首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
There are a number of ways by which the biosphere may counter any impetus for global warming that might be produced by the rising CO2 content of earth's atmosphere. Evidence for one of these phenomena, the DMS-cloud feedback effect, is discussed in light of recent claims that it is not of sufficient strength to be of much importance.  相似文献   

2.
Generally, it is assumed that UV-light, high temperature or reactive molecules like O3 and OH are needed to activate gas reactions in air. In consequence, the catalytic activity on natural materials such as sand and soil on the earth's surface is assumed to be insignificant. We have measured O2-dissociation rates on natural quartz sand at 40˚C and compared these with O2-dissociation rates near 500˚C on materials with well-known catalytic activity. In terms of probabilities for dissociation of impinging O2-molecules the measured rates are in the 10−12–10−4 range. We have also measured dissociation rates of H2 and N2, water-formation from H2 and O2 mixtures, exchange of N between N2, NO x and a breakdown of HNO3, NO2 and CH4 on natural quartz sand at 40˚C. The measured rates together with an effective global land area have been used to estimate the impact of thermodynamically driven reactions on the earth's surface on the global atmospheric budgets of H2, NO2 and CH4. The experimental data on natural quartz sand together with data from equilibrium calculations of air suggest that an expected increase in anthropogenic supply of air pollutants, such as NO x or other “reactive” nitrogen compounds, hydrogen and methane, will be counter-acted by catalysis on the earth's surface. On the other hand, at Polar Regions and boreal forests where the “reactive” nitrogen concentration is below equilibrium, the same catalytic effect activates formation of bio-available nitrogen compounds from N2, O2 and H2O.  相似文献   

3.
The ongoing human-induced emission of carbon dioxide (CO2) threatens to change the earth's climate. One possible way of decreasing CO2 emissions is to apply CO2 removal, which involves recovering of carbon dioxide from energy conversion processes and storing it outside the atmosphere. Since the 1980's, the possibilities for recovering CO2 from thermal power plants received increasing attention.In this study possible techniques of recovering CO2 from large-scale industrial processes are assessed.In some industrial processes, e.g. ammonia production, CO2 is recovered from the process streams to prevent it from interfering with the production process. The CO2 thus recovered can easily be dehydrated and compressed, at low cost. In the iron and steel industry, carbon dioxide can be recovered from blast furnace gas. In the petrochemical industry CO2 can be recovered from flue gases, using low-temperature heat for the separation process.Carbon dioxide can be recovered from large-scale industrial processes and in some cases the cost of recovery is significantly less than CO2 recovery from thermal power plants. Therefore this option should be studied further and should be considered if carbon dioxide removal is introduced on a wide scale.  相似文献   

4.
Summary In regions such as west Texas where water is scarce, changes in the water balance may have a significant impact on agricultural production and management of water resources. We used the mechanistic soil-plant-atmosphere simulation model ENWATBAL to evaluate changes in soil water evaporation (E) and transpiration (T) in cotton and grain sorghum that may occur due to climate change and elevated CO2 in west Texas. Climatic and plant factors were varied individually, and in combination, to determine their impact onE andT. Of the climatic factors,E was most sensitive to changes in vapor pressure, andT to changes in irradiance. Simulations suggest that if warming is accompanied by higher humidity, the impact of climate change may be minimal. However, if the climate becomes warmer and less humid,ET may increase substantially. Simulations also suggest that enhanced growth due to elevated CO2 may have a greater impact onET than climatic change.With 9 Figures  相似文献   

5.
Using long path UV absorption spectroscopy we have measured OH concentrations close to the earth's surface. The OH values observed at two locations in Germany during 1980 through 1983 range from 0.7×106 to 3.2×106 cm-3. Simultaneously we measured the concentrations of O3, H2O, NO, NO2, CH4, CO, and the light non methane hydrocarbons. We also determined the photolysis rates of O3 and NO2. This allows calculations of OH using a zero dimensional time depdendent model. The modelled OH concentrations significantly exceed the measured values for low NO x concentrations. It is argued that additional, so far unidentified. HO x loss reactions must be responsible for that discrepancy.  相似文献   

6.
A method for optimum modelling of the earth's topography, corresponding to differing meteorological phenomena, is presented.The optimum averaging scale for mountains in terms of orographic cyclo- and anti-cyclogenesis is shown to be of the order of 150 km. The use of larger or smaller averaging scales decreases the correlation between the degree of cyclo- and anti-cyclogenesis and the parameters which describe the orography.A quantitative relation between orographic cyclo- and anti-cyclogenesis and the form of orography determined by the Laplacian 2 Z 0 of the terrain function Z 0 = Z 0(x, y) is presented.  相似文献   

7.
Atmospheric CO2 removal is currently receiving serious consideration as a supplement or even alternative to emissions reduction. However the possible consequences of such a strategy for the climate system, and particularly for regional changes to the hydrological cycle, are not well understood. Two idealised general circulation model experiments are described, where CO2 concentrations are steadily increased, then decreased along the same path. Global mean precipitation continues to increase for several decades after CO2 begins to decrease. The mean tropical circulation shows associated changes due to the constraint on the global circulation imposed by precipitation and water vapour. The patterns of precipitation and circulation change also exhibit asymmetries with regard to changes in both CO2 and global mean temperature, but while the lag in global precipitation can be ascribed to different levels of CO2 at the same temperature state, the regional changes cannot. Instead, ocean memory and heat transfer are important here. In particular the equatorial East Pacific continues to warm relative to the West Pacific during CO2 ramp-down, producing an anomalously large equatorial Pacific sea surface temperature gradient and associated rainfall anomalies. The mechanism is likely to be a lag in response to atmospheric forcing between mixed-layer water in the east Pacific and the sub-thermocline water below, due to transport through the ocean circulation. The implication of this study is that a CO2 pathway of increasing then decreasing atmospheric CO2 concentrations may lead us to climate states during CO2 decrease that have not been experienced during the increase.  相似文献   

8.
Mass and energy fluxes between the atmosphere and vegetation are driven by meteorological variables, and controlled by plant water status, which may change more markedly diurnally than soil water. We tested the hypothesis that integration of dynamic changes in leaf water potential may improve the simulation of CO2 and water fluxes over a wheat canopy. Simulation of leaf water potential was integrated into a comprehensive model (the ChinaAgrosys) of heat, water and CO2 fluxes and crop growth. Photosynthesis from individual leaves was integrated to the canopy by taking into consideration the attenuation of radiation when penetrating the canopy. Transpiration was calculated with the Shuttleworth-Wallace model in which canopy resistance was taken as a link between energy balance and physiological regulation. A revised version of the Ball-Woodrow-Berry stomatal model was applied to produce a new canopy resistance model, which was validated against measured CO2 and water vapour fluxes over winter wheat fields in Yucheng (36°57′ N, 116°36′ E, 28 m above sea level) in the North China Plain during 1997, 2001 and 2004. Leaf water potential played an important role in causing stomatal conductance to fall at midday, which caused diurnal changes in photosynthesis and transpiration. Changes in soil water potential were less important. Inclusion of the dynamics of leaf water potential can improve the precision of the simulation of CO2 and water vapour fluxes, especially in the afternoon under water stress conditions.  相似文献   

9.
With the global Chemistry-Transport model MATCHsensitivity simulations were performed to determinethe degree to which especially upward transport ofgases from the earth's surface is limited byconvective and large-scale precipitation scavenging.When only dissolution of species in the liquid phaseis taken into account, mixing ratio reductions in themiddle and upper troposphere by 10% arecalculated for gases with a Henry's Law constant H of103 mol/l/atm. The removal increases to 50% forH = 104 mol/l/atm, and to 90% for H =105 mol/l/atm. We also consider scavenging by theice phase, which is generally much less efficient thanby the aqueous phase. In fact, rejection of gases fromfreezing water droplets may be a source of trace gasat higher altitudes.H2O2 and the strong acids (H2SO4,HNO3, HCl, HBr, HI) have such large solubilitiesthat they become largely removed by precipitation.When significant concentrations of these gases andsulfate aerosol exist above the liquid water domain ofthe atmosphere, they have likely been produced thereor at higher altitudes, although some could have comefrom trace gas rejection from ice particles or fromevaporating hydrometeors. Several other gases areaffected by precipitation, but not strongly enough toprevent fractional transfer to the middle and uppertroposphere: e.g., HNO4, HNO2 at pH 5,CH2O, the organic acids at pH 6,CH3SOCH3, HOCl, HOBr, and HOI. NH3 islargely removed by liquid phase scavenging at pH 7 and SO2 atpH 7. At pH less thanabout 6, upward transport of SO2 should largelydepend on the efficiency of oxidation processes in thewater droplets by O3 and H2O2.Most gases have solubilities which are too low forsignificant precipitation scavenging and aqueous phaseoxidation to occur. This holds, e.g., for O3, CO,the hydrocarbons, NO, NO2, HCN, CH3CN,CH3SCH3, CH3O2H, CH3CHOandhigher aldehydes, CH3OH and higher alcohols,peroxyacetylnitrate (PAN), CH3COCH3 andother ketones (note that some of these are not listedin Table I because their solubilities are below 10mol/l/atm). Especially for the short-lived gases,transfer from the boundary layer to the middle andupper troposphere is actually promoted by the enhancedupward transport that occurs in clouds.  相似文献   

10.
The growth and decay of ice sheets are driven by forces affecting the seasonal cycles of snowfall and snowmelt. The external forces are likely to be variations in the earth's orbit which cause differences in the solar radiation received. Radiational control of snowmelt is modulated by the seasonal cycles of snow albedo and cloud cover. The effects of orbital changes can be magnified by feedbacks involving atmospheric CO2 content, ocean temperatures and desert areas. Climate modeling of the causes of the Pleistocene ice ages involves modeling the interactions of all components of the climate system; snow, sea ice, glacier ice, the ocean, the atmosphere, and the solid earth. Such modeling is also necessary for interpreting oxygen isotope records from ice and ocean as paleoclimatic evidence.  相似文献   

11.
Zusammenfassung Auf der Grundlage des raumzeitlichen atmosph?rischen Turbulenzspektrums wird die M?glichkeit einer über die Erdatmosph?re hinausgreifenden Ausdehnung der Klimaschwankungen er?rtert. Der globale Anstieg der Temperatur und des Meeresspiegels führt auf die Existenz von überschüssen oder Defiziten in unseren globalen Haushaltsrechnungen, deren einzelne Terme — besonders Wasserhaushalt und CO2-Kreislauf —in dieser Hinsicht diskutiert werden. Die Differenz zwischen der beobachteten Zunahme des CO2-Gehaltes und der relativen Abnahme des C14-Anteils wird auf anthropogene Vegetationszerst?rung zurückgeführt. Die Klimaschwankungen der letzten 1000 Jahre warnen vor einer übersch?tzung der CO2-Theorie der gegenw?rtigen Erw?rmung.
Summary Based on the spectrum of atmospheric turbulence in time and space, the author discusses the possibility to extend the climatic variations beyond the earth's atmosphere. The global increase of temperature and sea level leads to the existence of a surplus or a deficit in the global balance, the terms of which — especially water balance and CO2-cycle—are discussed. The difference between the observed increase of CO2-content and the decreasing portion of C14 may be due to man-made destruction of vegetation. The climatic variations of the last 1000 years may caution against an over-estimation of the CO2-hypothesis.

Résumé En se fondant sur le spectre de la turbulence atmosphérique dans le temps et dans l'espace, l'auteur discute la possibilité d'étendre le domaine des variations climatiques en dépassant le cadre de l'atmosphère. L'élévation universelle de température et le relèvement du niveau des océans conduit à admettre des excédents ou des déficits de l'économie générale telle qu'on la calcule; les termes de cette économie, en particulier la teneur en eau et le cycle de CO2 sont ici examinés. L'écart entre l'accroissement constaté de la teneur en CO2 et la diminution relative du C14 s'explique par la destruction végétale due à l'homme. Les variations climatiques du millénaire écoulé doivent mettre en garde contre une application mal fondée de la théorie du CO2 à l'explication du réchauffement actuel.


Herrn Dr.Anders K. ?ngstr?m zu seinem 70. Geburtstag gewidmet.  相似文献   

12.
Eddy fluxes of CO2, water vapor,and sensible heat over a deciduous forest   总被引:12,自引:0,他引:12  
Fluxes of CO2, latent heat and sensible heat were measured above a fully-leafed deciduous forest in eastern Tennessee with the eddy correlation technique. These are among the first reported observations over such a surface. The influences of solar radiation, vapor pressure deficit and the aerodynamic and canopy resistances on these mass and energy exchanges are examined. Following a concept introduced by McNaughton and Jarvis (1983), examination of our data suggest that the water vapor exchange of a deciduous forest is not as strongly coupled with net radiation as is that of agricultural crops. The degree of decoupling is smaller than in the case of a coniferous forest. This difference may be attributable in part to the greater aerodynamic resistance to water vapor transfer in a deciduous forest. It appears that the concept of decoupling may be extended to the CO2 exchange of a deciduous forest as well.Published as Paper No. 7832, Journal Series, Nebraska Agricultural Research Division. ATDD Contribution No. 85-17.  相似文献   

13.
A large-eddy simulation model developed at the National Center for Atmospheric Research (NCAR) is extended to simulate the transport and diffusion of C18OO, H218O and 13CO2 in the atmospheric boundary layer (ABL). The simulation results show that the 18O compositions of leaf water and the ABL CO2 are moderately sensitive to wind speed. The variations in the 18O composition of water vapour are an order of magnitude greater than those in the 13C and 18O compositions of CO2 both at turbulent eddy scales and across the capping inversion. In a fully-developed convective ABL, these isotopic compositions are well mixed as with other conserved atmospheric quantities. The Keeling intercepts determined with the simulated high-frequency turbulence time series do not give a reliable estimate of the 18O composition of the surface water vapour flux and may be a reasonable approximation to the 13C and 18O compositions of the surface CO2 flux in the late afternoon only after a deep convective ABL has developed. We suggest that our isotopic large-eddy simulation (ISOLES) model should be a useful tool for testing and formulating research hypotheses on land–air isotopic exchanges.  相似文献   

14.
The effect of the overlapping band of atmospheric gases and its treatment on the calculation of flux and cooling rate due to the long wave radiation is investigated in detail by a new transmission model for overlapping bands, taking the 15 μm band of CO2 as an example. It is found that the presence of band overlapping has a quite significant influence on radiative fluxes and cooling rates in the upper stratosphere and the troposphere, in particular, at the earth's surface. However, in the middle-lower stratosphere, the overlapping effect appears to be insignificant. It is also shown that the usual wide-band transmission model treating the overlapping effect overestimates the net longwave fluxes in the lower stratosphere and, in particular, in the troposphere including the surface. But, in the middle-upper stratosphere, the contrary is the case.  相似文献   

15.
A new sensitive method for measuring atmospheric concentrations of sulfur dioxide is presented. Samples are obtained using the mist chamber, which collects highly water-soluble gases with high efficiency, and concentrates them in a small volume of water. Particles are removed from the sampled air stream with a teflon filter, before it enters the mist chamber. After collection, the pH of the water is raised above pH 10 using sodium carbonate, then hydrogen peroxide (H2O2) is added to oxidize sulfur that may be present in the sulfur (IV) oxidation state, to sulfate. After a reaction time of at least 16 hours, the sulfate concentration is measured by ion chromatography. From the sulfate concentration, the water volume used in the mist chamber, and the volume of air sampled, the atmospheric concentration of SO2 is computed. The method is not sensitive to other atmospheric sulfur gases such as DMS, SC2, H2S, COS, or MSH. The estimated overall precision of the method is 10%. The detection limit at the present stage of technique development is approximately 20 ppt (parts per trillion, or 10-12 mol · mol-1) for a 45 minute sampling time, with lower concentrations being detectable with lower precision.  相似文献   

16.
采用漂浮通量箱法和扩散模型法同步地观测了模拟内陆水体在不同条件下的CH4和N2O的水-气交换通量,旨在比较两类方法取得结果的异同。结果显示:这两类方法所测得的绝大多数CH4排放通量都与水中溶解氧呈显著线性负相关(显著性系数P0.001)。同时N2O排放通量与表层水温及水中铵态氮、硝态氮、溶解碳和溶解氧的关系可用包含所有上述水环境因素的Arrhenius动力学方程来表达,这些因素可以共同解释86%~90%的N2O通量变化(P0.0001),且不同方法测定的N2O通量的表观活化能和对表层水温的敏感系数分别介于47~59 kJ mol-1和1.92~2.27之间;扩散模型法所获得的CH4和N2O通量分别是箱法测定值的13%~175%和15%~240%,差异程度因模型而异;不同模型取得通量间相差20%~1200%,平均相差2.3倍。上述结果表明:仅用一种模型方法来取得CH4或N2O排放通量易形成较大偏差;不同扩散模型法和箱法测定的通量在反映CH4和N2O排放的内在规律方面具有一致性,但它们对真实气体通量的测量是否都存在不同程度的系统误差,尚需进一步研究。  相似文献   

17.
A change in CO2 concentration induces a direct radiative forcing that modifies the planetary thermodynamic state, and hence the surface temperature. The infrared cooling, by assuming a constant temperature lapse-rate during the process, will be related to the surface temperature through the Stefan–Boltzmann law in a ratio proportional to the new infrared opacity. Other indirect effects, such as the water vapor and ice-albedo feedbacks, may amplify the system response. In the present paper, we address the question of how a global climate model with a mixed layer ocean responds to different rates of change of a well-mixed greenhouse gas such as CO2. We provide evidence that different rates of CO2 variation may lead to similar transient climates characterized by the same global mean surface temperature but different values of CO2 concentration. Moreover, it is shown that, far from the bifurcation points, the model’s climate depends on the history of the radiative forcing displaying a hysteresis cycle that is neither static nor dynamical, but is related to the memory response of the model. Results are supported by the solutions of a zero-dimensional energy balance model.  相似文献   

18.
Numerous studies have shown that increased atmospheric CO2 concentration is one of the most important factors altering land water balance. In this study, we investigated the effects of increased CO2 on global land water balance using the dataset released by the Coupled Model Intercomparison Project Phase 5 derived from the Canadian Centre for Climate Modelling and Analysis second-generation Earth System Model. The results suggested that the radiative effect of CO2 was much greater than the physiological effect on the water balance. At the model experiment only integrating CO2 radiative effect, the precipitation, evapotranspiration (ET) and runoff had significantly increased by 0.37, 0.12 and 0.31 mm year?2, respectively. Increases of ET and runoff caused a significant decrease of soil water storage by 0.05 mm year?2. However, the results showed increases of runoff and decreases of precipitation and ET in response to the CO2 fertilisation effect, which resulted into a small, non-significant decrease in the land water budget. In the Northern Hemisphere, especially on the coasts of Greenland, Northern Asia and Alaska, there were obvious decreases of soil water responding to the CO2 radiative effect. This trend could result from increased ice–snow melting as a consequence of warmer surface temperature. Although the evidence suggested that variations in soil moisture and snow cover and vegetation feedback made an important contribution to the variations in the land water budget, the effect of other factors, such as aerosols, should not be ignored, implying that more efforts are needed to investigate the effects of these factors on the hydrological cycle and land water balance.  相似文献   

19.
The increasing concentration of CO2 in the atmosphere should result in a general increase in the net primary productivity of most cultivated species and forest species, assuming no counterproductive climatic changes occur. The photosynthetic rate of C3 plants is most responsive to increasing concentration of CO2 in the ambient air. C4 plants demonstrate a stomatal closure that causes reduced transpiration. In the case of both types of plants, the water use efficiency (photosynthesis/transpiration) is likely to be improved.It has been suggested that photosynthetic production may be limited today more by shortages of water and nutrients than by shortages of carbon dioxide. The author speculates that the inadvertant CO2-fertilization now occurring could, in itself, cause a moderate release from these constraints.Physiological responses to an increased atmospheric CO2 concentration are easily demonstrated in controlled environment studies. Because of the difficulty in maintaining artifically enriched air near the crop against the forces of turbulent transfer, studies in the open field have been inconclusive. The observation of decreased photosynthetic rate in a perennial crop during that part of the growing season when CO2 concentration is naturally low suggests a technique by which it may be possible to infer what will happen in the real world of agricultural fields if a CO2-rich environment, such as is predicted in the coming decades, materializes. Inferences from the very limited set of data available support the view that net photosynthetic production will be increased.Published as Paper No. 6123, Journal Series, Nebraska Agricultural Experiment Station. The work reported was conducted under Regional Research Project 11–33 and Nebraska Agricultural Experiment Station Project 1149.George Holmes Professor of Agricultural Meteorology, Center for Agricultural Meteorology and Climatology, Institute of Agriculture and Natural Sources, University of Nebraska-Lincoln, Lincoln, NE 68583, U.S.A.  相似文献   

20.
The chemical removal of SO2 in the presence of different aerosol systems has been investigated in laboratory experiments using a dynamic flow reactor. The aerosols consisted of wetted particles containing one of the following substances: MnCl2, Mn(NO3)2, MnSO4, CuCl2, Cu(NO3)2, CuSO4, FeCl3, NaCl. The SO2 removal rate R was measured as a function of the SO2 gas phase concentration (SO2)g, the spatial metal concentration CMe, and the relative humidity rH in the reactor. A first-order dependence with regard to (SO2)g was observed for each type of aerosol. For the Mn(II) and Cu(II) aerosols R was found to be a non-linear function of CMe except for MnSO4 and Cu(NO3)2 particles. The removal rate showed a significant increase with the relative humidity particularly when rH was close to the deliquescence point of the wetted particles. Among the Mn(II) and Cu(II) aerosols investigated Mn(NO3)2 was found to be most efficient for the chemical removal of SO2 at atmospheric background conditions, especially in haze and fog droplets. The results further indicate that the catalytic oxidation of S(IV) in such aerosol systems may be as efficient as its oxidation by H2O2 in cloud water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号