxes than the comparably conservative structural parameter organic matter content, we suggest that the trophic status is a more viable parameter to classify sediments and predict benthic nutrient fluxes in shallow-water environments.  相似文献   

8.
RelationshipbetweenbiogeochemicalfeaturesofbiogenicelementsandflocculationintheChangjiangEstuary¥LinYi'an;TangRenyou;LiYan;Do...  相似文献   

9.
The present study investigates the differences between nutrient fluxes and particulate organic matter within an artificial reef system (AR) deployed in August 2002 off Faro (Algarve, Southern Portugal) and in a non-reef area (NRA), and how fluxes and suspended material may be affected by the hydrodynamic regime. Surveys to collect sediment cores, suspended/settled particles and overlying water samples were carried out by divers, from March (2006) to October (2007) in AR and NRA. Sediment cores and settled particles were collected to determine grain size, organic and inorganic carbon, nitrogen and phosphorus content. Overlying water and pore water samples were analysed for ammonium, nitrite, nitrate, phosphate, silicate, dissolved organic nitrogen, dissolved organic phosphorus and chlorophyll a. Results from the period studied showed that: (1) the benthic export of dissolved N, P and Si was 2–3 times higher at AR; (2) the particulate organic carbon (POC), nitrogen (PON) and phosphorus (POP) in suspended/settled particles were about 1.5 times higher at AR; (3) at both AR and NRA, the benthic export of dissolved N, P and Si, during a calm weather period, was 2–4 times higher than during or immediately after a storm event; and (4) at both sites, particulate organic compounds (POC, PON and POP) increased about 20 times during a storm event. These findings suggest that both the nutrients transport from sediment to water column and the quantity/quality of suspended/settled particles were highly dependent on the existence of reef structures and on the hydrodynamic regime.  相似文献   

10.
Whitemouth croaker (Micropogonias furnieri) larvae obtained and hydrographic data collected in the Rio de la Plata estuary (35°S–56°W) between 1987 and 2000 were used to explore the early life stages spatial and temporal distribution patterns and their relation to oceanographic features. The spatial distribution, restricted to a band in the inner part of the estuary, coincided with the bottom salinity front and the maximum turbidity zone (MTZ, turbidity front). Larvae were present during the warmest months (October through May) within a range of 14–24.5 °C temperature and 0.9–33 salinity. A vertically stratified sampling performed in the region where the largest abundance was found (December 2005 and March 2006) was used to test the hypothesis that larvae retention occurs in the bottom salinity front.The vertically stratified sampling showed larvae throughout the water column with high predominance in the river–estuary transition zone. A positive correlation between abundance and the bottom salinity horizontal gradient was found. The size analysis showed that the largest individuals (>10 mm SL), probably undergoing the settlement process, inhabited near the bottom and that the smallest (<10 mm SL) were present in the whole water column. Length distribution along the front showed no trend.Results support the estuarine retention hypothesis of previous studies on whitemouth croaker gravid females, eggs distribution and outcomes from a numerical simulation model. Retention in the salinity front/MTZ would allow larvae to benefit from food accumulation in the region, the high turbidity level provide shelter against predators and retention in the estuary secure closeness to the main nursery ground.  相似文献   

11.
Benthic Nutrient Recycling in Port Phillip Bay, Australia   总被引:8,自引:0,他引:8  
Benthic chamber measurements of the reactants and products involved with biogenic matter remineralization (oxygen, ammonium, nitrate, nitrite, phosphate, silicate, TCO2and alkalinity) were used to define solute exchange rates between the sediment and overlying water column of Port Phillip Bay, Australia. Measurements at various sites throughout the bay, conducted during the summers of 1994 and 1995, indicate that the variability in flux values within a site is comparable to year-to-year variability (±50%). Four regions of the bay were distinguished by sediment properties and the northern region was identified as having 3–30 times greater nutrient regeneration rates than the other regions. Benthic recycling accounted for 63 and 72% of the annualized N and P input, respectively, to the entire bay as determined by summing benthic, dissolved riverine, atmospheric and dissolved effluent sources. However, bay-wide sedimentary denitrification accounted for a loss of 63% of the potentially recyclable N. This fraction is higher than many other coastal regions with comparable carbon loading. Denitrification efficiency is apparently not enhanced by benthic productivity nor by bio-irrigation. The rate of bio-irrigation is negatively correlated with denitrification efficiency. Bio-irrigation was studied using radon-222 and CsCl spike injection chamber measurements. Radon fluxes from sediments in Port Phillip Bay were enhanced over the diffusive flux by 3–16 times. The modelled rate of loss of Cs from chamber water was positively correlated with radon flux enhancement results. Both methods identify regions within Port Phillip Bay that have particularly high rates of non-diffusive pore-water overlying water solute exchange.  相似文献   

12.
C. Rocha  J. Ibanhez  C. Leote   《Marine Chemistry》2009,115(1-2):43-58
To investigate both the role of tides on the timing and magnitude of Submarine Groundwater Discharge (SGD), and the effect on benthic nitrogen biogeochemistry of nitrate-enriched brackish water percolating upwards at the seepage face, we conducted a study of SGD rates measured simultaneously with seepage meters and mini-piezometers, combined with sets (n = 39) of high resolution in-situ porewater profiles describing NH4+, NO3, Si(OH)4 and salinity distribution with depth (0–20 cm). Sampling took place during two consecutive spring tidal cycles in four different months (November 2005, March, April and August 2006) at a backbarrier beach face in the Ria Formosa lagoon, southern Portugal. Our results show that the tide is one of the major agents controlling the timing and magnitude of SGD into the Ria Formosa. Intermittent pumping of brackish, nitrate-bearing water at the beach face through surface sediments changed both the magnitudes and depth distributions of porewater NH4+ and NO3 concentrations. The most significant changes in nitrate and ammonium concentrations were observed in near-surface sediment horizons coinciding with increased fraction of N in benthic organic matter, as shown by the organic C:N ratio. On the basis of mass balance calculations executed on available benthic profiles, providing ratios of net Ammonium Production Rate (APR) to Nitrate Reduction Rate (NRR), coupled to stoichiometric calculations based on the composition of organic matter, potential pathways of nitrogen transformation were speculated upon. Although the seepage face occasionally contributes to reduce the groundwater-borne DIN loading of the lagoon, mass balance analysis suggests that a relatively high proportion of the SGD-borne nitrogen flowing into the lagoon may be enhanced by nitrification at the shallow (1–3 cm) subsurface and modulated by dissimilatory nitrate reduction to ammonium (DNRA).  相似文献   

13.
Phosphorus distribution in sinking oceanic particulate matter   总被引:2,自引:1,他引:2  
Despite the recognition of the importance of phosphorus (P) in regulating marine productivity in some modern oceanic systems and over long timescales, the nature of particulate P within the ocean is not well understood. We analyzed P concentration in particulate matter from sediment traps and selected core tops from a wide range of oceanic regimes: open ocean environments (Equatorial Pacific, North Central Pacific), polar environments (Ross Sea, Palmer Deep), and coastal environments (Northern California Coast, Monterey Bay, Point Conception). These sites represent a range of productivity levels, temporal (seasonal to annual) distributions, and trap depths (200–4400 m). P associations were identified using an operationally defined sequential extraction procedure. We found that P in the sediment traps is typically composed of reactive P components including acid-insoluble organic P ( 40%), authigenic P ( 25%), and oxide associated and/or labile P ( 21%), with lesser proportions of non-reactive detrital P depending on location ( 13%). The concentrations and fluxes of all particulate P components except detrital P decrease or remain constant with depth between the shallowest and the deepest sediment traps, indicating some regeneration of reactive P components. Transformation from more labile forms of P to authigenic P is evident between the deepest traps and core top sediments. Although for most sites the magnitudes of reactive P fluxes are seasonally variable and productivity dependent, the fractional associations of reactive P are independent of season. We conclude that P is transported from the upper water column to the sediments in various forms previously considered unimportant. Thus, acid-insoluble organic P measurements (typically reported as particulate organic P) likely underestimate biologically related particulate P, because they do not include the labile, oxide-associated, or authigenic P fractions that often are or recently were biologically related. Organic C to reactive P ratios are typically higher than Redfield Ratio and are relatively constant with depth below 300 m suggesting that preferential regeneration of P relative to C occurs predominantly at shallow depths in the water column, but not deeper in the water column (> 300 m). The view of P cycling in the oceans should be revised (1) to include P fractions other than acid-soluble organic P as important carriers of reactive P in rapidly sinking particles, (2) to include the efficient transformation of labile forms of P to authigenic P in the water column as well as in sediments, and (3) to consider the occurrence of preferential P regeneration at very shallow depths.  相似文献   

14.
Young Sound is a deep-sill fjord in NE Greenland (74°N). Sea ice usually begins to form in late September and gains a thickness of 1.5 m topped with 0–40 cm of snow before breaking up in mid-July the following year. Primary production starts in spring when sea ice algae begin to flourish at the ice–water interface. Most biomass accumulation occurs in the lower parts of the sea ice, but sea ice algae are observed throughout the sea ice matrix. However, sea ice algal primary production in the fjord is low and often contributes only a few percent of the annual phytoplankton production. Following the break-up of ice, the immediate increase in light penetration to the water column causes a steep increase in pelagic primary production. Usually, the bloom lasts until August–September when nutrients begin to limit production in surface waters and sea ice starts to form. The grazer community, dominated by copepods, soon takes advantage of the increased phytoplankton production, and on an annual basis their carbon demand (7–11 g C m−2) is similar to phytoplankton production (6–10 g C m−2). Furthermore, the carbon demand of pelagic bacteria amounts to 7–12 g C m−2 yr−1. Thus, the carbon demand of the heterotrophic plankton is approximately twice the estimated pelagic primary production, illustrating the importance of advected carbon from the Greenland Sea and from land in fuelling the ecosystem.In the shallow parts of the fjord (<40 m) benthic primary producers dominate primary production. As a minimum estimate, a total of 41 g C m−2 yr−1 is fixed by primary production, of which phytoplankton contributes 15%, sea ice algae <1%, benthic macrophytes 62% and benthic microphytes 22%. A high and diverse benthic infauna dominated by polychaetes and bivalves exists in these shallow-water sediments (<40 m), which are colonized by benthic primary producers and in direct contact with the pelagic phytoplankton bloom. The annual benthic mineralization is 32 g C m−2 yr−1 of which megafauna accounts for 17%. In deeper waters benthic mineralization is 40% lower than in shallow waters and megafauna, primarily brittle stars, accounts for 27% of the benthic mineralization. The carbon that escapes degradation is permanently accumulated in the sediment, and for the locality investigated a rate of 7 g C m−2 yr−1 was determined.A group of walruses (up to 50 adult males) feed in the area in shallow waters (<40 m) during the short, productive, ice-free period, and they have been shown to be able to consume <3% of the standing stock of bivalves (Hiatella arctica, Mya truncata and Serripes Groenlandicus), or half of the annual bivalve somatic production. Feeding at greater depths is negligible in comparison with their feeding in the bivalve-rich shallow waters.  相似文献   

15.
2013年5月、8月和11月调查了象山港大黄鱼网箱养殖区及附近沉积物中总有机氮(TON)、总有机碳(TOC)和总磷(TP)含量,并采用实验室模拟法研究了底泥耗氧率(SOCs)和沉积物-水界面营养盐(NH+4、NO-2+NO-3和PO3-4)通量。结果表明:养殖区(YZ)沉积物中的TON和TP含量显著高于距离养殖区50 m(F1)和100 m(F2)的区域(P<0.05)。底泥释放NH+4到上覆水中,但是从上覆水中吸收NO-2+NO-3和PO3-4。沉积物-水界面营养盐通量表现出明显的季节性变化,在8月,NH+4及PO3-4的释放量达到最大值。上覆水中NH+4、NO-2+NO-3和PO3-4的质量浓度随着沉积物-水界面营养盐通量的变化而变化。研究表明,象山港大黄鱼养殖活动对养殖区底泥造成了一定污染,且通过影响沉积物-水界面营养盐通量影响上覆水中营养盐分布,最终给整个养殖系统造成生态负担。  相似文献   

16.
The stable carbon isotope composition of particulate organic carbon (POC) from plankton, sediment trap material and surface sediments from the Atlantic sector of the Southern Ocean were determined. Despite low and constant water temperatures, large variations in the δ13C values of plankton were measured. 13C enrichments of up to 10‰ coincided with a change in the diatom assemblage and a two-fold increase in primary production. Increased CO2 consumption as a result of rapid carbon fixation may result in diffusion limitation reducing the magnitude of the isotope fractionation. The δ13C values of plankton from sea-ice cores display a relationship with the chlorophyll a content. High ‘ice-algae’ biomass, in combination with a limited exchange with the surrounding seawater, results in values of about − 18 to − 20‰. It is assumed that these values are related to a reduced CO2 availability in the sea-ice system. In comparison with plankton, sinking krill faeces sampled by traps can be enriched by 2–5‰ in 13C (e.g. central Bransfield Strait). In contrast, the transport of particles in other faeces, diatom aggregates or chains results in minor isotope changes (e.g. Drake Passage, Powell Basin, NW Weddell Sea). A comparison between the δ13C values of sinking matter and those of surface sediments reveals that 13C enrichments of up to 3–4‰ may occur at the sediment-water boundary layer. These isotopic changes are attributed to high benthic respiration rates.  相似文献   

17.
We examined the effect of light on water column and benthic fluxes in the Pensacola Bay estuary, a river-dominated system in the northeastern Gulf of Mexico. Measurements were made during the summers of 2003 and 2004 on 16 dates distributed along depth and salinity gradients. Dissolved oxygen fluxes were measured on replicate sediment and water column samples exposed to a gradient of photosynthetically active radiation. Sediment inorganic nutrient (NH4+, NO3, PO43−) fluxes were measured. The response of dissolved oxygen fluxes to variation in light was fit to a photosynthesis–irradiance model and the parameter estimates were used to calculate daily integrated production in the water column and the benthos. The results suggest that shoal environments supported substantial benthic productivity, averaging 13.6 ± 4.7 mmol O2 m−2 d−1, whereas channel environments supported low benthic productivity, averaging 0.5 ± 0.3 mmol O2 m−2 d−1SE). Estimates of baywide microphytobenthic productivity ranged from 8.1 to 16.5 mmol O2 m−2 d−1, comprising about 16–32% of total system productivity. Benthic and water column dark respiration averaged 15.2 ± 3.2 and 33.6 ± 3.7 mmol O2 m−2 d−1, respectively Inorganic nutrient fluxes were generally low compared to relevant estuarine literature values, and responded minimally to light exposure. Across all stations, nutrient fluxes from sediments to the water column averaged 1.11 ± 0.98 mmol m−2 d−1 for NH4+, 0.58 ± 1.08 mmol m−2 d−1 for NO3, 0.01 ± 0.09 mmol m−2 d−1 for PO43−. The results of this study illustrate how light reaching the sediments is an important modulator of benthic nutrient and oxygen dynamics in shallow estuarine systems.  相似文献   

18.
We determined patterns of benthic metabolism and examined the relative importance of denitrification (DNF) and dissimilatory nitrate reduction to ammonium (DNRA) as sinks for nitrate (NO3) in intertidal sediments in the presence and absence of benthic microalgal (BMA) activity. By influencing the activity of BMA, light regulated the metabolic status of the sediments, and, in turn, exerted strong control on sediment nitrogen dynamics and the fate of inorganic nitrogen. A pulsed addition of 15N-labeled NO3 tracked the effect and fate of dissolved inorganic nitrogen (DIN) in the system. Under illuminated conditions, BMA communities influenced benthic fluxes directly, via DIN uptake, and indirectly, by altering the oxygen penetration depth. Under dark hypoxic and anoxic conditions, the fate of water column NO3 was determined largely by three competing dissimilatory reductive processes; DNF, DNRA, and, on one occasion, anaerobic ammonium oxidation (anammox). Mass balance of the added 15N tracer illustrated that DNF accounted for a maximum of 48.2% of the 15NO3 reduced while DNRA (a minimum of 11.4%) and anammox (a minimum of 2.2%) accounted for much less. A slurry experiment was employed to further examine the partitioning between DNF and DNRA. High sulfide concentrations negatively impacted rates of both processes, while high DOC:NO3 ratios favored DNRA over DNF.  相似文献   

19.
The diversity of small-scale wetlands, high salinity tidal creeks, salt marshes, estuaries, and a wide and shallow shelf with the Gulf Stream close to the break makes the coastal zone of south-eastern North Carolina (U.S.) a natural laboratory for the study of the cycling of nitrogen (N) and phosphorus (P) in coastal and shelf waters. We assessed the summer concentrations, forms, and ratios for each N (total dissolved N, nitrate + nitrite, ammonium and dissolved organic N) and P (total dissolved P, o-phosphate and dissolved organic P) pool as these nutrients travel from tidal creeks, salt marshes and two large estuaries to Long and Onslow Bays. Additionally, we measured ancillary physical (temperature, salinity and turbidity) and chemical (dissolved oxygen, chlorophyll a and pH) water properties. Highest concentrations of all individual N and P compounds were found in the upper parts of each tributary and were attributed to loads from agricultural and urban sources to the coastal watersheds, continuing downstream to receiving estuaries. In all areas, dissolved organic N and P species were predominant constituents of the total dissolved N and P pools (64–97% and 56–93%, respectively). The lower parts of estuaries and surface shelf waters were characterized by oceanic surface values, indicating removal of N and P downstream in all tributaries. The different watershed and hydrological characteristics also determined the different speciation of N and P pools in each estuary. Despite a high level of anthropogenic pressure on the uppermost coastal waters, there is self-regulation in this coastal ecosystem with respect to human perturbations; i.e. significant amounts of the N and P load are retained within estuarine and nearshore waters without reaching the shelf.  相似文献   

20.
A systematic investigation of fluxes and compositions of lipids through the water column and into sediments was conducted along the U.S. JGOFS EgPac transect from l2°N to l5°S at 140°W. Fluxes of lipids out of the euphotic zone varied spatially and temporally, ranging from ≈0.20 – 0.6 mmol lipid-C m−2 day−1. Lipid fluxes were greatly attenuated with increasing water column depth, dropping to 0.002-0.06 mmol lipid-C m−2 day−1 in deep-water sediment traps. Sediment accumulation rates for lipids were ≈ 0.0002 – 0.00003 mmol lipid-C m−2 day−1. Lipids comprised ≈ 11–23% of Corg in net-plankton, 10–30% in particles exiting the euphotic zone, 2–4% particles in the deep EgPac, and 0.1-1 % in sediments. Lipids were, in general, selectively lost due to their greater reactivity relative to bulk organic matter toward biogeochemical degradation in the water column and sediment. Qualitative changes in lipid compositions through the water column and into sediments are consistent with the reactive nature of lipids. Fatty acids were the most labile compounds, with polyunsaturated fatty acids (PUFAs) being quickly lost from particles. Branchedchain C15 and C17 fatty acids increased in relative abundance as particulate matter sank and was incorporated into the sediment, indicating inputs of organic matter from bacteria. Long-chain C39 alkenones of marine origin and long-chain C20-C30 fatty acids, alcohols and hydrocarbons derived from land plants were selectively preserved in sediments. Compositional changes over time and space demonstrate the dynamic range of reactivities among individual biomarker compounds, and hence of organic matter as a whole. A thorough understanding of biogeochemical reprocessing of organic matter in the oceanic water column and sediments is, thus, essential for using the sediment record for reconstructing past oceanic environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号